

RF Exposure Evaluation Declaration

Product Name	:	AC750 Wireless Dual Band
		Gigabit Router
Model No.	:	Archer C2
FCC ID	:	TE7C2

- Applicant : TP-LINK TECHNOLOGIES CO., LTD.
- Address : Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and Technology Park,Shennan Rd, Nanshan, Shenzhen,China

Date of Receipt	:	Feb. 18, 2016
Issued Date	•	May. 27, 2016
Report No.	:	1612033R-RF-US-P20V01
Report Version	:	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C.	: BSMI, NCC, TAF	
USA	: FCC	
Japan	: VCCI	
China	: CNAS	

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/english/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/index_en.aspx</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory :

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

Suzhou Testing Laboratory :

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL : +86-512-6251-5088 / FAX : 86-512-6251-5098 E-Mail : <u>service@quietek.com</u>

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1612033R-RF-US-P20V01	V1.0	Initial Issued Report	May. 27, 2016

1. **RF Exposure Evaluation**

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)		
(A) Limits for ((A) Limits for Occupational/ Control Exposures					
300-1500			F/300	6		
1500-100,000			5	6		
(B) Limits for ((B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6		
1500-100,000			1	30		

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18

5G Antenna

• Output Power into Antenna & RF Exposure Evaluation Distance:

Standlone modes

2.4GHz:

Test Mode	Fraguanov	Maximum Output	Directional	Power Density at
	Frequency Band (MHz)	Power to	Gain	R = 20 cm
		Antenna (dBm)	(dBi)	(mW/cm2)
802.11b/g/n(20MHz) with CDD	2412 - 2462	26.23	5	0.2641
802.11n(40MHz) with CDD	2422 - 2452	24.55	5	0.1794

5GHz:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
802.11a/n(20MHz)/ac(20MHz)	5180 - 5240 5745 - 5825	21.43	3	0.0552
802.11n(40MHz)/ac(40MHz)	5190 - 5230 5755 - 5795	19.06	3	0.0320
802.11ac(80MHz)	5210 5775	15.38	3	0.0137

Simultaneous transmission:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Directional Gain (dBi)	Power Density at R = 25 cm (mW/cm2)
802.11b/g/n(20MHz) with CDD	2412 - 2462	26.23	5	0.2641
802.11a/n(20MHz)/ac(20MHz)	5180 - 5240 5745 - 5825	21.43	3	0.0552
Simultane	0.3193			

So according to transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$ and the power density limit according to KDB 447498D01V06 and FCC Part1.1310(b), the limit is $1mW/cm^{2}$

Safety Distance Calculation Formula:

The power flux:

$$S = \frac{P*G_{(\theta,\phi)}}{4*\pi * r^2}$$

So safety distance as following:

$$r = \sqrt{\frac{P * G}{4 * \pi * S}}$$

P = input power of the antenna

G = antenna gain relative to an isotropic antenna

 θ , Φ = elevation and azimuth angles.

r = distance from the antenna to the point of investigation

Test Mode	Frequency Range (MHz)	Maximum EIRP (dBm)	Limit of Power Density S(mW/cm ²)	Safety Distance r(cm)
802.11b/g/n(20MHz) with CDD	2412 - 2462	31.23	1	10.00
802.11a/n(20MHz)/ac(20MHz)	5180 - 5240 5745 - 5825	24.43	1	10.28

Note: The safety distance is 20cm for AC750 Wireless Dual Band Gigabit Router without any other radio equipment.

— The End