

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Fax: +886-3-3288918 Web: www.mrt-cert.com

Report No.: 1612TW0106-U2 Report Version: V01 Issue Date: 01-05-2017

MEASUREMENT REPORT

FCC PART 15.247 WLAN 802.11b/g/n

FCC ID:	TE7C2300				
APPLICANT:	TP-Link Technologies Co., Ltd.				
Application Type:	Certification				
Product:	AC2300 Wireless MU-MIMO Gigabit Router				
Model No.:	Archer C2300, Archer A2300				
Brand Name:	TP-Link				
FCC Classification:	Digital Transmission System (DTS)				
FCC Rule Part(s):	Part 15.247				
Test Procedure(s):	ANSI C63.10-2013, KDB 558074 D01v03r05,				
	KDB 662911 D01v02r01				
Test Date:	November 28, 2016 ~ January 04, 2017				

Reviewed By

Paddy Chen (Paddy Chen)

Approved By

(Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01v03r05. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1612TW0106-U2	Rev. 01	Initial report	01-05-2017	Valid

CONTENTS

Des	scriptio	on Pa	age
§2. 1	1033 Ge	eneral Information	5
1.	INTRO	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	
2.	PROD	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Operating Frequency and Channel List	
	2.4.	Description of Available Antennas	
	2.5.	Description of Antenna RF Port	
	2.6.	Test Mode	9
	2.7.	Description of Test Software	10
	2.8.	Device Capabilities	11
	2.9.	Test Configuration	12
	2.10.	EMI Suppression Device(s)/Modifications	12
	2.11.	Labeling Requirements	12
3.	DESC	CRIPTION of TEST	13
	3.1.	Evaluation Procedure	13
	3.2.	AC Line Conducted Emissions	13
	3.3.	Radiated Emissions	14
4.	ANTE	ENNA REQUIREMENTS	15
5.	TEST	EQUIPMENT CALIBRATION DATE	16
6.	MEAS	SUREMENT UNCERTAINTY	17
7.	TEST	RESULT	18
	7.1.	Summary	18
	7.2.	6dB Bandwidth Measurement	
	7.2.1.	Test Limit	19
	7.2.2.	Test Procedure used	19
	7.2.3.	Test Setting	19
	7.2.4.	Test Setup	19
	7.2.5.	Test Result	20
	7.3.	Output Power Measurement	25
	7.3.1.	Test Limit	25
FCC		7C2300 Page Number: 3 o	f 150

7.3.2.	Test Procedure Used	
7.3.3.	Test Setting	25
7.3.4.	Test Setup	25
7.3.5.	Test Result of Output Power	
7.4.	Power Spectral Density Measurement	
7.4.1.	Test Limit	
7.4.2.	Test Procedure Used	
7.4.3.	Test Setting	
7.4.4.	Test Setup	
7.4.5.	Test Result	
7.5.	Conducted Band Edge and Out-of-Band Emissions	43
7.5.1.	Test Limit	43
7.5.2.	Test Procedure Used	43
7.5.3.	Test Settitng	43
7.5.4.	Test Setup	44
7.5.5.	Test Result	45
7.6.	Radiated Spurious Emission Measurement	54
7.6.1.	Test Limit	54
7.6.2.	Test Procedure Used	54
7.6.3.	Test Setting	
7.6.4.	Test Setup	56
7.6.5.	Test Result	58
7.7.	Radiated Restricted Band Edge Measurement	
7.7.1.	Test Result	
7.8.	AC Conducted Emissions Measurement	156
7.8.1.	Test Limit	156
7.8.2.	Test Setup	156
7.8.3.	Test Result	157
CONC	CLUSION	159

8.

Applicant:	TP-Link Technologies Co., Ltd.					
Applicant Address:	Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and					
	Technology Park, Shennan Rd, Nanshan, Shenzhen, China					
Manufacturer:	TP-Link Technologies Co., Ltd.					
Manufacturer Address:	Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and					
	Technology Park, Shennan Rd, Nanshan, Shenzhen, China					
Test Site:	MRT Technology (Taiwan) Co., Ltd					
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan					
	(R.O.C)					
MRT Registration No.:	153292					
FCC Rule Part(s):	Part 15.247					
Model No.:	Archer C2300, Archer A2300					
Test Device Serial No.:	N/A Production Pre-Production Engineering					

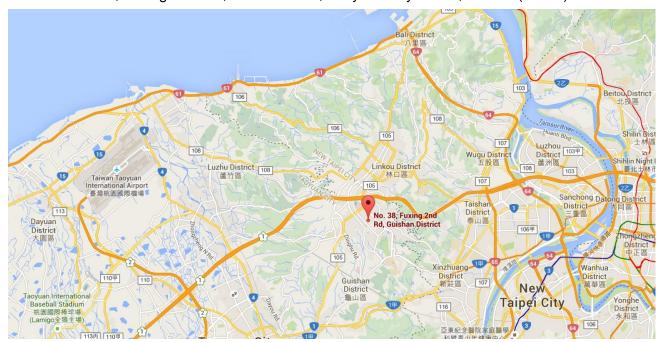
§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- MRT facility is a FCC registered (MRT Reg. No. 153292) test facility with the site description report on file and is designated by the FCC as an Accredited Test Film.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (TAF) under the American Association for Laboratory Accreditation Program (TAF Cert. No. 3261) in EMC,

Telecommunications and Radio testing for FCC, Industry Canada, Taiwan, EU and TELEC Rules. **TAF certificate here**


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	AC2300 Wireless MU-MIMO Gigabit Router			
	с С			
Model No.:	Archer C2300, Archer A2300			
Brand Name:	P-Link			
Wi-Fi Specification:	302.11a/b/g/n/ac			
Components				
Adapter	Model No.: S048CU1200330			
	nput Power: 100 - 240V ~ 50/60Hz 1.5A Max			
	Output Power: 12VDC 3300mA			

Note: Differences between all models are for different marketing requirement.

2.2. Product Specification Subjective to this Report

Frequency Range:	802.11b/g/n-HT20: 2412 ~ 2462MHz				
	802.11n-HT40: 2422 ~ 2452MHz				
Channel Number:	802.11b/g/n-HT20: 11				
	802.11b/g/n-HT20: 7				
Type of Modulation:	802.11b: DSSS				
	802.11g/n: OFDM				
Data Rate:	802.11b: 1/2/5.5/11Mbps				
	802.11g: 6/9/12/18/24/36/48/54Mbps				
	802.11n: up to 600Mbps				
Maximum Average	802.11b: 28.90dBm				
Output Power:	802.11g: 28.23dBm				
	802.11n-HT20: 28.24dBm				
	802.11n-HT40: 23.75dBm				

Note: For other features of this EUT, test report will be issued separately.

2.3. Operating Frequency and Channel List

802.11b/g/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

802.11n-HT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz				

2.4. Description of Available Antennas

Antenna	Frequency	ΤX	Max Antenna	Beam-forming	CDD Directional Gain	
Туре	Band	Paths	Gain	Gain	(dBi)	
	(MHz)		(dBi)	(dBi)	For Power	For PSD
Dinala	2412 ~ 2462	3	2	N/A	2	6.77
Dipole Antenna	5150 ~ 5250	3	3	7.77	3	7.77
Antenna	5725 ~ 5850	3	3	7.77	3	7.77

Note 1: The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11a/b/g/n/ac mode, and the transmitter output signal is correlated.

For CDD transmissions, directional gain is calculated as follows, $N_{ANT} = 3$, $N_{SS} = 1$.

Three antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

• For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log (N_{ANT} / N_{SS}) dB = 4.77;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for $N_{ANT} \le 4$;

Note 2: The EUT also supports Beam Forming technology, and the Beam Forming only support 802.11ac mode. Three antennas have the same gain, G_{ANT} :

Directional gain = G_{ANT} + 10 log (N_{ANT}/N_{SS}) dBi, where N_{SS} = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi.

2.5. Description of Antenna RF Port

		Antenn	a RF Port			
	2.4GHz RF Port 5GHz RF Port				t	
Software Control Port	Ant 0	Ant 1	Ant 2	Ant 0	Ant 1	Ant 2
2.4/50	Hz Ant 2		4/5GHz Ant	1 2.4/	5GHz Ant 0	

2.6. Test Mode

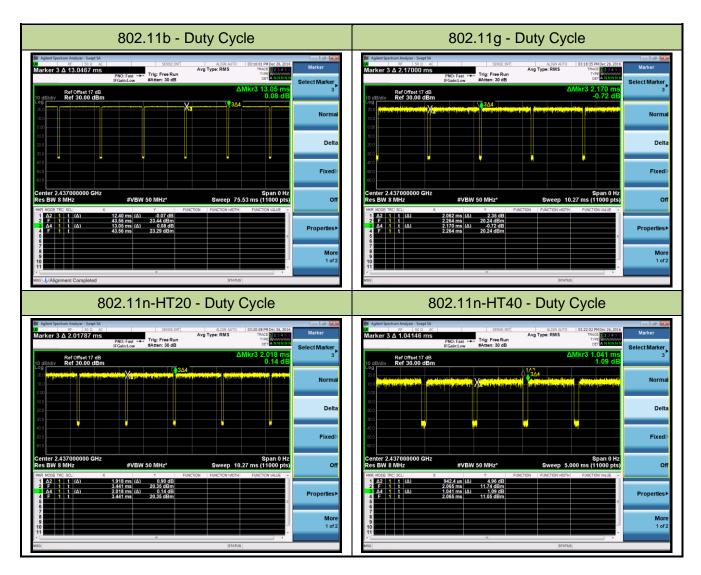
Test Mode	Mode 1: Transmit by 802.11b
	Mode 2: Transmit by 802.11g
	Mode 3: Transmit by 802.11n-HT20
	Mode 4: Transmit by 802.11n-HT40

2.7. Description of Test Software

The test utility software used during testing was "MTool_2.0.2.7".

Power Parameter Value

Test Mode	Test Channel No.	Test Frequency (MHz)	Power Parameter Value
	1	2412	94
802.11b	6	2437	100
	11	2462	90
	1	2412	74
802.11g	6	2437	100
	11	2462	72
	1	2412	74
802.11n-HT20	6	2437	100
	11	2462	72
	3	2422	60
802.11n-HT40	6	2437	82
	9	2452	62


2.8. Device Capabilities

This device contains the following capabilities:

2.4GHz WLAN (DTS) and 5GHz WLAN (UNII).

Note: 2.4GHz WLAN (DTS) operation is possible in 20MHz, and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11b	95.02%
802.11g	95.02%
802.11n-HT20	95.04%
802.11n-HT40	90.53%

2.9. Test Configuration

The **AC2300 Wireless MU-MIMO Gigabit Router** was tested per the guidance of KDB 558074 D01v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.10. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.11. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment which determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.8.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, which produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

• The antennas of **AC2300 Wireless MU-MIMO Gigabit Router** use a unique reversed SMA connector.

Conclusion:

The AC2300 Wireless MU-MIMO Gigabit Router unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Due Date
Two-Line V-Network	R&S	ENV216	MRTTWA00019	2017.03.23
Two-Line V-Network	R&S	ENV216	MRTTWA00020	2017.03.23
Absorbing Clamp	R&S	MDS21	MRTTWA00016	2017.03.02
EMI Test Receiver	R&S	ESR3	MRTTWA00009	2017.03.16
Conducted Cable	Rosnol	N1C50-RG400-B1 C50-500CM	MRTTWE00013	2017.05.20
TFA	DIVA PLUS Funk-Wetterstation	35.1078.10.IT	MRTTWA00033	2017.06.09

Radiated Spurious Emission and Radiated Restricted Band Edge - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Due Date
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	2017.04.06
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	2017.04.06
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	2017.04.06
BreitbandHornantenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	2017.04.06
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	2017.04.06
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	2017.04.06
Signal Analyzer	R&S	FSV40	MRTTWA00007	2017.03.02
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	2017.05.08
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	2017.05.20

Conducted Test Equipment - SR1

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Due Date
Signal Analyzer	R&S	FSV40	MRTTWA00007	2017.03.02
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	2017.05.08
USB wideband power sensor	Boonton	55006	MRTTWA00050	2017/05/08
X-Series USB Peak and		110004 V A		
Average Power Sensor	KEYSIGHT	U2021XA	MRTTWA00014	2017.03.18

Software	Version	Function
е3	V 8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 25GHz: 4.76dB
Spurious Emissions, Conducted - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.78dB
Output Power - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
1.13dB
Power Spectrum Density - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
1.15dB
Occupied Bandwidth - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.28%

7. TEST RESULT

7.1. Summary

Product Name:	AC2300 Wireless MU-MIMO Gigabit Router
FCC ID:	TE7C2300
FCC Classification:	Digital Transmission System (DTS)
Data Rate / MCS	<u>1Mbps for 802.11b;</u>
Tested:	<u>6Mbps for 802.11g;</u>
	<u>MCS0 for 802.11n-HT20;</u>
	MCS0 for 802.11n-HT40

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a) (2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b) (3)	Output Power	≤ 30.00dBm	Conducted	Pass	Section 7.3
15.247(e)	Power Spectral Density	≤ 7.23dBm/3kHz	Conducted	Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 30dBc(Average)		Pass	Section 7.5
15.205, 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

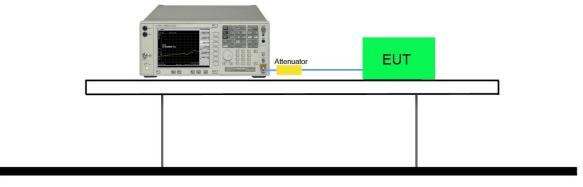
 The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

 Test Items "6dB Bandwidth" and "Band Edge / Out-of-Band Emissions" have been assessed the MIMO transmission, and showed the worst single test data in this report.

7.2. 6dB Bandwidth Measurement

7.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

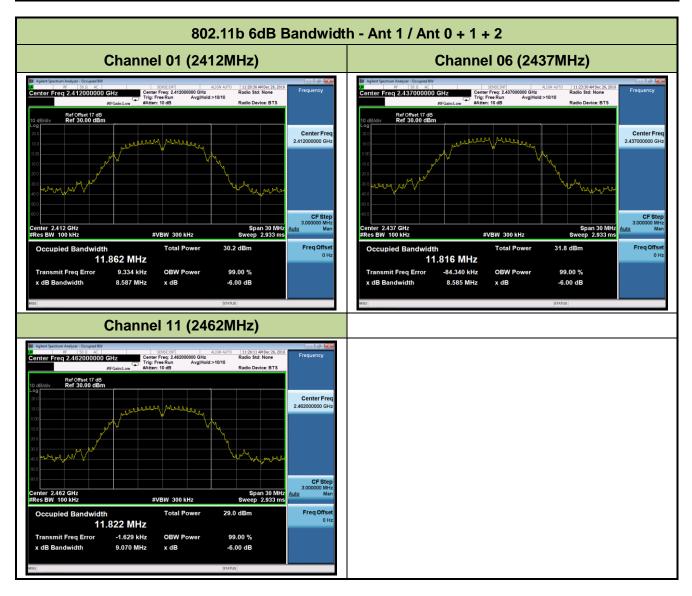

7.2.2. Test Procedure used

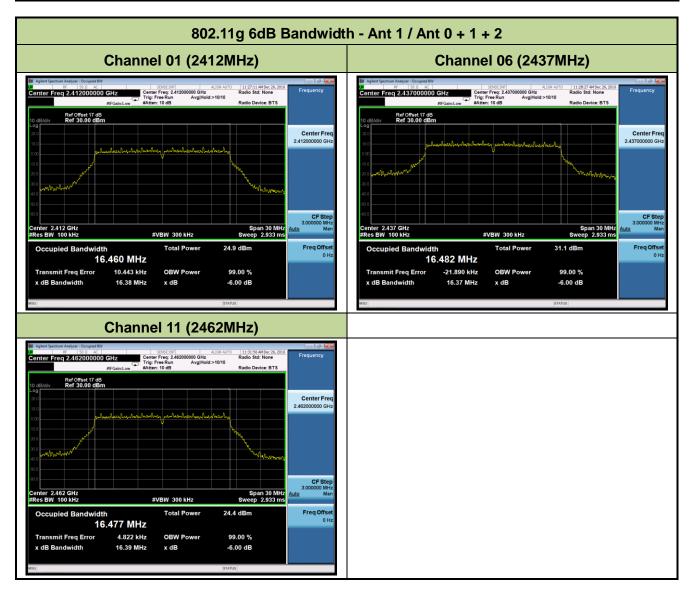
KDB 558074 D01v03r05 - Section 8.2 Option 2

7.2.3. Test Setting

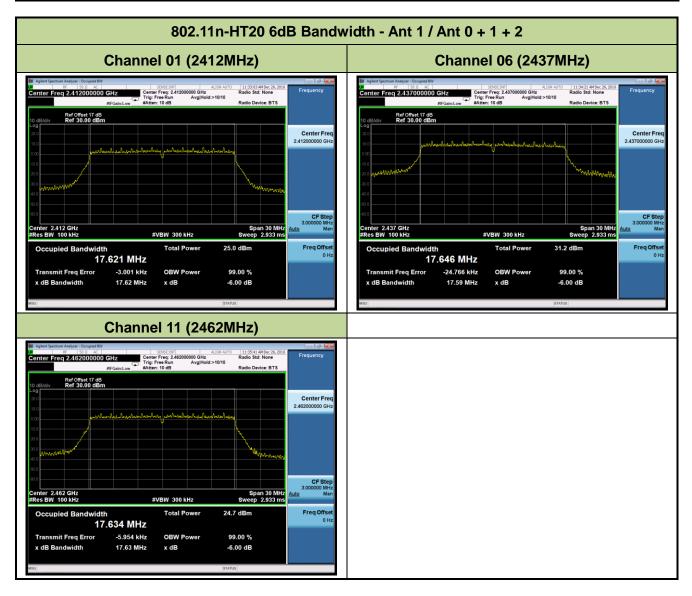
- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize
- 7.2.4. Test Setup

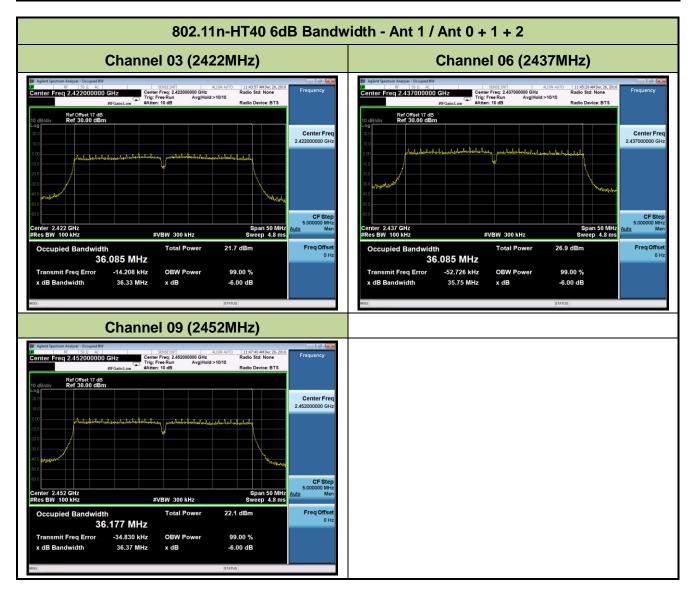
Spectrum Analyzer




7.2.5. Test Result

Test Mode	Data Rate/ MCS	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
Ant 1 / Ant 0 + 7	1 + 2					
802.11b	1Mbps	01	2412	8.59	≥ 0.5	Pass
802.11b	1Mbps	06	2437	8.59	≥ 0.5	Pass
802.11b	1Mbps	11	2462	9.07	≥ 0.5	Pass
802.11g	6Mbps	01	2412	16.38	≥ 0.5	Pass
802.11g	6Mbps	06	2437	16.37	≥ 0.5	Pass
802.11g	6Mbps	11	2462	16.39	≥ 0.5	Pass
802.11n-HT20	MCS0	01	2412	17.62	≥ 0.5	Pass
802.11n-HT20	MCS0	06	2437	17.59	≥ 0.5	Pass
802.11n-HT20	MCS0	11	2462	17.63	≥ 0.5	Pass
802.11n-HT40	MCS0	03	2422	36.33	≥ 0.5	Pass
802.11n-HT40	MCS0	06	2437	35.75	≥ 0.5	Pass
802.11n-HT40	MCS0	09	2452	36.37	≥ 0.5	Pass



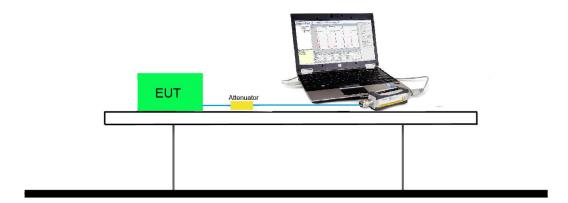


7.3. Output Power Measurement

7.3.1. Test Limit

The maximum out power shall be less 1 Watt (30dBm).

7.3.2. Test Procedure Used


KDB 558074 D01v03r05 - Section 9.2.3.2 AVGPM-G Average Power Method

7.3.3. Test Setting

Average Power Measurement

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.3.4. Test Setup

7.3.5. Test Result of Output Power

Power output test was verified over all data rates of each mode shown as below table.

For Ant 0 / Ant 0 + 1 +2	2 port:
--------------------------	---------

Test Mode	Bandwidth (MHz)	Channel No.	Frequency (MHz)	Data Rate/ MCS	Average Power (dBm)
				1Mbps	24.09
802.11b	20	6	2437	5.5Mbps	23.86
				11Mbps	23.63
	20	6	2437	6Mbps	23.11
802.11g				24Mbps	22.74
				54Mbps	22.26
	20	6	2437	MCS0	23.29
802.11n				MCS3	22.56
				MCS7	22.07
802.11n	40	6	2437	MCS0	18.85
				MCS3	18.35
				MCS7	18.02

Test Result of Average Output Power

Test Mode	Data	Channel	Freq.	Ant 0	Ant 1	Ant 2	Total	Limit	Result
	Rate/	No.	(MHz)	Average	Average	Average	Average	(dBm)	
	MCS			Power	Power	Power	Power		
				(dBm)	(dBm)	(dBm)	(dBm)		
11b	1Mbps	01	2412	22.67	22.30	22.66	27.32	≤ 30.00	Pass
11b	1Mbps	06	2437	24.09	24.02	24.27	28.90	≤ 30.00	Pass
11b	1Mbps	11	2462	21.20	21.52	21.71	26.25	≤ 30.00	Pass
11g	6Mbps	01	2412	17.35	17.23	17.52	22.14	≤ 30.00	Pass
11g	6Mbps	06	2437	23.11	23.43	23.80	28.23	≤ 30.00	Pass
11g	6Mbps	11	2462	16.77	16.79	17.42	21.78	≤ 30.00	Pass
11n-HT20	MCS0	01	2412	17.25	17.24	17.54	22.12	≤ 30.00	Pass
11n-HT20	MCS0	06	2437	23.29	23.44	23.68	28.24	≤ 30.00	Pass
11n-HT20	MCS0	11	2462	16.80	16.78	17.31	21.74	≤ 30.00	Pass
11n-HT40	MCS0	03	2422	14.03	13.71	14.06	18.71	≤ 30.00	Pass
11n-HT40	MCS0	06	2437	18.85	18.82	19.26	23.75	≤ 30.00	Pass
11n-HT40	MCS0	09	2452	14.69	14.10	14.24	19.12	≤ 30.00	Pass

Note: Total Average Power (dBm) = $10*Log \{10^{(Ant \ 0 \ Average \ Power / 10)} + 10^{(Ant \ 1 \ Average \ Power / 10)} + 10^{(Ant \ 2 \ Average \ Power / 10)} \}$ (dBm).

7.4. Power Spectral Density Measurement

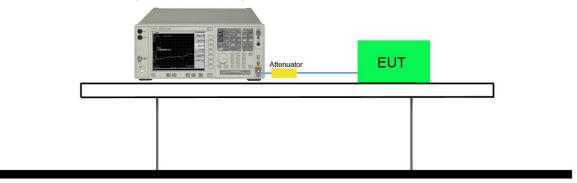
7.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

2.412~2.462GHz: 8dBm/3kHz - (6.77dBi - 6dBi) = 7.23dBm/3kHz

7.4.2. Test Procedure Used

KDB 558074 D01v03r05 - Section 10.5 Method AVGPSD


7.4.3. Test Setting

- 1. Measure the duty cycle (x) of the transmitter output signal
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10kHz
- 5. VBW = 30kHz
- 6. Detector = RMS
- 7. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- 13. Add Constant Factor = $10^{10}(3kHz / 10kHz) = -5.23$

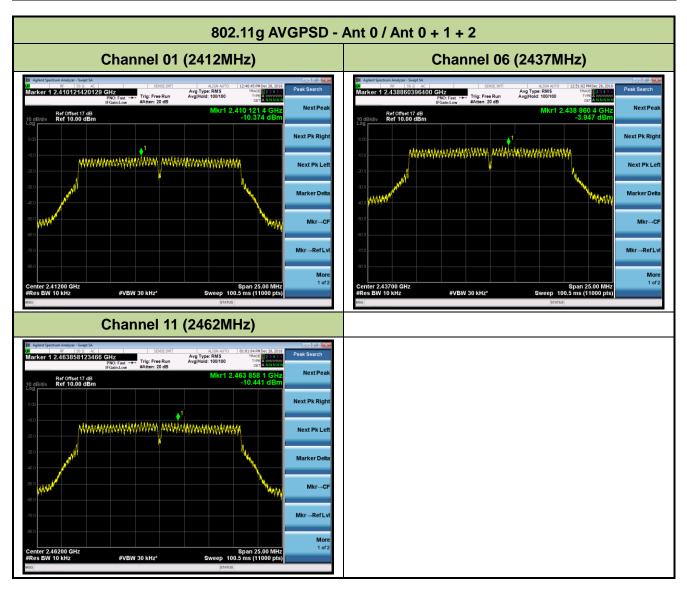
7.4.4. Test Setup

Spectrum Analyzer

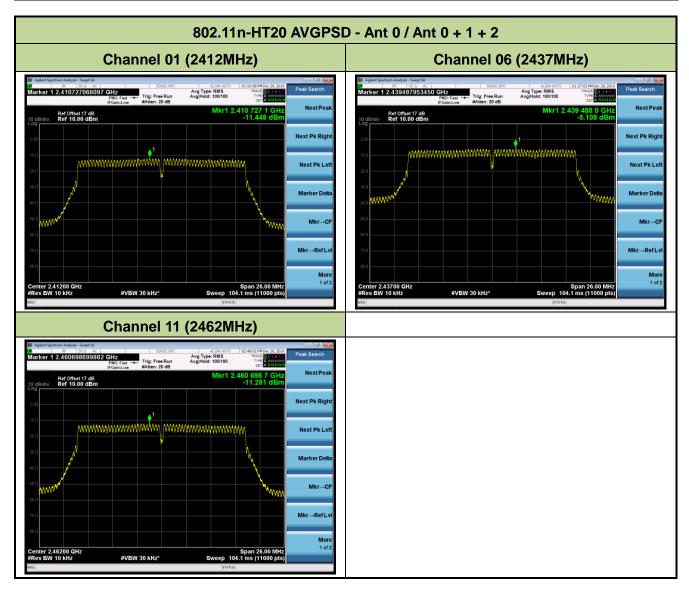
7.4.5. Test Result

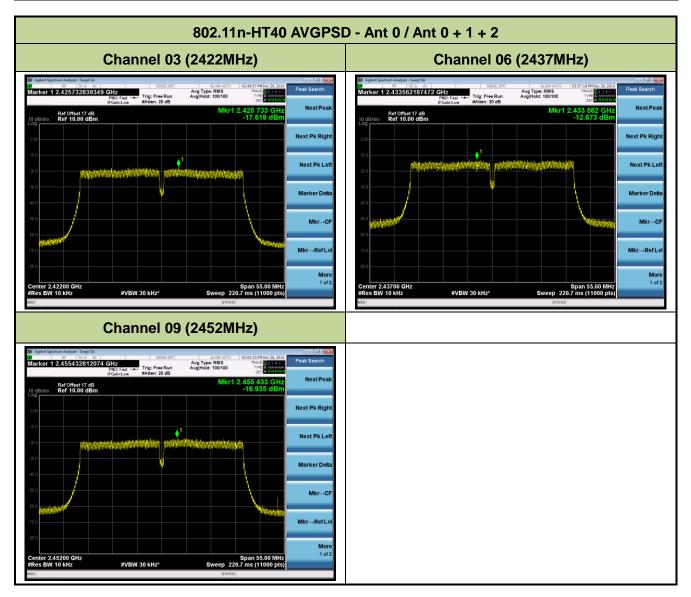
Test Mode	Data	Channel	Freq.	Ant 0	Ant 1	Ant 2	Duty	Constant	Total	Limit	Result
	Rate/	No.	(MHz)	AVGPSD	AVGPSD	AVGPSD	Cycle	Factor	AVGPSD	(dBm /	
	MCS			(dBm /	(dBm /	(dBm /	(%)		(dBm /	3kHz)	
				10kHz)	10kHz)	10kHz)			3kHz)		
11b	1Mbps	01	2412	-3.62	-3.34	-3.60	95.02	-5.23	-3.76	≤ 7.23	Pass
11b	1Mbps	06	2437	-2.33	-1.97	-2.23	95.02	-5.23	-2.41	≤ 7.23	Pass
11b	1Mbps	11	2462	-4.19	-4.87	-4.47	95.02	-5.23	-4.74	≤ 7.23	Pass
11g	6Mbps	01	2412	-10.37	-9.62	-9.94	95.02	-5.23	-10.20	≤ 7.23	Pass
11g	6Mbps	06	2437	-3.95	-3.60	-3.75	95.02	-5.23	-4.00	≤ 7.23	Pass
11g	6Mbps	11	2462	-10.44	-10.72	-10.36	95.02	-5.23	-10.74	≤ 7.23	Pass
11n-HT20	MCS0	01	2412	-11.45	-8.77	-11.51	95.04	-5.23	-10.62	≤ 7.23	Pass
11n-HT20	MCS0	06	2437	-5.11	-4.73	-5.42	95.04	-5.23	-5.32	≤ 7.23	Pass
11n-HT20	MCS0	11	2462	-11.28	-12.13	-11.38	95.04	-5.23	-11.82	≤ 7.23	Pass
11n-HT40	MCS0	03	2422	-17.62	-17.41	-17.65	90.53	-5.23	-17.59	≤ 7.23	Pass
11n-HT40	MCS0	06	2437	-12.67	-11.24	-11.90	90.53	-5.23	-11.92	≤ 7.23	Pass
11n-HT40	MCS0	09	2452	-16.94	-17.58	-17.02	90.53	-5.23	-17.20	≤ 7.23	Pass

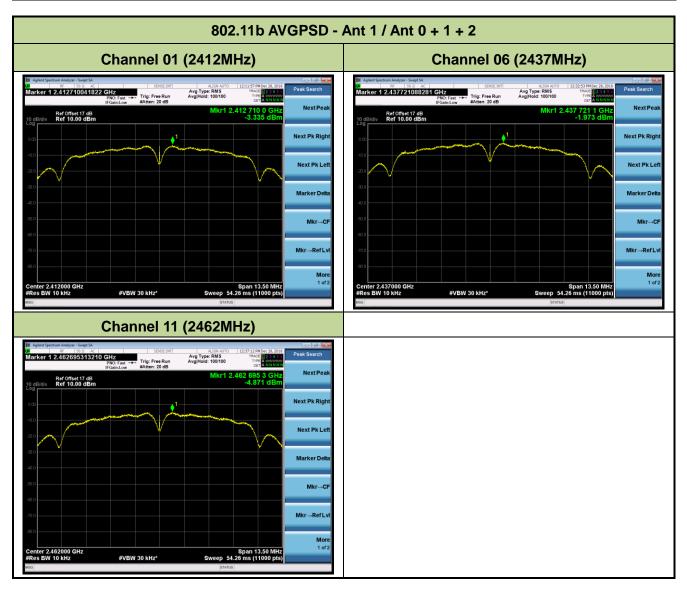
Note 1: When EUT duty cycle < 98%, the total AVGPSD = $10^{(Ant \ 0 \ AVGPSD/10)} + 10^{(Ant \ 1 \ AVGPSD/10)} + 10^{(Ant \ 2 \ AVG$

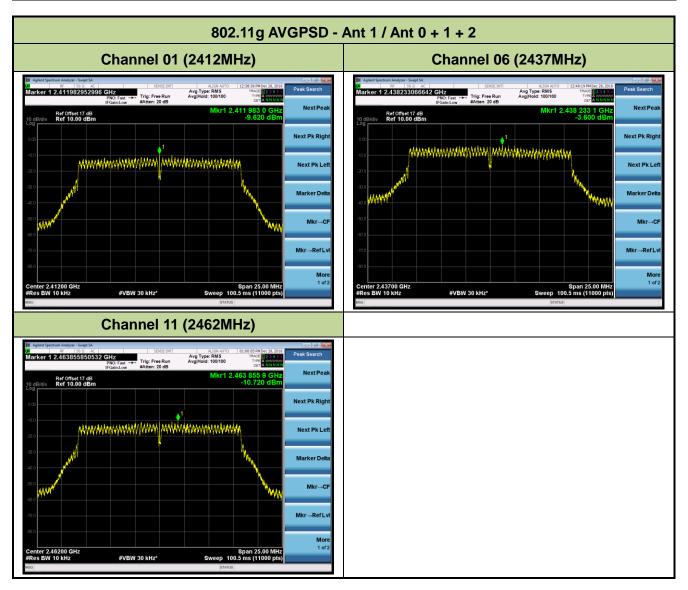

AVGPSD(10) + 10*log(1/duty cycle) + Constant Factor.

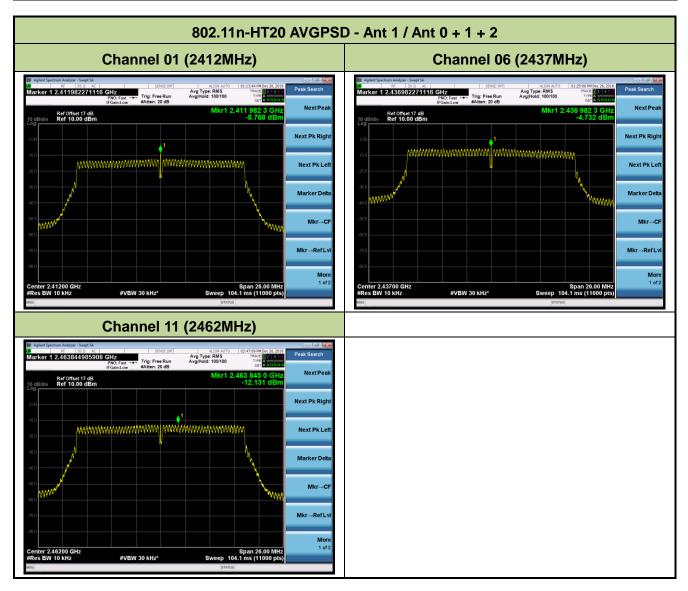
Note 2: PSD Limit = 8 (dBm/3kHz) - [Directional Gain (dBi) - 6 (dBi)] = 7.23 (dBm/3kHz).

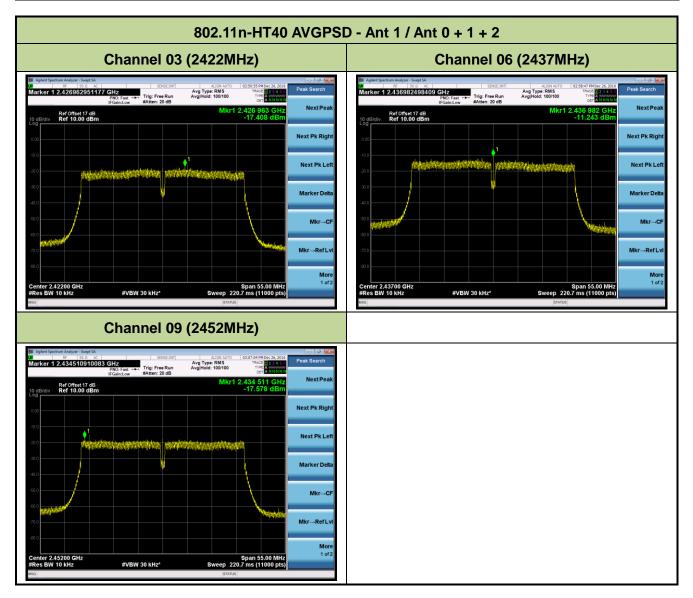


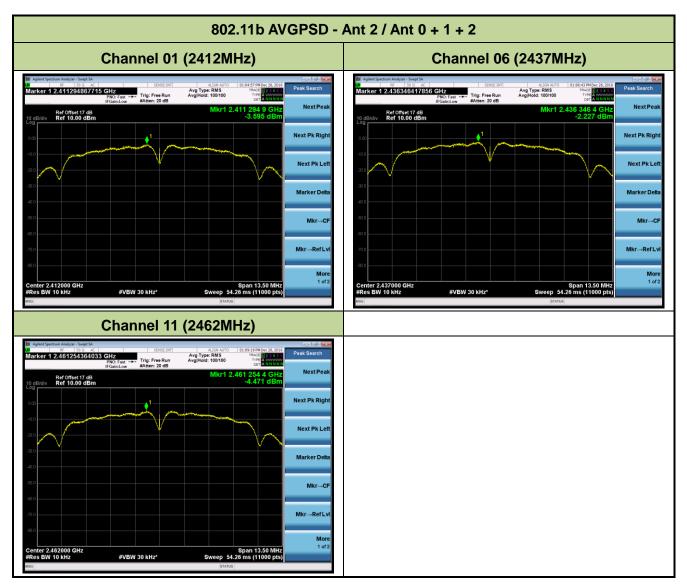


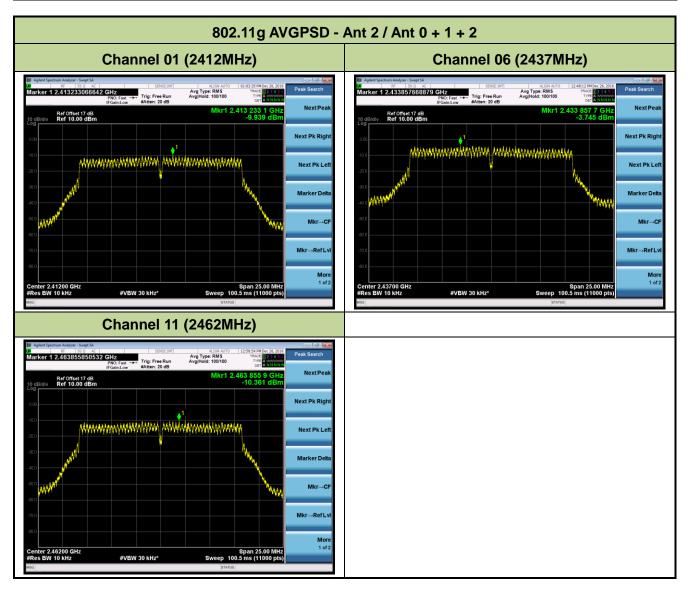


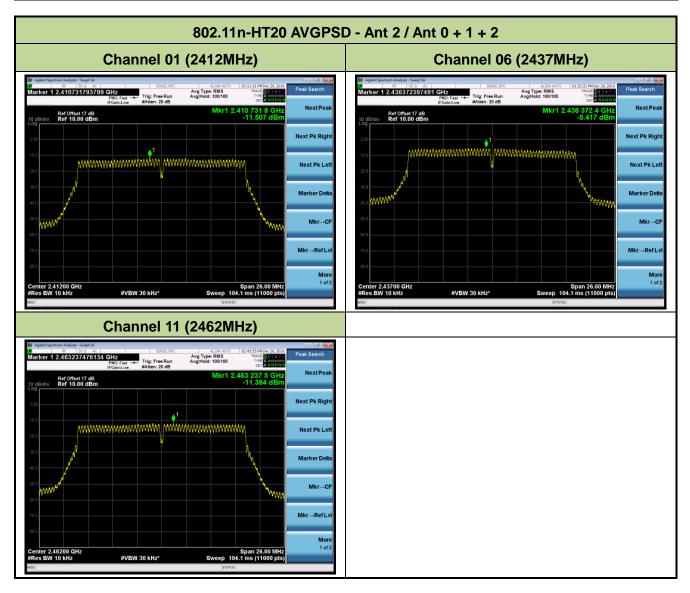


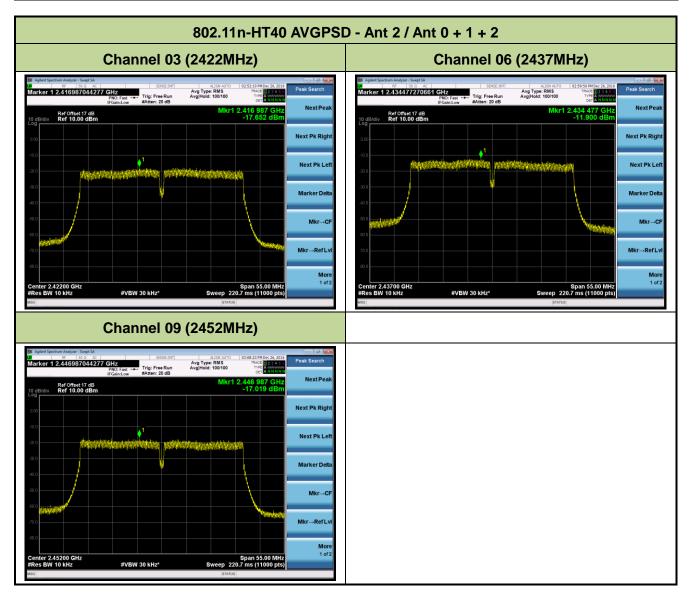












7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth per the PSD procedure.

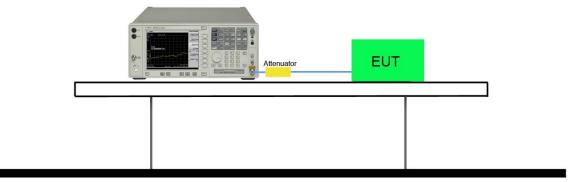
7.5.2. Test Procedure Used

KDB 558074 D01v03r05 - Section 11.2 & Section 11.3

7.5.3. Test Settitng

1. Reference level measurement

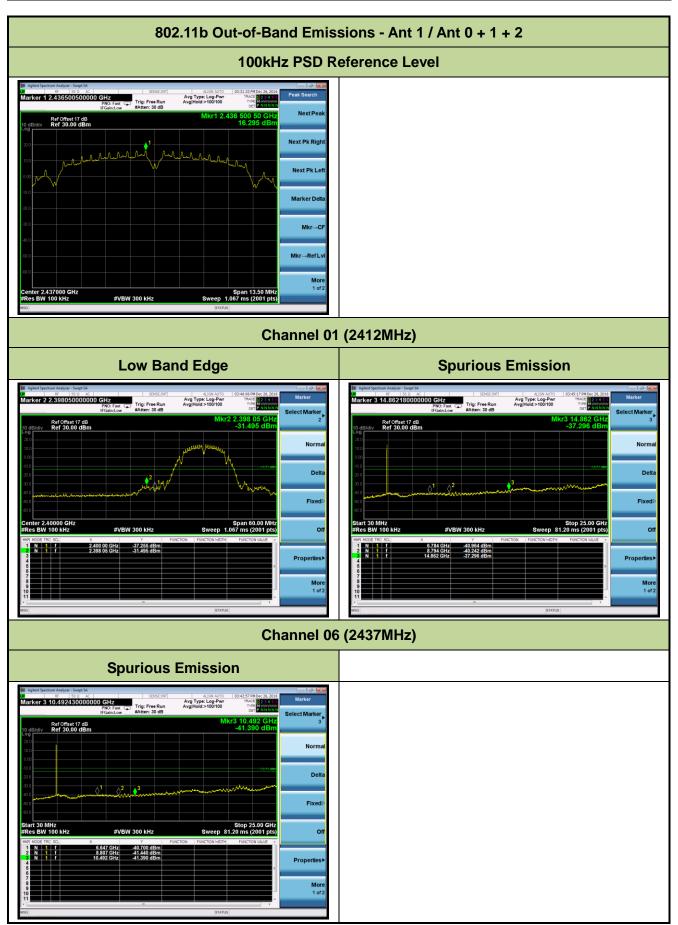
- (a) Set instrument center frequency to DTS channel center frequency
- (b) Set the span to \geq 1.5 times the DTS bandwidth
- (c) Set the RBW = 100 kHz
- (d) Set the VBW \geq 3 x RBW
- (e) Detector = peak
- (f) Sweep time = auto couple
- (g) Trace mode = max hold
- (h) Allow trace to fully stabilize


2. Emission level measurement

- (a) Set the center frequency and span to encompass frequency range to be measured
- (b) RBW = 100kHz
- (c) VBW = 300 kHz
- (d) Detector = Peak
- (e) Trace mode = max hold
- (f) Sweep time = auto couple
- (g) The trace was allowed to stabilize

7.5.4. Test Setup

Spectrum Analyzer



7.5.5. Test Result

Test Mode	Data Rate / MCS	Channel No.	Frequency (MHz)	Limit	Result				
Ant 1 / Ant 0 + 1 + 2									
802.11b	1Mbps	01	2412	30dBc	Pass				
802.11b	1Mbps	06	2437	30dBc	Pass				
802.11b	1Mbps	11	2462	30dBc	Pass				
802.11g	6Mbps	01	2412	30dBc	Pass				
802.11g	6Mbps	06	2437	30dBc	Pass				
802.11g	6Mbps	11	2462	30dBc	Pass				
802.11n-HT20	MCS0	01	2412	30dBc	Pass				
802.11n-HT20	MCS0	06	2437	30dBc	Pass				
802.11n-HT20	MCS0	11	2462	30dBc	Pass				
802.11n-HT40	MCS0	03	2422	30dBc	Pass				
802.11n-HT40	MCS0	06	2437	30dBc	Pass				
802.11n-HT40	MCS0	09	2452	30dBc	Pass				

