

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

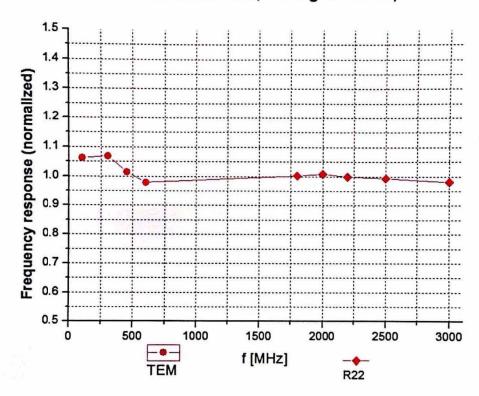
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.71	9.71	9.71	0.20	1.00	± 12%
850	55.2	0.99	9.42	9.42	9.42	0.15	1.52	±12%
1750	53.4	1.49	7.65	7.65	7.65	0.15	1.52	±12%
1900	53.3	1.52	7.42	7.42	7.42	0.15	1.42	± 12%
2300	52.9	1.81	7.39	7.39	7.39	0.42	0.85	±12%
2450	52.7	1.95	7.22	7.22	7.22	0.29	1.27	±12%
2600	52.5	2.16	6.95	6.95	6.95	0.32	1.07	±12%
5200	49.0	5.30	4.93	4.93	4.93	0.40	1.30	±13%
5300	48.9	5.42	4.69	4.69	4.69	0.40	1.20	±13%
5600	48.5	5.77	4.18	4.18	4.18	0.42	1.30	±13%
5800	48.2	6.00	4.23	4.23	4.23	0.42	1.20	±13%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z15-97193

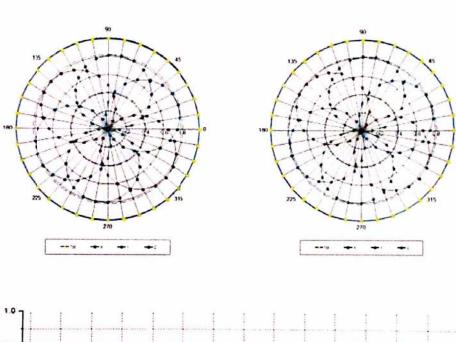
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

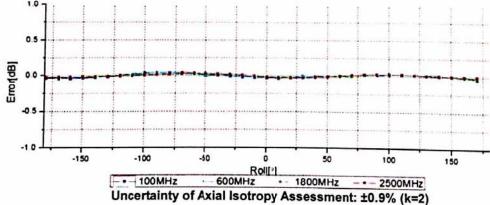
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z15-97193

Page 7 of 11

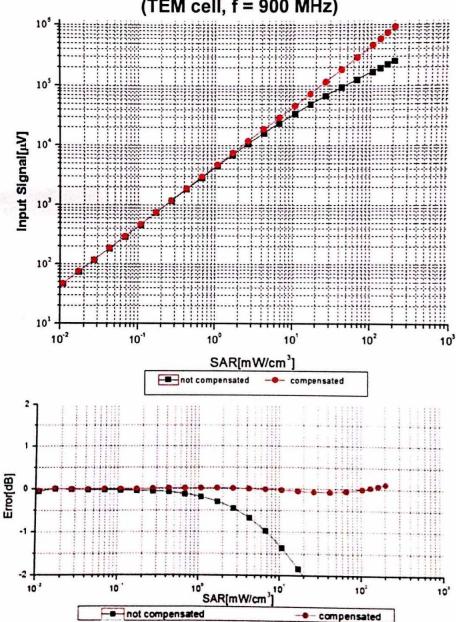




Receiving Pattern (Φ), θ =0°

f=600 MHz, TEM

f=1800 MHz, R22


Certificate No: Z15-97193

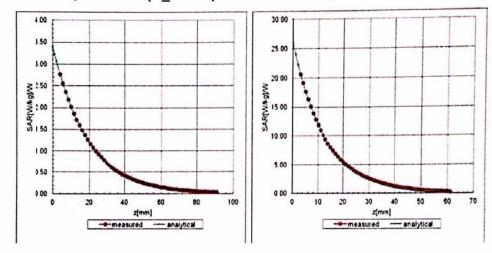
Page 8 of 11

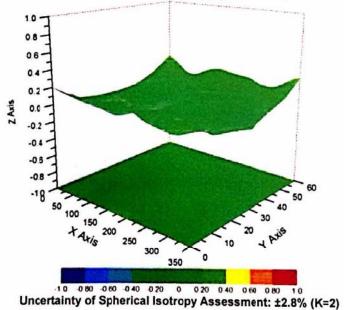
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Certificate No: Z15-97193

Uncertainty of Linearity Assessment: ±0.9% (k=2)
Page 9 of 11




Conversion Factor Assessment

f=850 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z15-97193

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	118.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z15-97193

Page 11 of 11

ANNEX E: D835V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client TA(Shanghai) Certificate No: Z14-97073

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d020

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: August 28, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

102083 11-Sep-13 (TMC, No.JZ13-443) Sep-14 Power Meter NRVD Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Sep -14 5- Sep-13 (SPEAG, No.ES3-3149 Sep13) Reference Probe ES3DV3 SN 3149 Sep-14 23-Jan-14 (SPEAG, DAE3-536_Jan14) Jan -15 DAE3 SN 536 Signal Generator E4438C MY49070393 13-Nov-13 (TMC, No.JZ13-394) Nov-14 Network Analyzer E8362B MY43021135 19-Oct-13 (TMC, No.JZ13-278) Oct-14

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97073 Page 1 of 8

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate
 the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97073 Page 2 of 8

E-mail; cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	**
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ±6 %	0.91 mho/m±6 %
Head TSL temperature change during test	<1.0 °C	1.67 <u>21.00.02</u> 0;	1202

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW/g
SAR for nominal Head TSL parameters	normalized to 1VV	9.54 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1VV	6.26 mW/g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

0.000.00	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0±0.2) °C	56.7 ±6 %	0.97 mho/m±6 %
Body TSL temperature change during test	<1.0 °C	3	3-000

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 mW/g
SAR for nominal Body TSL parameters	normalized to 1VV	9.54 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.57 mVV / g
SAR for nominal Body TSL parameters	normalized to 1VV	6.31 mW/g ± 20.4 % (k=2)

Certificate No: Z14-97073 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$48.6\Omega + 2.75j\Omega$	
Return Loss	- 30.1dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.0Ω +5.88jΩ
Return Loss	- 23.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.242 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z14-97073

Page 4 of 8

Date: 28.08.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

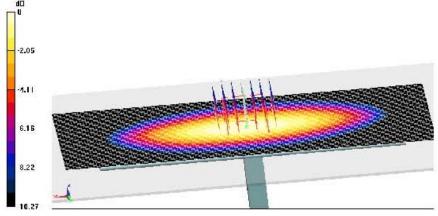
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.909$ S/m; $s_z = 42.49$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.21, 6.21, 6.21); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

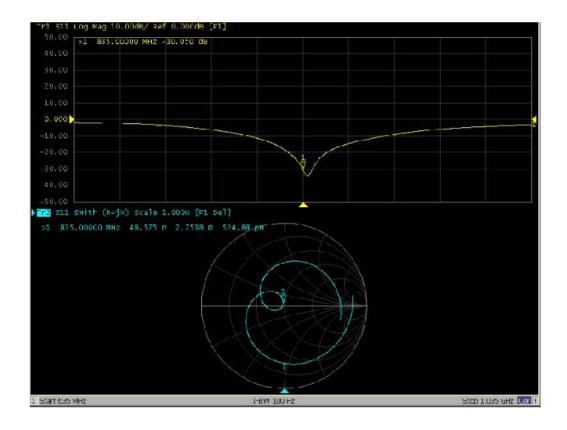

dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.79 W/kg


0 dB = 2.79 W/kg = 4.46 dBW/kg

Certificate No: Z14-97073 Page 5 of 8

Impedance Measurement Plot for Head TSL

Date: 28.08.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

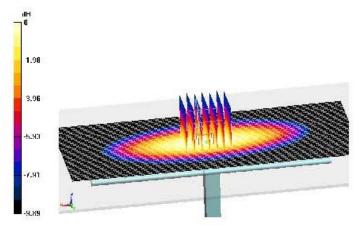
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 56.745$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(5.98, 5.98, 5.98); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

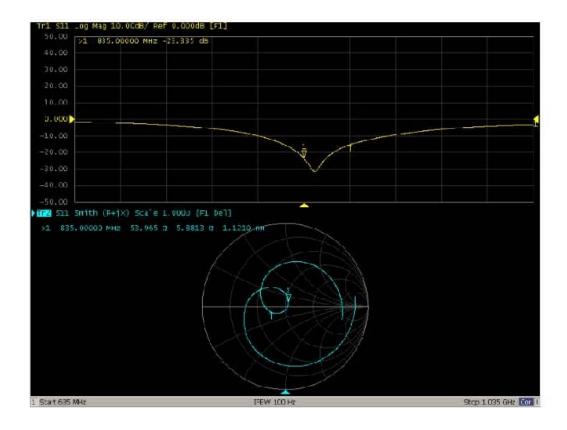

System Performance Check at Frequencies below $1~\mathrm{GHz/d=15mm}$, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.515 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.45 W/kg

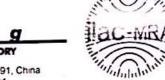
SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.74 W/kg


0 dB = 2.74 W/kg = 4.38 dBW/kg

Certificate No: Z14-97073 Page 7 of 8

Impedance Measurement Plot for Body TSL


Certificate No: Z14-97073 Page 8 of 8

Client

ANNEX F: D1750V2 Dipole Calibration Certificate

Certificate No: J14-2-0053

Tel +86-10-62304633-2079 E-mail: Info@emcite.com

Add No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel. +86-10-62304633-2504 Fax. +86-10-62304633-2504 Http://www.emcite.com

TA(Shanghai) CALIBRATION CERTIFICATE

Object D1750V2 - SN: 1033

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: January 26, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Cal Date(Calibrated by, Certificate No.) Scheduled Calibration ID# Primary Standards

11-Sep-13 (TMC, No JZ13-443) Power Meter NRVD Sep-14 102083 Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Sep -14 SN 3846 3- Sep-13 (SPEAG, No EX3-3846_Sep13) Sep-14 Reference Probe EX3DV4 SN 777 22-Feb-13 (SPEAG, DAE4-777_Feb13) Feb -14 MY49070393 13-Nov-13 (TMC, No JZ13-394) Nov-14 Signal Generator E4438C 19-Oct-13 (TMC, No.JZ13-278) Network Analyzer E8362B MY43021135 Oct-14

Function Signature Name Calibrated by: SAR Test Engineer Yu Zongying Reviewed by: SAR Project Leader Qi Dianyuan Approved by: Deputy Director of the laboratory Lu Bingsong

Issued: January 28, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: J14-2-0053

Page 1 of 8

Add No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail. Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J14-2-0053

Page 2 of 8

e CALIBRATION LABORATORY

E-mail Info@emcite.com

Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.2 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.92 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	19.8 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.63 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	38.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.6 mW /g ± 20.4 % (k=2)

Certificate No: J14-2-0053

Add No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel. +86-10-62304633-2079 Fax. +86-10-62304633-2504 E-mail. Info@emcite.com Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 0.63jΩ	
Return Loss	- 41.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8Ω- 3.98jΩ	
Return Loss	- 24.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.031 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	HER / TEACHERS.

Certificate No: J14-2-0053

Page 4 of 8

n Collaboration with

S D E A G

Add No 52 Huayuanbei Roa Tei: +86-10-62304633-2079 E-mail Info@emoite.com

nbei Road, Haidian District, Beijing, 100191, China 33-2079 Fax. +86-10-62304633-2504 e.com <u>Http://www.emicite.com</u>

DASY5 Validation Report for Head TSL

Date: 26.01.2014

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Communication System: UID 0, CW (0); Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\epsilon r = 39.6$; $\rho = 1000 \text{ kg/m}3$

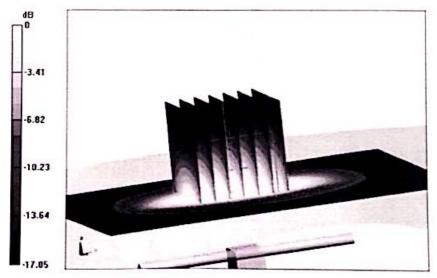
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846;ConvF(7.85, 7.85, 7.85); Calibrated: 2013/9/3
- · Sensor-Surface: 2mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn777; Calibrated: 2013/2/22
- Phantom: SAM1593;Type: QD000P40CC;Serial: TP:1593
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Head Tissue/ d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.1 V/m; Power Drift = 0.02 dB

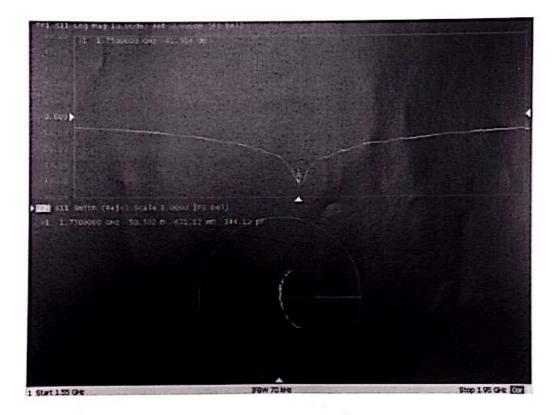
Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.92 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Certificate No: J14-2-0053


Page 5 of 8

Add No 52 Huayuanbei Road, Haidian District. Beijing, 100191, China Tel +86-10-62304633-2079 Fax +86-10-62304633-2504 E-mail Info@emoite com Http://www.emoite.com

Impedance Measurement Plot for Head TSL

Certificate No: J14-2-0053

Page 6 of 8

Date: 26.01.2014

Tel +86-10-62304633-2079 E-mail Info@emcite.com

nbei Road, Haidian District, Beijing, 100191, China 33-2079 Fax +86-10-62304633-2504 com <u>Http://www.emicite.com</u>

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW (0):Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\varepsilon_r = 52.8$; $\rho = 1000$ kg/m³

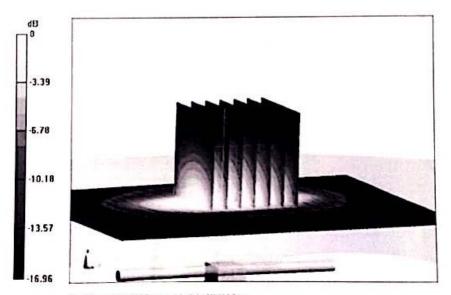
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846;ConvF(7.56, 7.56, 7.56); Calibrated: 2013/9/3
- Sensor-Surface: 2mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn777; Calibrated: 2013/2/22
- Phantom: SAM 1186;Type: QD000P40CC;
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Body Tissue/ d=10mm, Pin=250mW, dist=2.0mm


(EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

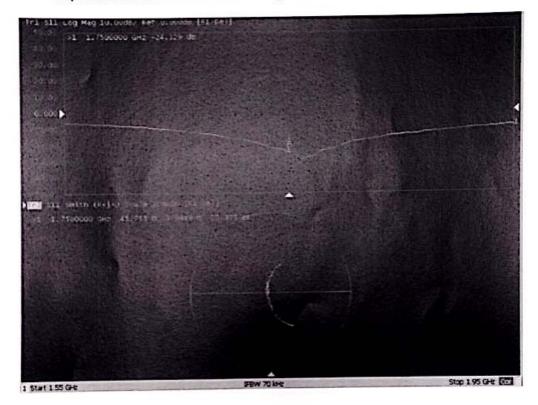
dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.820 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.63 W/kg; SAR(10 g) = 5.14 W/kgMaximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg


Certificate No: J14-2-0053

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J14-2-0053

Page 8 of 8

ANNEX G: D1900V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client TA(Shanghai) Certificate No: Z14-97074

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d060

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: September 1, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97074 Page 1 of 8

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate
 the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97074 Page 2 of 8

E-mail; cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ±1 MHz	

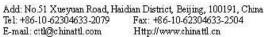
Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ±6 %	1.37 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	2 <u>1000</u> 2	F2002

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.69 mW / g
SAR for nominal Head TSL parameters	normalized to 1VV	39.2 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.14 mW/g
SAR for nominal Head TSL parameters	normalized to 1VV	20.7 mW/g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.


	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0±0.2) °C	51.8 ±6 %	1.50 mho/m ±6 %
Body TSL temperature change during test	<1.0 °C	COME	0.89

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW/g
SAR for nominal Body TSL parameters	normalized to 1VV	40.0 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.28 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW/g ± 20.4 % (k=2)

Certificate No: Z14-97074 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1Ω- 6.34jΩ	
Return Loss	- 22.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	57.6Ω- 4.76jΩ
Return Loss	- 21.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.248 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	
-----------------------	--

Certificate No: Z14-97074

Page 4 of 8

Date: 01.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.371$ S/m; $\epsilon_r = 39.83$; $\rho = 1000$ kg/m³

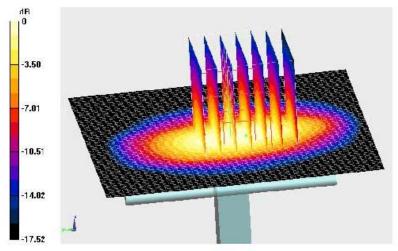
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(5.06, 5.06, 5.06); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

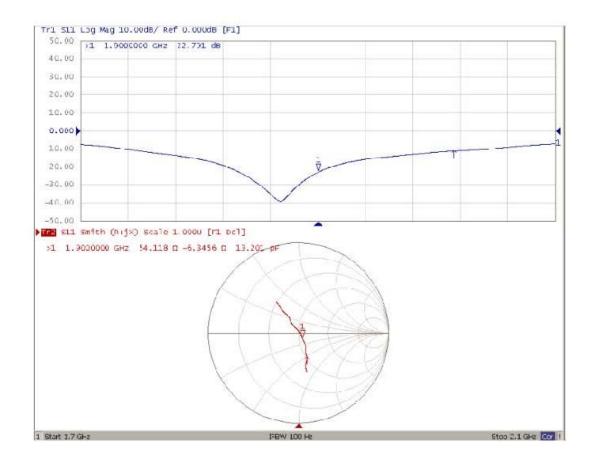

dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.911 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.69 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 12.2 W/kg


0 dB = 12.2 W/kg = 10.86 dBW/kg

Certificate No: Z14-97074 Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97074 Page 6 of 8

Date: 01.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $s_r = 51.78$; $\rho = 1000$ kg/m³

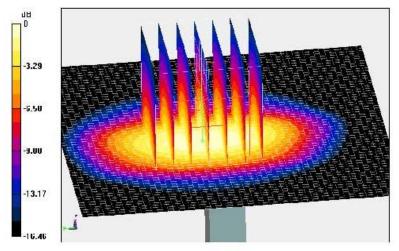
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.72, 4.72, 4.72); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C, Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.668 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

Certificate No: Z14-97074 Page 7 of 8