FCC Test Report

Equipment	AC1350 Wireless Dual Band Router
Brand Name	TP-LINK
Model No.	Archer C59
FCC ID	TE7C59
Standard	47 CFR FCC Part 15.247
Frequency	2400 MHz - 2483.5 MHz
FCC Classification	DTS
Applicant / Manufacturer	TP-LINK TECHNOLOGIES CO., LTD. Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and Technology Park, Shennan Rd, Nanshan, Shenzhen, China

The product sample received on May 20, 2016 and completely tested on Oct. 24, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Table of Contents

1 GENERAL DESCRIPTION5
1.1 Information5
1.2 Testing Applied Standards 7
1.3 Testing Location Information 7
1.4 Measurement Uncertainty 8
2 TEST CONFIGURATION OF EUT 9
2.1 The Worst Case Modulation Configuration 9
2.2 Test Channel Mode 10
2.3 The Worst Case Measurement Configuration 11
2.4 Accessories and Support Equipment 12
2.6 Test Setup Diagram 13
3 TRANSMITTER TEST RESULT 14
3.1 AC Power-line Conducted Emissions 14
3.2 DTS Bandwidth 16
3.3 Fundamental Emission Output Power 17
3.4 Power Spectral Density 20
3.5 Transmitter Radiated Bandedge Emissions 22
3.6 Transmitter Radiated Unwanted Emissions 25
4 TEST EQUIPMENT AND CALIBRATION DATA 29
Appendix I. Test Result of AC Power-line Conducted Emissions
Appendix A. Test Result of Emission Bandwidth
Appendix B. Test Result of Maximum Conducted Output Power
Appendix C. Test Result of Power Spectral Density
Appendix D. Test Result of Transmitter Radiated Bandedge Emissions
Appendix E. Transmitter Radiated Unwanted Emissions
Appendix F. Test Photos
Appendix G. Photographs of EUT

Summary of Test Result

Conformance Test Specifications					
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.16 MHz 36.36 (Margin 28.94dB) - QP 33.29 (Margin 22.01dB) - AV	FCC 15.207	Complied
3.2	15.247(a)	DTS Bandwidth	Refer as Appendix A	$\geq 500 \mathrm{kHz}$	Complied
3.3	15.247(b)	Fundamental Emission Output Power	Refer as Appendix B	Power [dBm]:30	Complied
3.4	15.247(e)	Power Spectral Density	Refer as Appendix C	$\begin{aligned} & \hline \text { PSD } \\ & \text { [dBm/3kHz]:8 } \end{aligned}$	Complied
3.5	15.247(d)	Test Result of Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.892MHz: 32.89 dB Restricted Bands [dBuV/m at 3 m]: 2389.200 MHz 63.76(Margin 10.24 dB) - PK [dBuV/m at 3 m]: 2389.992 MHz 53.81 (Margin 0.19 dB) - AV	Non-Restricted Bands:> 30 dBc Bands: FCC 15.209	Complied
3.6	15.247(d)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3 m]:4874.000 MHz 51.50 (Margin 2.50dB) - AV 53.70 (Margin 20.30dB) - PK	Non-Restricted Bands:> 30 dBc Restricted Bands: FCC 15.209	Complied

Revision History

Report No.	Version	Description	Issued Date
FR651919AC	Rev. 01	Initial issue of report	Sep. 19, 2016
FR651919AC	Rev. 02	Update Appendix D. Bandedge Emissions in Restricted Frequency Bands for other channels	Oct. 26, 2016
FR651919AC	Rev. 03	Remove data as below: 20M : CH3, 4, 5, 7, 8, 9/40M : CH5, 7	Oct. 28, 2016

1 General Description

1.1 Information

1.1.1 RF General Information

Band	Mode	BWch (MHz)	Channel Number	Nss-Min	Nant
2.4 G	11 b	20	$1-11[11]$	1	3
2.4 G	11 g	20	$1-11[11]$	1	3
2.4 G	HT20	20	$1-11[11]$	$1,(\mathrm{M0}-23)$	3
2.4 G	HT40	40	$3-9[7]$	$1,(\mathrm{M0}-23)$	3

Note:

- $\quad 2.4 \mathrm{G}$ is the 2.4 GHz Band ($2.4-2.4835 \mathrm{GHz}$).
- 11 b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11 g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., $2(2,3)$ means have 2 outputs for port 2 and port 3 . 2 means have 2 outputs for port 1 and port 2.

1.1.2 Antenna Information

Antenna Category		
\square	Integral antenna (antenna permanently attached)	
	\square	Temporary RF connector provided
	\square	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.
\boxtimes	External antenna (dedicated antennas)	
	$\boxed{ }$	Single power level with corresponding antenna(s).
	\square	Multiple power level and corresponding antenna(s).

Antenna General Information					
No.	Ant. Cat.	Ant. Type	Gain $_{\text {(dBi) }}$	Frequency Band	
A	External	Dipole	2.89	2.4 G	
B	External	Dipole	2.89	2.4 G	
C	External	Dipole	3.34	2.4 G	

Note : also mark antenna port in the EP.

1．1．3 Type of EUT

Identify EUT		
EUT Serial Number		N／A
Presentation of Equipment		\boxtimes Production ；\square Pre－Production ；\square Prototype
Type of EUT		
区	Stand－alone	
\square	Combined（EUT where the radio part is fully integrated within another device） Combined Equipment－Brand Name／Model No．：．．．	
\square	Plug－in radio（EUT inte Host System－Brand	ed for a variety of host systems） me／Model No．：
\square	Other：	

1．1．4 Mode Test Duty Cycle

Operated Mode for Worst Duty Cycle	
$\boxtimes \quad$ Operated test mode for worst duty cycle	
Test Signal Duty Cycle（x）	Power Duty Factor ［dB］－$(10 \log 1 / x)$
凹 99．6\％－IEEE 802．11b	0.02
区 97．5\％－IEEE 802．11g	0.11
－97．5\％－IEEE 802．11n（HT20）	0.11
－96．1\％－IEEE 802．11n（HT40）	0.17

Mode	DC	T（s）	VBW $(\mathrm{Hz}) \geq 1 / \mathrm{T}$
11 b	0.996	$\mathrm{n} / \mathrm{a}(\mathrm{DC}>=0.98)$	$\mathrm{n} / \mathrm{a}(\mathrm{DC}>=0.98)$
11 g	0.975	2.025 m	1 k
HT20	0.975	1.889 m	1 k
HT40	0.961	928.75 u	3 k

1．1．5 EUT Operational Condition

Supply Voltage	\boxtimes	AC mains	\square	DC
Type of DC Source	\boxtimes	External AC adapter	\square	From Host System

1．1．6 EUT Operate Information

Items	Description			
Communication Mode	\boxtimes	IP Based（Load Based）	\square	Frame Based
Beamforming Function	\square	With beamforming	\boxtimes	Without beamforming
Operate Condition	\boxtimes	Indoor	\square	Outdoor
	\square	Fixed P2P	\square	Portable Client
Operate Mode	\boxtimes	Master		

SPORTON INTERNATIONAL INC．	Page No．	$: 6$ of 29
TEL ：886－3－327－3456	Report Version	$:$ Rev． 03

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- KDB 558074 D01 v03r05
- KDB 662911 D01v02r01

1.3 Testing Location Information

Testing Location						
区	HWA YA	ADD TEL	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.886-3-327-3456 FAX : 886-3-327-0973			
Test Condition			Test Site No.	Test Engineer	Test Environment	Test Date
AC Conduction			CO01-HY	Joe	$23.5{ }^{\circ} \mathrm{C} / 63.7 \%$	24/08/2016
RF Conducted			TH01-HY	Gary	$23.8{ }^{\circ} \mathrm{C} / 65 \%$	05/09/2016
Radiated			03CH09-HY	Thor	$23.5{ }^{\circ} \mathrm{C} / 63.7 \%$	01/09/2016
Radiated <Bandedge>			03CH09-HY	Terry	$24.3^{\circ} \mathrm{C} / 60 \%$	24/10/2016

Test site registered number [553509] with FCC.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor ($k=2$)

Measurement Uncertainty		
Test Item		Uncertainty
AC power-line conducted emissions		$\pm 2.3 \mathrm{~dB}$
Emission bandwidth, 6dB bandwidth		± 0.6 \%
RF output power, conducted		$\pm 0.1 \mathrm{~dB}$
Power density, conducted		$\pm 0.6 \mathrm{~dB}$
Unwanted emissions, conducted	9-150 kHz	$\pm 0.4 \mathrm{~dB}$
	$0.15-30 \mathrm{MHz}$	$\pm 0.4 \mathrm{~dB}$
	$30-1000 \mathrm{MHz}$	$\pm 0.6 \mathrm{~dB}$
	$1-18 \mathrm{GHz}$	$\pm 0.5 \mathrm{~dB}$
	$18-40 \mathrm{GHz}$	$\pm 0.5 \mathrm{~dB}$
	$40-200 \mathrm{GHz}$	N/A
All emissions, radiated	$9-150 \mathrm{kHz}$	$\pm 2.5 \mathrm{~dB}$
	$0.15-30 \mathrm{MHz}$	$\pm 2.3 \mathrm{~dB}$
	$30-1000 \mathrm{MHz}$	$\pm 2.6 \mathrm{~dB}$
	$1-18 \mathrm{GHz}$	$\pm 3.6 \mathrm{~dB}$
	$18-40 \mathrm{GHz}$	$\pm 3.8 \mathrm{~dB}$
	$40-200 \mathrm{GHz}$	N/A
Temperature		$\pm 0.8{ }^{\circ} \mathrm{C}$
Humidity		± 5 \%
DC and low frequency voltages		$\pm 0.9 \%$
Time		± 1.4 \%
Duty Cycle		± 0.6 \%

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing			
Modulation Mode	Transmit Chains (N TX^{\prime})	Data Rate / MCS	Worst Data Rate / MCS
11 b	3	$1-11 \mathrm{Mbps}$	1 Mbps
11 g	3	$6-54 \mathrm{Mbps}$	6 Mbps
HT20	3	MCS 0-23	MCS 0
HT40	3	MCS 0-23	MCS 0
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). The EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 800ns. Note 2: Modulation modes consist below configuration: 11b: IEEE 802.11b, 11g: IEEE 802.11g, HT20/HT40: IEEE 802.11n			
Note 3: RF output power specifies that Maximum Peak Conducted Output Power.			

2.2 Test Channel Mode

Test Software Version Cart

Band	Mode	BWch (MHz)	Nss-Min	Nant	$\begin{aligned} & \text { Ch. } \\ & \text { (MHz) } \end{aligned}$	Range	Power Setting
2.4 G	11b	20	1	3	2412	L	20.5
2.4G	11b	20	1	3	2417	-	21.5
2.4 G	11b	20	1	3	2437	M	29
2.4 G	11b	20	1	3	2457	-	22.5
2.4 G	11b	20	1	3	2462	H	19
2.4 G	11 g	20	1	3	2412	L	18.5
2.4 G	11 g	20	1	3	2417	-	20.5
2.4 G	11 g	20	1	3	2437	M	24.5
2.4 G	11g	20	1	3	2457	-	20.5
2.4 G	11 g	20	1	3	2462	H	16.5
2.4 G	HT20	20	1,(M0-0)	3	2412	L	17.5
2.4 G	HT20	20	1,(M0-0)	3	2417	-	20.5
2.4 G	HT20	20	1,(M0-0)	3	2437	M	23.5
2.4 G	HT20	20	1,(M0-0)	3	2457	-	18
2.4 G	HT20	20	1,(M0-0)	3	2462	H	15.5
2.4 G	HT40	40	1,(M0-0)	3	2422	L	16
2.4 G	HT40	40	1,(M0-0)	3	2427	-	16.5
2.4 G	HT40	40	1,(M0-0)	3	2437	M	25
2.4 G	HT40	40	1,(M0-0)	3	2447	-	16
2.4G	HT40	40	1,(M0-0)	3	2452	H	14

Abbreviation Explanation

Band	Mode	BWch (MHz)	Nss-Min	Nant	Ch. (MHz)	Range	Test Cond.	Abbreviation
2.4 G	HT20	20	$1,(\mathrm{M0}-15)$	2	2412	L	TN,VN	$2.4 \mathrm{G} ; \mathrm{HT} 20 ; 20 ; 1,(\mathrm{MO} 0-15) ; 2 ; 2412 ; \mathrm{L} ; \mathrm{TN}, \mathrm{VN}$
2.4 G	HT40	40	$1,(\mathrm{M0}-15)$	2	2437	M	TN, VN	$2.4 \mathrm{G} ; \mathrm{HT} 40 ; 40 ; 1,(\mathrm{M0} 0-15) ; 2 ; 2437 ; \mathrm{M} ; \mathrm{TN}, \mathrm{VN}$

Note:

- Test range channel consist of L(Low Ch.), M (Middle Ch.), H (High Ch.), S (Single Ch).

2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests	
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac 60 Hz
Operating Mode	Operating Mode Description
1	Adapter Mode

The Worst Case Mode for Following Conformance Tests	
Tests Item	DTS Bandwidth, Fundamental Emission Output Power, Power Spectral Density, Emissions in Non-restricted Frequency Bands
Test Condition	Conducted measurement at transmit chains

The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands		
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.		
User Position	$\square \quad$ EUT will be placed in fixed position.		
	区 EUT will be placed in mobile position and operating multiple positions.		
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions.		
Operating Mode < 1GHz	® 1. Adapter Mode		
Orthogonal Planes of EUT	X Plane	Y Plane	Z Plane
	-		
Worst Planes of EUT	V		
Worst Planes of Ant.			V

2.4 Accessories and Support Equipment

Accessories				
AC Adapter	Brand Name	TP-LINK	Model Name	T120150-2B1
	Power Rating	I/P:100-240 Vac, $600 \mathrm{~mA}, \mathrm{O} / \mathrm{P}: 12 \mathrm{Vdc}, 1500 \mathrm{~mA}$		

Reminder: Regarding to more detail and other information, please refer to user manual.

Support Equipment - RF Conducted			
No.	Equipment	Brand Name	Model Name
1	Notebook	DELL	5540
2	AC Adapter for Notebook	DELL	HA65NM130

Support Equipment - AC Conduction and Radiated Emission			
No.	Equipment	Brand Name	Model Name
1	-	-	-

SPORTON INTERNATIONAL INC.	Page No.	$: 12$ of 29
TEL : 886-3-327-3456	Report Version	$:$ Rev. 03
FAX : 886-3-327-0973		

2.6 Test Setup Diagram

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
$0.15-0.5$	$66-56{ }^{*}$	$56-46$ *
$0.5-5$	56	46
$5-30$	60	50
Note 1: * Decreases with the logarithm of the frequency.		

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

- Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix I

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit
Systems using digital modulation techniques:
- 6 dB bandwidth $\geq 500 \mathrm{kHz}$.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method		
•	For the emission bandwidth shall be measured using one of the options below:	
	$\boxed{y y y}$	
	Refer as KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.	
	\square	Refer as KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
	Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.	

3.2.4 Test Setup

| Emission Bandwidth |
| :---: | :---: |
| EUT |
| Spectrum |
| Analyzer |

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix A

SPORTON INTERNATIONAL INC.	Page No.	$: 16$ of 29
TEL : 886-3-327-3456	Report Version	$:$ Rev. 03
FAX : $886-3-327-0973$		

3.3 Fundamental Emission Output Power

3.3.1 Fundamental Emission Output Power Limit

Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit	
- 2400-2483.5 MHz Band:	
	- If $\mathrm{G}_{T X} \leq 6 \mathrm{dBi}$, then $\mathrm{P}_{\text {Out }} \leq 30 \mathrm{dBm}(1 \mathrm{~W})$
	- Point-to-multipoint systems (P2M): If $\mathrm{G}_{T X}>6 \mathrm{dBi}$, then $\mathrm{P}_{\text {Out }}=30-\left(\mathrm{G}_{T X}-6\right) \mathrm{dBm}$
	- Point-to-point systems (P2P): If $\mathrm{G}_{T X}>6 \mathrm{dBi}$, then $\mathrm{P}_{\text {Out }}=30-\left(\mathrm{G}_{T X}-6\right) / 3 \mathrm{dBm}$
	- Smart antenna system (SAS):
	- Single beam: If $\mathrm{G}_{\mathrm{TX}}>6 \mathrm{dBi}$, then $\mathrm{P}_{\text {out }}=30-\left(\mathrm{G}_{T X}-6\right) / 3 \mathrm{dBm}$
	- Overlap beam: If $\mathrm{G}_{T X}>6 \mathrm{dBi}$, then $\mathrm{P}_{\text {Out }}=30-\left(\mathrm{G}_{T X}-6\right) / 3 \mathrm{dBm}$
	- Aggregate power on all beams: If $\mathrm{G}_{T X}>6 \mathrm{dBi}$, then $\mathrm{P}_{\text {Out }}=30-\left(\mathrm{G}_{T X}-6\right) / 3+8 \mathrm{~dB} \mathrm{dBm}$
e.i.r.p. Power Limit:	
- 2400-2483.5 MHz Band	
	- Point-to-multipoint systems (P2M): $\mathrm{P}_{\text {eirp }} \leq 36 \mathrm{dBm}(4 \mathrm{~W})$
	- Point-to-point systems (P2P): $\mathrm{P}_{\text {eirp }} \leq \operatorname{MAX}\left(36,\left[\mathrm{P}_{\text {out }}+\mathrm{G}_{\mathrm{TX}}\right]\right) \mathrm{dBm}$
	- Smart antenna system (SAS)
	- Single beam: $P_{\text {eirp }} \leq \operatorname{MAX}\left(36, P_{\text {Out }}+G_{T X}\right) \mathrm{dBm}$
	- Overlap beam: $P_{\text {eirp }} \leq \operatorname{MAX}\left(36, P_{\text {out }}+G_{T X}\right) \mathrm{dBm}$
	- Aggregate power on all beams: $\mathrm{P}_{\text {eirp }} \leq \operatorname{MAX}\left(36,\left[\mathrm{P}_{\text {Out }}+\mathrm{G}_{T X}+8\right]\right) \mathrm{dBm}$
$\mathbf{P}_{\text {out }}=$ maximum peak conducted output power or maximum conducted output power in dBm , $\mathbf{G}_{\mathrm{TX}}=$ the maximum transmitting antenna directional gain in dBi . $\mathbf{P}_{\text {eirp }}=$ e.i.r.p. Power in dBm .	

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

Test Method

- Maximum Peak Conducted Output Power

Refer as KDB 558074, clause 9.1.1 Option 1 (RBW \geq EBW method).
Refer as KDB 558074, clause 9.1.2 Option 2 (peak power meter for VBW \geq DTS BW)

- Maximum Conducted Output Power
[duty cycle $\geq 98 \%$ or external video / power trigger]
\boxtimes Refer as KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
\square Refer as KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
duty cycle < 98\% and average over on/off periods with duty factor
\boxtimes Refer as KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
\square Refer as KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
RF power meter and average over on/off periods with duty factor or gated trigger
Refer as KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
- For conducted measurement.
- If the EUT supports multiple transmit chains using options given below:

Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.

- If multiple transmit chains, EIRP calculation could be following as methods:
$P_{\text {total }}=P_{1}+P_{2}+\ldots+P_{n}$
(calculated in linear unit [mW] and transfer to log unit [dBm]
$E I R P_{\text {total }}=P_{\text {total }}+D G$

3.3.4 Test Setup

3.3.5 Test Result of Maximum Average Conducted Output Power

Refer as Appendix B

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

| Power Spectral Density Limit |
| :---: | :--- |
| • Power Spectral Density (PSD) $\leq 8 \mathrm{dBm} / 3 \mathrm{kHz}$ |

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method

- Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).

Refer as KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak).
[duty cycle $\geq 98 \%$ or external video / power trigger]
\square Refer as KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
\square Refer as KDB 558074, clause 10.6 Method AVGPSD-2 Alt.(slow sweep speed)
duty cycle $<98 \%$ and average over on/off periods with duty factor
Refer as KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
Refer as KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)

- For conducted measurement.
- If The EUT supports multiple transmit chains using options given below:

Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 , and so on up to the N_{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
\square Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,
\square Option 3: Measure and add $10 \log (\mathrm{~N}) \mathrm{dB}$, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with $10 \log (\mathrm{~N})$. Or each transmit chains shall be add $10 \log (N)$ to compared with the limit.

3.4.4 Test Setup

| Power Spectral Density |
| :---: | :---: |
| Spectrum
 Analyzer |
| EUT |

3.4.5 Test Result of Power Spectral Density

Refer as Appendix C

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC.	Page No.	$: 22$ of 29
TEL $: 886-3-327-3456$	Report Version	$:$ Rev. 03
FAX $: 886-3-327-0973$		

3.5.3 Test Procedures

Test Method	
\boxtimes The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].	
\boxtimes Refer as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.	
\boxtimes For the transmitter unwanted emissions shall be measured using following options below:	
	\boxtimes Refer as KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes Refer as KDB 558074, clause 12 for unwanted emissions into restricted bands.
	\square Refer as KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle $\geq 98 \%$)
	Refer as KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
	\boxtimes Refer as KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW $\geq 1 / \mathrm{T}$).
	Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW $\geq 1 / T$, where T is pulse time.
	\square Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
	\boxtimes Refer as KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
\boxtimes For the transmitter bandedge emissions shall be measured using following options below:	
Refer as KDB 558074, clause 13.3 for narrower resolution bandwidth (100 kHz) using the band power and summing the spectral levels (i.e., 1 MHz).	
\boxtimes Refer as ANSI C63.10, clause 6.10 for band-edge testing.	
\square Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.	
	For radiated measurement, refer as KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. Test distance is 3 m .

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

 Refer as Appendix D
3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter in Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	$48.5-13.8$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	$33.8-23$	30
$1.705 \sim 30.0$	30	29	30
$30 \sim 88$	100	40	3
$88 \sim 216$	150	43.5	3
$216 \sim 960$	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz , measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of $20 \mathrm{~dB} /$ decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
Note 2: Test distance for frequencies at below 30 MHz , measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 $\mathrm{dB} / \mathrm{decade}$). The test report shall specify the extrapolation method used to determine compliance of the EUT

Un-restricted Band Emissions Limit		
RF output power procedure	Limit (dB)	
Peak output power procedure	20	
Average output power procedure	30	

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

Test Method

Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of $20 \mathrm{~dB} /$ decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
\boxtimes The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
\boxtimes For the transmitter unwanted emissions shall be measured using following options below:
Refer as KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
\boxtimes Refer as KDB 558074, clause 12 for unwanted emissions into restricted bands.
Refer as KDB 558074 , clause $12.2 \cdot 5.1$ Option 1 (trace averaging for duty cycle $\geq 98 \%$)
Refer as KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
\boxtimes Refer as KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW $\geq 1 / \mathrm{T}$).
\square Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW $\geq 1 / T$, where T is pulse time.
Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
\boxtimes Refer as KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
Refer as KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
For radiated measurement, refer as KDB 558074, clause 12.2.7.
Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3 m .
Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3 m .
Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3 m .
\boxtimes The any unwanted emissions level shall not exceed the fundamental emission level.
\boxtimes All amplitude of spurious emissions that are attenuated by more than 30 dB below the permissible value has no need to be reported.

3.6.4 Test Setup

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported. Any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

3.6.6 Transmitter Radiated Unwanted Emissions

Refer as Appendix E

4 Test Equipment and Calibration Data

Instrument for AC Conduction

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
EMC Receiver	R\&S	ESR-3	102051	$9 \mathrm{kHz} \sim 3.6 \mathrm{GHz}$	$19 / 04 / 2016$	$18 / 04 / 2017$
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	$8127-477$	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	$26 / 01 / 2016$	$25 / 01 / 2017$
LISN (Support Unit)	R\&S	ENV216	101295	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	$04 / 11 / 2015$	$03 / 11 / 2016$
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	$30 / 10 / 2015$	$29 / 10 / 2016$
EMI Filter	LINDGREN	LRE-2030	2651	$<450 \mathrm{~Hz}$	NCR	NCR

NCR : Non-Calibration Require
Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R\&S	FSV 40	101013	$9 \mathrm{KHz} \sim 40 \mathrm{GHz}$	$16 / 02 / 2016$	$15 / 02 / 2017$
Power Sensor	Anritsu	MA2411B	917017	$300 \mathrm{MHz} \sim 40 \mathrm{GHz}$	$04 / 02 / 2016$	$03 / 02 / 2017$
Power Meter	Anritsu	ML2495A	949003	$300 \mathrm{MHz} \sim 40 \mathrm{GHz}$	$04 / 02 / 2016$	$03 / 02 / 2017$
Signal Generator	R\&S	SMR40	100116	$10 \mathrm{MHz} \sim 40 \mathrm{GHz}$	$27 / 07 / 2016$	$28 / 07 / 2017$

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
$3 m$ Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	$\begin{gathered} 30 \mathrm{MHz} \sim 1 \mathrm{GHz} \\ 3 \mathrm{~m} \end{gathered}$	25/04/2016	24/04/2017
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	$\begin{gathered} 1 \mathrm{GHz} \sim 18 \mathrm{GHz} \\ 3 \mathrm{~m} \end{gathered}$	30/06/2016	29/06/2017
Amplifier	EMC	EMC9135	980232	$9 \mathrm{kHz} \sim 1 \mathrm{GHz}$	29/01/2016	28/01/2017
Amplifier	Agilent	8449B	3008A02096	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$	11/04/2016	10/04/2017
Spectrum	KEYSIGHT	N9010A	MY54200885	$10 \mathrm{~Hz} \sim 44 \mathrm{GHz}$	04/07/2016	03/07/2017
Bilog Antenna \& 5dB Attenuator	TESEQ \& MTJ	CBL 6111D \& MTJ6102	35418	$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$	31/03/2016	30/03/2017
Horn Antenna	SCHWARZBECK	BBHA 9120D	$\begin{gathered} \text { BBHA 9120D } \\ 1534 \end{gathered}$	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	22/04/2016	21/04/2017
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170614	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	04/01/2016	03/01/2017
Loop Antenna	ROHDE\&SCHWARZ	HFH2-Z2	100330	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	10/11/2014	09/11/2016

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.46;11b;20;1;3	10.05M	13.968M	14M0G1D	9.575 M	13.668M
2.4G;119;20;1;3	15.025M	16.242M	16M2D1D	12.6M	16.167M
2.4G;HT20;20;1,(MO);3	15.05M	17.391M	17M4D1D	13.1M	17.341M
2.4G;-HT40; 40; 1,(M0); ${ }^{\text {a }}$	35.05M	35.832M	35M8D1D	28.7M	35.682M

EBW Result

Result

Mode	Result	Limit	P1-N dB (Hz)	P1-OBW (Hz)	P2-N dB (Hz)	P2-OBW (Hz)	P3-N dB (Hz)	$\begin{gathered} \text { P3-OBW } \\ (\mathrm{Hz}) \end{gathered}$
2.4G;11b;20;1;3;2412;L;TN,VN	Pass	500k	10.025M	13.668M	10.025M	13.843M	10.05M	13.818M
2.4G;11b;20;1;3;2437;M;TN,VN	Pass	500k	10.025M	13.793M	10.05M	13.968M	9.575 M	13.818M
2.4G;11b;20;1;3;2462;H;TN,VN	Pass	500k	10M	13.818M	10.025M	13.893M	9.975 M	13.768M
2.4G;11g;20;1;3;2412;L;TN,VN	Pass	500k	15M	16.217M	13.75M	16.192M	12.6M	16.217M
2.4G;11g;20;1;3;2437;M;TN,VN	Pass	500k	14.975M	16.242M	13.75M	16.242M	14.975M	16.242M
2.4G;11g;20;1;3;2462;H;TN,VN	Pass	500k	15.025M	16.167M	13.775M	16.192M	15M	16.217M
2.4G;HT20;20;1,(M0);3;2412;L;TN,VN	Pass	500k	15.05M	17.341M	14.975M	17.341M	15.05M	17.391M
2.4G;HT20;20;1,(MO);3;2437;M;TN,VN	Pass	500k	14.925M	17.391M	13.1M	17.391M	13.825M	17.391M
2.4G;HT20;20;1,(M0);3;2462;H;TN,VN	Pass	500k	15M	17.391M	13.825M	17.366M	14.375M	17.366M
2.4G;HT40;40;1,(M0);3;2422;L;TN,VN	Pass	500k	32.55 M	35.732M	30M	35.832M	33.75 M	35.732 M
2.4G;HT40;40;1,(M0);3;2437;M;TN,VN	Pass	500k	33.75 M	35.782 M	28.7M	35.782 M	30.05M	35.782 M
2.4G;HT40;40;1,(MO);3;2452;H;TN,VN	Pass	500k	31.3M	35.732 M	35.05M	35.732M	29.95M	35.682M

Summary

Mode	$\begin{aligned} & \text { Sum } \\ & \text { (dBm) } \end{aligned}$	Sum (W)	$\begin{aligned} & \text { EIRP } \\ & \text { (dBm) } \end{aligned}$	EIRP (W)
2.4G;11b;20;1;3	29.71	0.93541	33.05	2.01837
2.4G;119;20;1;3	28.56	0.71779	31.90	1.54882
2.4G;HT20;20;1,(MO);3	27.49	0.56105	30.83	1.2106
2.4G;HT40;40;1,(MO);3	29.11	0.8147	32.45	1.75792

Result

Mode	Result	$\begin{gathered} \hline \text { DG } \\ \text { (dBi) } \end{gathered}$	$\begin{aligned} & \text { EIRP } \\ & \text { (dBm) } \end{aligned}$	EIRP Lim. (dBm)	$\begin{aligned} & \text { Sum } \\ & \text { (dBm) } \end{aligned}$	Sum Lim. (dBm)	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \mathrm{P} 2 \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \text { P3 } \\ (\mathrm{dBm}) \end{gathered}$
2.4G;11b;20;1;3;2412;L;TN,VN	Pass	3.34	28.39	36.00	25.05	30.00	20.80	20.15	19.82
2.4G;11b;20;1;3;2417;L;TN,VN	Pass	3.34	28.89	36.00	25.55	30.00	20.36	20.28	21.58
2.4G;11b;20;1;3;2437;M;TN,VN	Pass	3.34	33.05	36.00	29.71	30.00	25.17	24.88	24.77
2.4G;11b;20;1;3;2457;L;TN,VN	Pass	3.34	30.22	36.00	26.88	30.00	22.22	22.32	21.78
2.4G;11b;20;1;3;2462;H;TN,VN	Pass	3.34	26.78	36.00	23.44	30.00	18.89	18.62	18.50
2.4G;11g;20;1;3;2412;L;TN,VN	Pass	3.34	26.22	36.00	22.88	30.00	18.52	18.17	17.58
2.4G;11g;20;1;3;2417;L;TN,VN	Pass	3.34	28.10	36.00	24.76	30.00	20.50	19.82	19.61
2.4G;11g;20;1;3;2437;M;TN,VN	Pass	3.34	31.90	36.00	28.56	30.00	24.12	23.88	23.32
2.4G;11g;20;1;3;2457;L;TN,VN	Pass	3.34	28.14	36.00	24.80	30.00	20.04	20.17	19.88
2.4G;11g;20;1;3;2462;H;TN,VN	Pass	3.34	24.61	36.00	21.27	30.00	16.62	16.66	16.21
2.4G;HT20;20;1,(M0);3;2412;L;TN,VN	Pass	3.34	25.12	36.00	21.78	30.00	17.39	16.85	16.75
2.4G;HT20;20;1,(M0);3;2417;L;TN,VN	Pass	3.34	28.15	36.00	24.81	30.00	20.52	19.98	19.57
2.4G;HT20;20;1,(MO);3;2437;M;TN,VN	Pass	3.34	30.83	36.00	27.49	30.00	22.80	23.03	22.28
2.4G;HT20;20;1,(M0);3;2457;L;TN,VN	Pass	3.34	25.83	36.00	22.49	30.00	17.84	17.98	17.31
2.4G;HT20;20;1,(M0);3;2462;H;TN,VN	Pass	3.34	23.29	36.00	19.95	30.00	15.26	15.18	15.08
2.4G;HT40;40;1,(M0);3;2422;L;TN,VN	Pass	3.34	23.31	36.00	19.97	30.00	15.66	15.08	14.82
2.4G;HT40;40;1,(M0);3;2427;L;TN,VN	Pass	3.34	23.83	36.00	20.49	30.00	16.33	15.36	15.38
2.4G;HT40;40;1,(MO);3;2437;M;TN,VN	Pass	3.34	32.45	36.00	29.11	30.00	24.73	24.43	23.79
2.4G;HT40;40;1,(M0);3;2447;L;TN,VN	Pass	3.34	23.07	36.00	19.73	30.00	15.03	14.94	14.91
2.4G;HT40;40;1,(M0);3;2452;H;TN,VN	Pass	3.34	21.45	36.00	18.11	30.00	13.19	13.55	13.28

SPORTON INTERNATIONAL INC.	Page No.	B2 of B2
TEL : 886-3-327-3456	Report Version	Rev. 03
FAX : 886-3-327-0973	Project No.	: 651919

Mode	PD $(\mathrm{dBm} / \mathrm{RBW})$	EIRP.PD (dBm/RBW)
$2.4 \mathrm{G} ; 11 \mathrm{~b} ; 20 ; 1 ; 3$	4.20	12.01
$2.4 \mathrm{GG} ; 119 ; 20 ; 1 ; 3$	2.26	10.08
$2.4 \mathrm{G} ; \mathrm{HT20;20;1,(MO);3}$	1.10	8.92
$2.4 \mathrm{GG} ; \mathrm{HT} 40 ; 40 ; 1,(\mathrm{MO}) ; 3$	-0.03	7.78

Result

Mode	Result	Meas.RBW (Hz)	Lim.RBW (Hz)	BWCF (dB)	$\begin{aligned} & \text { DG } \\ & \text { (dBi) } \end{aligned}$	Sum.Max (dBm/RBW)	$\begin{gathered} \mathrm{PD} \\ (\mathrm{dBm} / \mathrm{RBW}) \end{gathered}$	PD.Limit (dBm/RBW)	EIRP.PD (dBm/RBW)	$\begin{aligned} & \text { EIRP.PD.Li } \\ & \quad \mathrm{m} \\ & (\mathrm{dBm} / \mathrm{RBW}) \end{aligned}$	P1 (dBm/RBW)	$\begin{gathered} \mathrm{P} 2 \\ (\mathrm{dBm} / \mathrm{RBW}) \end{gathered}$	P3 (dBm/RBW)
2.4G;11b;20;1;3;2412;L;TN,VN	Pass	3k	3k	0.00	7.81	-0.71	-0.71	8.00	7.11	Inf	-3.24	-4.51	-3.44
2.4G;11b;20;1;3;2437;M;TN,VN	Pass	3k	3k	0.00	7.81	4.20	4.20	8.00	12.01	Inf	1.26	1.07	0.29
2.4G;11b;20;1;3;2462;H;TN,VN	Pass	3k	3k	0.00	7.81	-2.89	-2.89	8.00	4.92	Inf	-4.13	-5.30	-5.41
2.4G;11g;20;1;3;2412;L;TN,VN	Pass	3k	3k	0.00	7.81	0.95	0.95	8.00	8.77	Inf	-0.11	-2.49	-2.93
2.4G;119;20;1;3;2437;M;TN,VN	Pass	3k	3k	0.00	7.81	2.26	2.26	8.00	10.08	Inf	-0.97	1.19	-1.21
2.4G;11g;20;1;3;2462;H;TN,VN	Pass	3k	3k	0.00	7.81	-0.69	-0.69	8.00	7.13	Inf	-3.74	-3.10	-3.37
2.4G;HT20;20;1,(M0);3;2412;L;TN,VN	Pass	3k	3k	0.00	7.81	-1.44	-1.44	8.00	6.38	Inf	-2.73	-4.50	-4.76
2.4G;HT20;20;1,(M0);3;2437;M;TN,VN	Pass	3k	3k	0.00	7.81	1.10	1.10	8.00	8.92	Inf	-0.43	-1.43	-2.58
2.4G;HT20;20;1,(M0);;;2462;H;TN,VN	Pass	3k	3k	0.00	7.81	-2.08	-2.08	8.00	5.73	Inf	-5.32	-5.61	-4.82
2.4G;HT40;40;1,(M0);3;2422;L;TN,VN	Pass	3k	3k	0.00	7.81	-6.41	-6.41	8.00	1.40	Inf	-8.03	-9.42	-9.05
2.4G;HT40;40;1,(M0);3;2437;M;TN,VN	Pass	3k	3k	0.00	7.81	-0.03	-0.03	8.00	7.78	Inf	-2.53	-3.00	-2.96
2.4G;HT40;40;1,(M0);3;2452;H;TN,VN	Pass	3k	3k	0.00	7.81	-7.59	-7.59	8.00	0.23	Inf	-10.75	-10.43	-10.37

SPORTON INTERNATIONAL INC.	Page No.	C2 of C3
TEL : 886-3-327-3456	Report Version	Rev. 03
FAX : 886-3-327-0973	Project No.	651919

PSD:Band:2.4G;HT20:BWch:20MHz;Nss:1,(MO):Nanti3;Ch:2437MHz;TN.VN

Page No.	$:$ C3 of C3
Report Version	$:$ Rev. 03
Project No.	$: 651919$

2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Non-restricted Band)								
Modulation	$\mathbf{N}_{\text {TX }}$	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	$\begin{gathered} \text { Out-band } \\ \text { PSD [o] } \\ \text { (dBuV/100kHz) } \end{gathered}$	[i] - [o] (dB)	Limit (dB)	Pol.
11b	1	2412	113.19	2394.448	54.27	58.92	30	V
11b	1	2462	111.20	2517.600	50.15	61.05	30	V
11g	1	2412	108.24	2399.936	65.74	42.50	30	V
11 g	1	2462	111.22	2507.000	50.60	60.62	30	V
HT20	1	2412	109.14	2399.936	65.63	43.51	30	V
HT20	1	2462	109.43	2502.600	50.95	58.48	30	V
HT40	1	2422	101.93	2399.892	69.04	32.89	30	V
HT40	1	2452	101.82	2500.880	49.04	52.78	30	V
Note 1: Measurement worst emissions of receive antenna polarization								

2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Restricted Band)										
Modulation Mode	$\mathbf{N}_{\text {TX }}$	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	$\begin{gathered} \text { Level } \\ (\mathrm{dBuV} / \mathrm{m}) \\ \text { PK } \end{gathered}$	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBuV} / \mathrm{m}) \\ & \text { PK } \end{aligned}$	Freq. (MHz) AV	Level (dBuV/m) AV	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBuV} / \mathrm{m}) \\ & \mathrm{AV} \end{aligned}$	Pol.
11b	1	2412	3	2389.968	62.92	74	2389.968	53.69	54	V
11b	1	2417	3	2381.980	63.61	74	2389.056	53.41	54	V
11b	1	2437	3	2387.900	63.63	74	2389.990	53.60	54	V
11b	1	2457	3	2485.208	61.34	74	2483.514	53.67	54	V
11b	1	2462	3	2381.980	63.61	74	2389.056	53.41	54	V
11 g	1	2412	3	2389.800	62.34	74	2379.540	53.11	54	V
11g	1	2417	3	2389.040	63.60	74	2389.800	53.75	54	V
11g	1	2432	3	2389.420	63.51	74	2389.800	53.83	54	V
11g	1	2457	3	2484.420	72.30	74	2499.728	53.89	54	V
11g	1	2462	3	2387.900	62.89	74	2387.900	53.48	54	V
HT20	1	2412	3	2388.280	63.80	74	2389-990	53.83	54	V
HT20	1	2417	3	2389.376	73.52	74	2389.860	52.98	54	V
HT20	1	2437	3	2484.800	62.46	74	2483.660	53.42	54	V
HT20	1	2457	3	2483.514	70.25	74	2485.208	53.81	54	V
HT20	1	2462	3	2483.756	63.57	74	2389.860	53.78	54	V
HT40	1	2422	3	2485.692	63.07	74	2486.660	53.69	54	V
HT40	1	2427	3	2389.420	72.88	74	2389.990	53.89	54	V
HT40	1	2437	3	2389.900	63.55	74	2389.800	53.67	54	V
HT40	1	2447	3	2483.756	73.46	74	2483.756	53.58	54	V
HT40	1	2452	3	2488.596	63.19	74	2487.628	53.37	54	V

Note 1: Measurement worst emissions of receive antenna polarization.

D. 1 Transmitter Radiated Bandedge Emissions (Non-restricted Band)

D. 2 Transmitter Radiated Bandedge Emissions (Restricted Band)

Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($115.57 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($115.57 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($119.24 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($119.24 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($118.71 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($118.71 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($121.68 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($121.68 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($120.02 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($120.02 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($118.98 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($118.98 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($119.23 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($119.23 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level (113.02dBuV/m).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($113.02 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: " $>20 \mathrm{~dB}$ " means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level (119.02dBuV/m).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($112.10 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level ($112.10 \mathrm{dBuV} / \mathrm{m}$).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

