

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Web: www.mrt-cert.com

Report No.: 2004TW0003-U4 Report Version: V01 Issue Date: 05-27-2020

RF Exposure Evaluation Declaration

FCC ID: TE7AX90

APPLICANT: TP-Link Technologies Co., Ltd.

Application Type: Certification

Product: AX6600 Tri-Band Wi-Fi 6 Router

Model No.: Archer AX90

Trademark: tp-link

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (NII)

Test Procedure(s): KDB 447498 D01v06

Test Date: May 15, 2020

Reviewed By: Paddy Chen

Paddy Chen)

Approved By: am her

(Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2004TW0003-U4	Rev. 01	Initial report	05-27-2020	Valid

Page Number: 2 of 7

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	AX6600 Tri-Band Wi-Fi 6 Router
Model No.	Archer AX90
Brand Name:	tp-link
Wi-Fi Specification:	802.11a/b/g/n/ac/ax

1.2. Description of Available Antennas

Antenna	Frequency	Tx	Number of	Max	Beamforming	CDD Directional Gain	
Туре	Band (MHz)	Paths	spatial	Antenna	Directional	(dBi)	
			streams	Gain	Gain	For Power	For PSD
				(dBi)	(dBi)		
	2412 ~ 2462	2	1	3.52	6.53	3.52	6.53
Dinala	5150 ~ 5250	2	1	3.54	6.55	3.54	6.55
Dipole - Antenna	5470 ~ 5725	4	1	3.20	9.22	3.20	9.22
	5470 ~ 5725	4	2	3.20		3.20	For PSD 6.53 6.55
	5725 ~ 5850	4	1	3.20	9.22	3.20	9.22

Note:

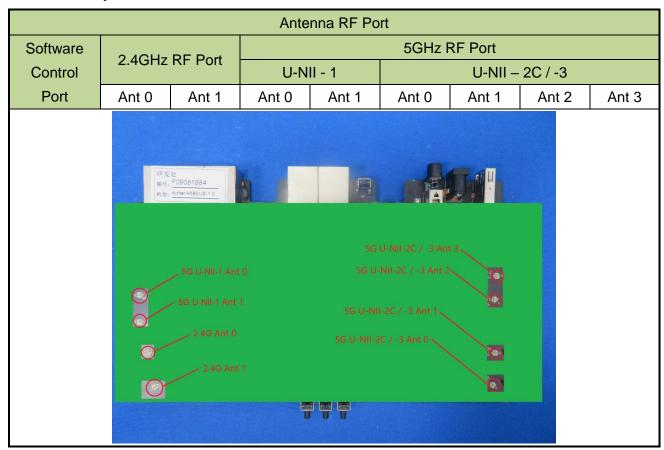
1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

· For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log (N_{ANT}/N_{SS}) dB;

· For power measurements on IEEE 802.11 devices,


Array Gain = 0 dB for $N_{ANT} \le 4$;

 The EUT also supports Beam Forming mode, and the Beam Forming support 802.11ac/ax, not include 802.11a/b/g/n. BF Directional gain = G_{ANT} + 10 log (N_{ANT}).

Page Number: 3 of 7

1.3. Description of Antenna RF Port

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time		
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500	-		f/300	6		
1500-100,000	1		5	6		
(B) Limits for General Population/ Uncontrolled Exposures						
300-1500	-		f/1500	6		
1500-100,000			1	30		

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Page Number: 5 of 7

2.2. Test Result of RF Exposure Evaluation

Product	AX6600 Tri-Band Wi-Fi 6 Router
Test Item	RF Exposure Evaluation

Antenna Gain: Refer to clause 1.2.

Test Mode	Frequency Band (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (dBm)
802.11b/g/n/ax	2412 ~ 2462	29.22	3.52	32.74
802.11a/n/ac/ax	5180 ~ 5240	28.24	6.55	34.79
802.11a/n/ac/ax	5500 ~ 5720, 5745 ~ 5825	26.66	9.22	35.88

Test Mode	Frequency Band	Maximum	Safety	Power	Limit of Power
	(MHz)	EIRP	Distance	Density	Density
		(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n/ax	2412 ~ 2462	32.74	26.5	0.2130	1
802.11a/n/ac/ax	5180 ~ 5240	34.79	26.5	0.3414	1
802.11a/n/ac/ax	5500 ~ 5720, 5745 ~ 5825	35.88	26.5	0.4388	1

CONCLUSION:

The WLAN 2.4GHz Band, WLAN 5GHz Low Band(U-NII-1) and WLAN 5GHz upper Band(U-NII-2C/-3) can transmit simultaneously.

The max Power Density at R $(26.5 \text{ cm}) = 0.2130 \text{mW/cm}^2 + 0.3414 \text{mW/cm}^2 + 0.4388 \text{mW/cm}^2 = 0.9932 \text{mW/cm}^2 < 1 \text{mW/cm}^2$.

So the safety distance is 26.5cm for device installed without any other radio equipment.

The End	

Report No.: 2004TW0003-U4

Appendix A - EUT Photograph

Refer to "2004TW0003-UE" file.

Page Number: 7 of 7