

DR-WLS1271L-102 FCC/IC Certified WLAN/Bluetooth Multifunction Module

Data Sheet

Technical support +1.972.448.3700 E-mail: <u>tech_sup@rfm.com</u>

Scope

This specification applies to the IEEE802.11b/g/n WLAN and Bluetooth 4.0 standards.

Interfaces

WLAN:	SDIO
Bluetooth:	UART and PCM

IC and Firmware

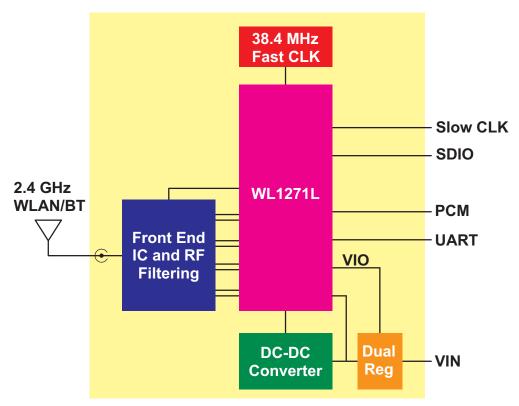
WLAN/BT BB/MAC IC:	TI WL1271L (PG 3.1)
Front-end IC for WL1271L:	TriQuint TQM679002A (E 2.6)

Clocks and Compliance

Sleep Clock:	External 32.768 kHz oscillator required
RoHS:	This module is compliant with the RoHS directive
Bluetooth:	Qualified Design Listing: B017989
Certifications:	FCC, and Industry Canada (IC)

For mobile operating conditions (greater than 20 cm to the body) - This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

For portable operating conditions (less than 20 cm to the body) - This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment may operate in direct contact with the body of the user under normal operating conditions. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.


Certification testing conducted with Antenna Factor ANT-RAF-RPS 2.4/5 GHz antenna, RSMA connector.

Part Numbers

Module:

DR-WLS1271L-102

Block Diagram

DR-WLS1271L-102 WLAN Features

- WLAN MAC baseband processor and RF transceiver which are IEEE802.11b/g and IEEE802.11n PICS compliant
- Optimized for ultra-low current consumption in all operating modes
- Accepts 19.2, 26, 38.4, 52 MHz reference clock inputs for easy integration into cellular handsets, etc.
- IEEE Standard 802.11d, e, h, i, k, r, PICS compliant
- · Support for Cisco Client eXtensions (CCX) standard
- Serial debug interface
- Secure Digital Input/Output (SDIO) host interface

Medium Access Controller (MAC)

- Embedded ARM[™] central processing unit (CPU)
- Hardware-based encryption/decryption using 64-, 128- or 256-bit WEP, TKIP or AES keys
- Supports Wi-Fi protected access (WPA and WPA2.0) and IEEE Standard 802.11i, including hardware accelerated Advanced Encryption Standard (AES)]
- Designed to work with IEEE Std 802.1x for Virtual Private Network (VPN) solutions

Baseband Processor

- IEEE Std 802.11n single-stream data rates (MCS0-7) and SGI support

• 2.4 GHz Radio

- Digital Radio Processor (DRP) implementation
- Integrated LNA
- Supports IEEE Std 802.11b, g, b/g and 802.11n

DR-WLS1271L-102 Bluetooth Features

- V4.0 + EDR, Power Class 1.5 + BLE
- Bluetooth Qualified Design Listing: B017988
- BT Enhanced Data Rates 2 and 3 Mbps
- Enhanced UART host interface
- Very low power consumption
- On-chip Embedded radio
 - Integrated 2.4 GHz RF transceiver
 - All digital PLL transmitter with digitally controlled oscillator
 - Near-zero IF architecture
 - On-chip TX/RX switch
 - Support for Class-1.5 applications
- Embedded ARM microprocessor system
 - High rate four wire UART HCI (H4) and three wire UART HCI (H5)
 - Automatic clock-detection mechanism
- Flexible PCM interface full flexibility for data order, sampling and positioning
- Temperature detection and compensation mechanism ensures minimal variation in the RF performance over the entire operating temperature range
- Low-power scan achieves paging and inquiry scans at 1/3 normal power
- Digital Radio Processor (DRP) single-ended 50 ohm I/O for easy RF interfacing
- Patch trap mechanism and reserved RAM enables easy bug fixes

- Advance Audio Interfaces and capabilities
 - A2DP support
 - A2DP internal loopback
 - Wide-band speech support
 - On board SBC encoder/decoder offloads host for A2DP and wide-band speech processing
 - Full support for Bluetooth low energy (BLE) standard. BLE can operate in parallel with standard Bluetooth function.

WLAN Functional Blocks

The DR-WLS1271L-102 WLAN architecture includes a digital radio processor and a point-to-multipoint baseband core function. The architecture is based on a single-processor ARM core. The device includes on-chip peripherals to enable easy communication between a host system and the WLAN core function.

WLAN SDIO Transport Layer

SDIO is the WLAN host interface in the DR-WLS1271L-102. This interface is a standard SDIO interface (SDIO Version 2.0), supporting a maximum clock rate of 26 MHz. The DR-WLS1271L-102 SDIO also supports the following features:

- 4-bit data bus
- Functions number 0 and 2
- Multi-Block data transfer
- The SDIO interface is used for WLAN. The WLAN block uses function 2. Function 0 is used for the common I/O area.

WLAN MAC

The DR-WLS1271L-102 MAC implements the IEEE standard 802.11 MAC sub-layer using both dedicated hardware and embedded firmware. The MAC hardware implements real-time functions, including access protocol management, encryption and decryption.

WLAN Baseband Processor

The DR-WLS1271L-102 baseband processor sits between the on-chip MAC and the radio. The DR-WLS1271L-102 baseband processor implements the IEEE 802.11b/g/n PHY sub-layers and has been optimized to perform well in conditions of high multipath and noise.

WLAN RF Radio

The DR-WLS1271L-102 radio is a highly integrated Digital Radio Processor (DRP) designed for 802.11b/g/n applications. The DR-WLS1271L-102 RF interface is a single-band RF front end for 2.4 GHz 802.11b/g/n applications.

BT Functional Blocks

The DR-WLS1271L-102 BT architecture comprises a digital radio processor and a point-to-multipoint baseband core function. The architecture is based on a single-processor ARM core. The device includes on-chip peripherals to enable easy communication between a host system and the Bluetooth core function.

BT HCI UART Transport Layers

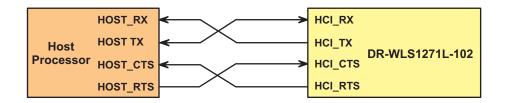
The DR-WLS1271L-102 incorporates one UART module dedicated to the Host Controller Interface (HCI) transport layer. The HCI interface is used to transport commands, events, ACL and data between the Bluetooth device and its host using HCI data packets. The DR-WLS1271L-102 supports the following HCI transport layers, detected automatically when communication starts:

- UART transport layer HCI four-wire (H4) and HCI three-wire (H5)
- HCI interface has a 256 byte receive buffer

The HCI UART supports most baud rates (including all PC rates) up to a maximum of 4 Mbps. After power-up, the baud rate is set for 115.2 kbps. The maximum baud rate deviation supported is -2.5%, +1.5%. The baud rate can thereafter be changed with a VS command. The DR-WLS1271L-102 responds with a Command Complete Event (still at 115.2 kbps), after which the baud rate change takes place. The only parameter needed is the desired baud rate. HCI hardware includes the following features:

- Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions
- Transmitter underflow detection
- CTR/RTS hardware flow control

Parameter	Value
Bit rate	115.2kbps
Data length	8 bits
Stop bit	1
Parity	None


There are two possible logical transport layers available in UART mode

- 4 wire (H4)
- 3 wire (H5)

The WL1271 automatically detects the transport layer required by the host.

BT UART 4-Wire Interface - H4

The interface includes four signals: TXD, RXD, CTS and RTS. Flow control between the host and the DR-WLS1271L-102 is byte-wise by hardware. Flow control is obtained by the following:

When the UART RX buffer of the DR-WLS1271L-102 passes the "flow control" threshold, it sets the UART_RTS signal high to stop transmission from the host. When the UART_CTS signal is set high, the DR-WLS1271L-102 stops transmitting on the interface. In case HCI_CTS is set high in the middle of transmitting a byte, the DR-WLS1271L-102 finishes transmitting the byte and stops the transmission.

BT UART 3-Wire Interface - H5

This interface consists of three signals: TXD, RXD and GND:

HCI_RX Receive Data on the UART Interface HCI_TX Transmit Data on the UART Interface GND Ground

XON/XOFF software flow control is normally used.

The DR-WLS1271L-102 also supports a four-wire mode for H5, with RTS/CTS hardware flow control. Since the same UART module is used for the 3- and 4-wire HCI UART interface, all features supported by the 4-wire interface are also supported for the 3-wire interface. H5 features:

- Flow control configured with HCI_VS command, software XON/XOFF, hardware (RTS/CTS), or none
- Power management
- · Configurable timers for re-transmission management
- CRC

BT Audio CODEC Interface

The CODEC interface is a fully dedicated programmable serial port that provides the logic to interface to several kinds of PCM codecs. The interface supports:

- Two voice channels
- Master/slave modes
- Coding schemes: µ-Law, A-Law, Linear, Transparent
- Long & short frames
- Different data widths, orders and positions
- UDI profile
- High rate PCM interface for EDR
- · Enlarged interface options to support a wider variety of codecs
- PCM bus sharing

PCM Hardware Interface

The PCM interface is one implementation of the codec interface. It contains the following four lines:

- Clock configurable direction (input or output)
- Frame Sync configurable direction (input or output)
- Data In Input
- Data Out Output/Hi-Z

The DR-WLS1271L-102 device can be either the master of the interface where it generates the clock and the frame-sync signals, or slave where it receives these two signals. The PCM interface is fully configured by means of a VS command. For slave mode, clock input frequencies of up to 16 MHz are supported. At clock rates above 12 MHz, the maximum data burst size is 32 bits. For master mode, the DR-WLS1271L-102 can generate any clock frequency between 64 kHz and 4.096 MHz.

Data Format

The data format is fully configurable:

• The data length can be from 8 to 320 bits, in 1-bit increments, when working with two channels, or up to 640 bits when using 1 channel. The data length can be set independently for each channel.

• The data position within a frame is also configurable with 1-clock (bit) resolution, and can be set independently (relative to the edge of the Frame Sync signal) for each channel.

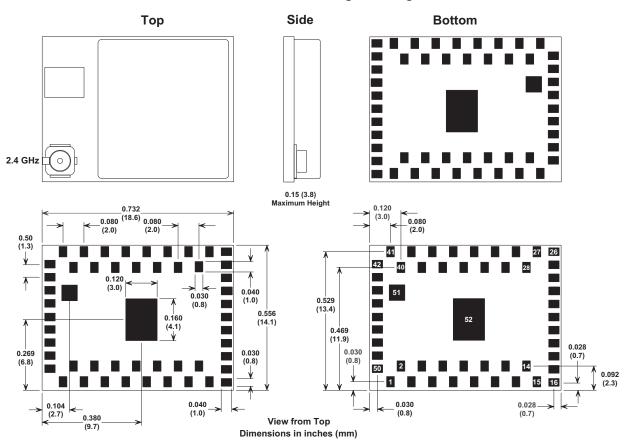
• The Data_In and Data_Out bit order can be configured independently. For example; Data_In can start with MSB while Data_Out starts with LSB. Each channel is separately configurable. The inverse bit order (i.e. LSB first) is supported only for sample sizes up to 24 bits.

• The data in and data out size do not necessarily have to be the same length.

• The Data_Out line is configured as a 'high-Z' output between data words. Data_Out can also be set for permanent high-Z, irrespective of data out. This allows the DR-WLS1271L-102 to be a bus slave in a multi-slave PCM environment. At power up, Data_Out is configured as high-Z.

Frame-Idle Period

The CODEC interface has the capability for frame-idle periods, where the PCM clock can "take a break" and become '0' at the end of the PCM frame, after all data has been transferred. The DR-WLS1271L-102 supports frame-idle periods both as master and slave of the PCM bus. When DR-WLS1271L-102 is the master of the interface, the frame-idle period is configurable. There are 2 configurable parameters: • Clk_Idle_Start - indicates the number of PCM clock cycles from the beginning of the frame till the beginning of the idle period. After Clk_Idle_Start clock cycles, the clock becomes '0'.


• Clk_ldle_End - indicates the time from the beginning of the frame till the end of the idle period. This time is given in multiples of PCM clock periods. The delta between Clk_ldle_Start and Clk_ldle_End is the clock idle period, e.g., for PCM clock rate = 1 MHz, frame sync period = 10 kHz, Clk_ldle_Start = 60, Clk_ldle_End = 90. Between each two-frame sync there are 70 clock cycles (instead of 100). The clock idle period starts 60 clock cycles after the beginning of the frame and lasts 90-60=30 clock cycles. This means that the idle period ends 100-90=10 clock cycles before the end of the frame. The data transmission must end prior to the beginning of the idle period.

Audio Encoding

The DR-WLS1271L-102 CODEC interface can use one of four audio coding patterns:

- A-Law (8-bit)
- m-Law (8-bit)
- Linear (8 or 16-bit)
- Transparent

Mechanical

DR-WLS1271L-102 Package Drawing

Module Terminal Descriptions

Num	Terminal Name	Туре	System	IC Term	inal Connection	Description
1	PCM SYNC	I/O	BT	WL1271L	AUD_FSYNC	PCM I/F
2	PCM CLK	I/O	BT	WL1271L	AUD_CLK	PCM I/F
3	PCM OUT	I/O	BT	WL1271L	AUD_OUT	PCM I/F
4	PCM IN	I/O	BT	WL1271L	AUD_IN	PCM I/F
5	HOST WAKE	I/O	BT	WL1271L	BT_FUNC5	Host Wake Up
6	NOT USED					Mechanical Connection
7	BT ENABLE	I	BT	WL1271L	BT_EN	BT Enable/Reset
8	WLAN IRQ	0	WLAN	WL1271L	WLAN_IRQ	WLAN interrupt request
9	GND					SOC Ground
10	NOT USED					Mechanical Connection
11	NOT USED					Mechanical Connection
12	NOT USED					Mechanical Connection
13	NOT USED					Mechanical Connection
14	WLAN TX	I/O	WLAN	WL1271L	WL_RS232_TX	RS232_RX
15	WLAN RX	I/O	WLAN	WL1271L	WL_RS232_RX	RS232_TX
16	WLAN EN	I	WLAN	WL1271L	WL_EN	WLAN Enable/Reset
17	SDIO D2	I/O	WLAN	WL1271L	SDIO_D2	SDIO DATA 2
18	SDIO D1	I/O	WLAN	WL1271L	SDIO_D1	SDIO DATA 1
19	SDIO CMD	I/O	WLAN	WL1271L	SDIO_CMD	SDIO CMD
20	NOT USED					Mechanical Connection
21	GND					SOC Ground
22	SDIO CLK	I	WLAN	WL1271L	SDIO_CLK	SDIO CLK
23	UART DBG	I/O	WLAN	WL1271L	WL_UART_DBG	WL_UART_DBG
24	SDIO D0	I/O	WLAN	WL1271L	SDIO_D0	SDIO DATA 0
25	NOT USED					Mechanical Connection
26	SDIO D3	I/O	WLAN	WL1271L	SDIO_D3	SDIO DATA 3
27	BT UART DBG	I/O	BT	WL1271L	BT_UART_DBG	BT_UART_DBG, connect to TP for software debug
28	NOT USED					Mechanical Connection
29	NOT USED					Mechanical Connection
30	SLEEP CLOCK	Ι		WL1271L	SLOWCLK	SLEEP_CLK Input
31	BT WAKE	I/O	BT	WL1271L	BT_FUNC2	BT_WU/BT
32	NOT USED					Mechanical Connection
33	NOT USED					Mechanical Connection
34	NOT USED					Mechanical Connection

Num	Terminal Name	Туре	System	IC Termi	inal Connection	Description
35	BT CTS	I/O	BT	WL1271L	HCI_CTS	BT UART CTS
36	NOT USED					Mechanical Connection
37	BT RTS	I/O	BT	WL1271L	HCI_RTS	BT UART RTS
38	NOT USED					Mechanical Connection
39	BT TX	I/O	BT	WL1271L	HCI_TX	BT UART TX
40	NOT USED					Mechanical Connection
41	BT RX	I/O	BT	WL1271L	HCI_RX	BT UART RX
42	GND					SOC Ground
43	GND					SOC Ground
44	GND					SOC Ground
45	GND					SOC Ground
46	VBAT IN	Ρ	SOC	WL1271L, TPS62601	PMS_VBAT, VIN	Power supply input
47	GND					SOC Ground
48	GND					SOC Ground
49	2.4 GHZ ANT	I/O	WLAN			RF receiver input RF transmitter output
50	GND					SOC Ground
51	GND					SOC Ground
52	GND					SOC Ground

Absolute Maximum Ratings

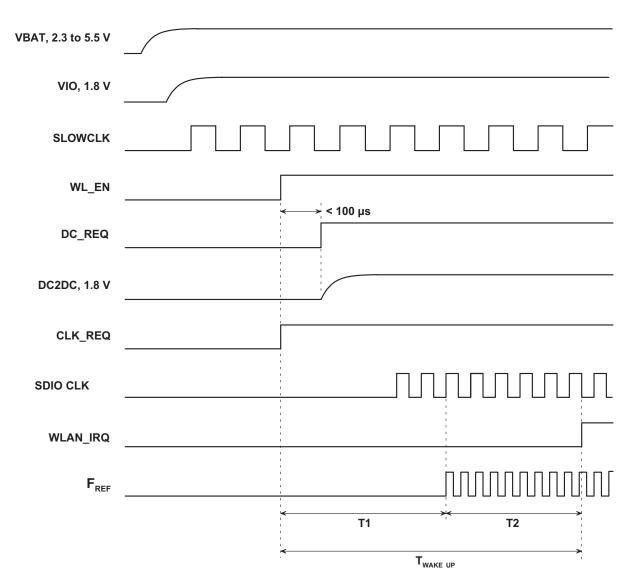
Ratings		Minimum	Maximum	Units
Storage Temperature		-40	+85	°C
Supply Voltage	VBAT	-0.5	+4.8	V
Supply Voltage	VIO	-0.5	+2.1	V

Operating Conditions

Specifications		Minimum	Typical	Maximum	Units
Temperature ^{1, 2}		-40	+25	+85	°C
Supply) (oltage	VBAT	2.7	3.6	4.8	V
Supply Voltage	VIO ³	1.70	1.80	1.90	V

Digital I/O Terminal Specifications

Specifications	Condition	Minimum	Maximum	Units
Logic High Input Voltage (VDD_IO = IO supply for ring)	Default	0.70 * VIO	VIO	V
Logic Low Input Voltage	Default	0	0.35 * VIO	V
	4 mA	VIO - 0.450	VIO	
Logic High Output Voltage	1 mA	VIO - 0.112	VIO	V
	0.3 mA	VIO - 0.033	VIO	
	4 mA	0	0.450	
Logic Low Output Voltage	1 mA	0	0.112	V
	0.09 mA	0	0.010	

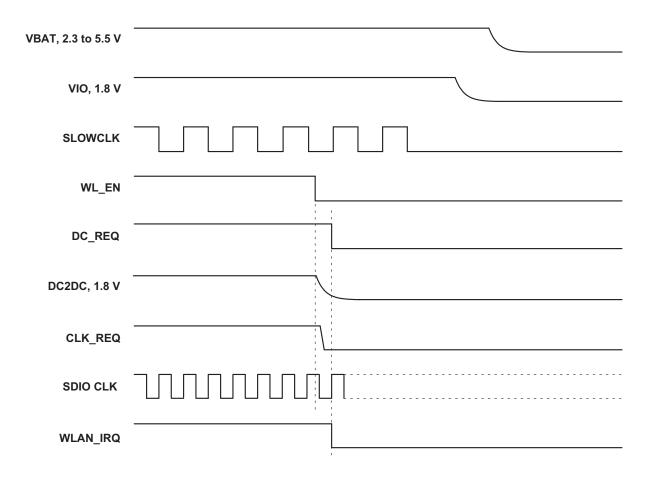

Notes:

- 1. The device can be reliably operated for 5,000 active WLAN hours cumulative at T ambient of 85 °C.
- 2. BIP (calibration) must be run to achieve full power output when temperatures changes more than 20 °C from the last BIP.
- 3. VIO voltage derived from regulator on module.

External Slow Clock Requirements

Specifications	Condition	Minimum	Typical	Maximum	Units
Slow Clock Frequency			32.768		kHz
Slow Clock Accuracy	WLAN	-	-	±150	ppm
Clock Transition Time, Tr/Tf 10 to 90%	Tr/Tf	-	-	100	ns
Clock Duty Cycle		30	50	70	%
	Square Wave,	0.65 * VIO	-	VIO	V
Input Voltage Limits	DC-coupled	0	-	0.35 * VIO	
Input Impedance		1	-	-	MΩ
Input Capacitance		-	-	5	pF
Rise and Fall Time		-	-	100	ns
Phase Noise		-	-	-125	dBc/Hz

WLAN Power-up Sequence

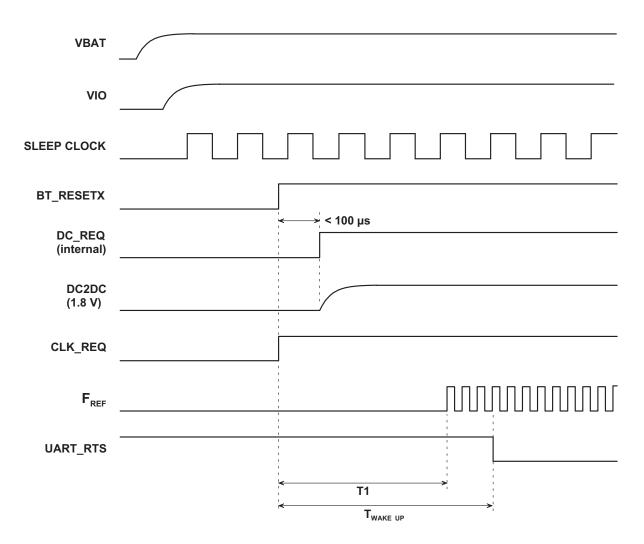

The following sequence describes device power up from shutdown. Only the WLAN core is enabled; the BT core is disabled.

1. No signals are allowed on the IO pins if no IO power supplied, because the IOs are not fail-safe. Exceptions are CLQ_REQ, SLEEP_CLK (SLOWCLK), and XTALP, which are fail-safe and can tolerate external voltages with no VIO and DC2DC. 2. VBAT,VIO and SLEEP_CLK must be available before WLAN_EN (WL_EN).

3. $T_{WAKE-UP}$ = T1+T2. The duration of T1 is the time from WLAN_EN high until F_{REF} is valid for DR-WLS1271L-102 (55 ms typical). The duration of T2 depends on:

- Operating system
- Host enumeration for the SDIO
- PLL configuration
- Firmware download
- Releasing the core from reset
- Firmware initialization

WLAN Power-down Sequence



1. DC_REQ of DR-WLS1271L-102 will go low only if WLAN is the only core working. If BT is working, it will stay high.

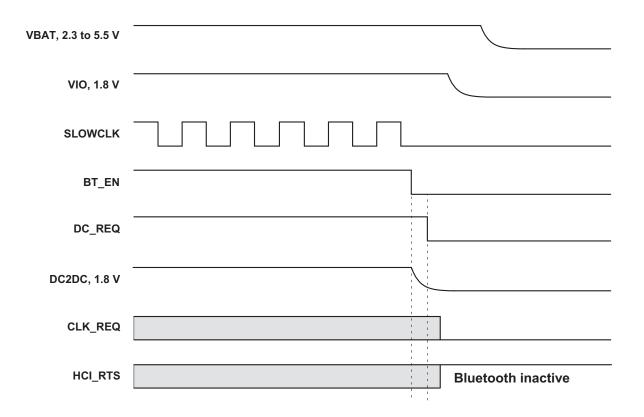
2. CLK_REQ will go low only if WLAN is the only core working. If BT is working it will stay high.

3. WLAN_EN must remain de-asserted for at least 64 ms before it is re-asserted.

Bluetooth Power-up Sequence

The following sequence describes device power-up from shutdown. Only the BT core is enabled; the WLAN core is disabled.

1. No signals are allowed on the IO pins if no IO power supplied, because the IOs are not failsafe. Exceptions are CLK_REQ, SLEEP_CLK, XTALP and AUD_xxx, which are failsafe and can tolerate external voltages with no VIO and DC2DC.


2. VIO and SLEEP CLK must be stable before releasing BT EN.

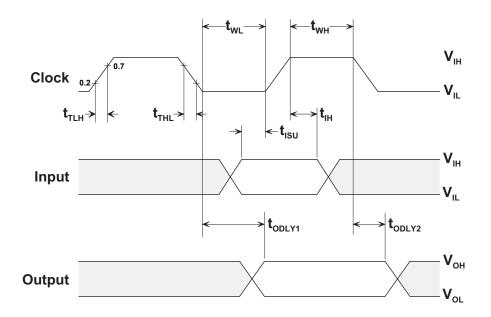
3. Fast clock must be stable a maximum 55 ms after BT_EN goes HIGH.

4. The duration of T1 is defined as the time from BT_EN = high until Fref is valid (55 ms typical).

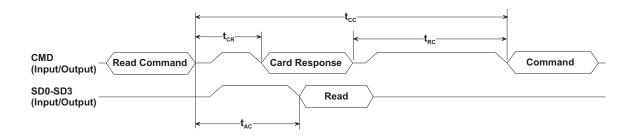
5. The duration of T_{WAKE-UP} is defined as the time from the rising edge of BT_EN to the falling edge of HCI_RTS (70 ms typical). 6. The DR-WLS1271L-102 indicates completion of BT power up sequence by asserting HCI_RTS low. This occurs up to 100 ms after BT_EN goes high.

Bluetooth Power-down Sequence

Host Interface Combination

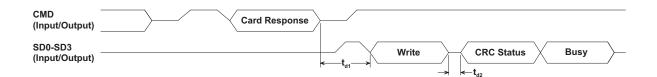

WLAN	BT	Remarks
SDIO	UART	

All core functions support automatic host-interface recognition. The user does not need to configure it in advance.

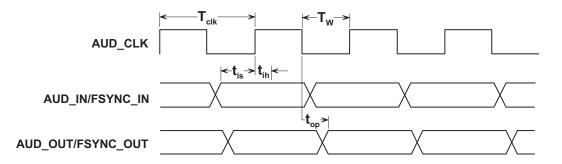

SDIO Interface Clock Switching Characteristics, 25 pF Load Capacitance

Symbol	Parameter	Minimum	Maximum	Units
F _{CLOCK}	Clock Frequency	0	25	MHz
DC	Low/High Duty Cycle	40	60	%
t _{WL}	Pulse Duration, Clock Low	10		ns
t _{wн}	Pulse Duration, Clock High	10		ns
t _{TLH}	Clock Rise Time		4.3	ns
t _{THL}	Clock Fall Time		3.5	ns
t _{isu}	Set-up Time, Input Valid before Clock	5		ns
t _{iH}	Hold Time, Input Valid after Clock	5		ns
t _{ODLY1}	Delay Time, Clock Falling Edge to Output Valid	0	14	ns
t _{ODLY2}	Delay Time, Clock Falling Edge to Output Invalid	0	14	ns

SDIO Timing



SDIO Interface Read


Symbol	Parameter	Minimum	Maximum	Units
t _{CR}	Delay Time, Assign Relative Address or Data Transfer Mode; Read command CMD invalid to card response CMD valid	2	64	Clock Cycles
t _{cc}	Delay Time, CMD command invalid to CMD command valid	8	-	Clock Cycles
t _{RC}	Delay Time, CMD response invalid to CMD command valid	8	-	Clock Cycles
t _{AC}	Access Time, CMD command invalid to SD0-SD3 read data valid	8	-	Clock Cycles

SDIO Interface Write

Symbol	Parameter	Minimum	Maximum	Units
T _{d1}	Delay Time, CMD Card Response Invalid to SD0-SD3 Write Data Valid	2	-	Clock Cycles
T _{d2}	Delay Time, SD0-SD3 Write Data Invalid to CRC Status Valid	2	2	Clock Cycles

BT Audio CODEC/PCM Interface Switching Characteristics

PCM Master

Symbol	Parameter	Minimum	Maximum	Units
T _{CLK}	Clock Period	166.7 (6 MHz)	15625 (64 kHz)	ns
Tw	High/Low Pulse Width	50% of T_{CLK}		
t _{is}	AUD_IN Setup Time	25		
t _{ih}	AUD_IN Hold Time	0		
t _{op}	AUD_OUT Propagation Time, 40 pF Load	0	10	ns
t _{op}	FSYNC_OUT Propagation Time, 40 pF Load	0	10	

PCM Slave

Symbol	Parameter	Minimum	Maximum	Units
T _{CLK}	Clock Period	62.5 (16 MHz)		ns
Tw	High/Low Pulse Width	40% of T_{CLK}		
t _{is}	AUD_IN Setup Time	8		
t _{ih}	AUD_IN Hold Time	0		
t _{is}	FSYNC_IN Setup Time	8		ns
t _{ih}	FSYNC_IN Hold Time	0		
t _{op}	AUD_OUT Propagation Time, 40 pF Load	0	21	

HCI_RTS HCI_RX HCI_RX t_s \to \leftarrow t_a \to + t_7 HCI_TX HCI_TX

UART Interface Timing

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Units
BR	Baud Rate	Most Standard Rates	37.5	-	4000	kbps
t ₅ , t ₇	Baud Rate Accuracy	Receive/Transmit	-2.5	-	1.5	%
t ₃	CTS Low to TX_DATA		0	2	-	μs
t4	CTS High to TX_DATA	Hardware Flow Control	-	-	1	byte
t ₆	CTS High Pulse Width		1	-	-	bit
t ₁	RTS Low to RX_DATA ON		0	2	-	μs
t ₂	RTS High to RX_DATA OFF	Interrupt set to 1/4 FIFO	-	-	16	byte

DR-WLS1271L-102 IRQ Operation

- 1. The default state of the WLAN_IRQ prior to firmware initialization is 0.
- 2. During firmware initialization, the WLAN_IRQ is configured by the SDIO module; a WLAN_IRQ changes its state to 1
- 3. A WLAN firmware interrupt is handled as follows:

(a) The WLAN firmware creates an Interrupt-to-Host, indicated by a 1-to-0 transition on the WLAN_IRQ line (host must be configured as active-low or falling-edge detect).

(b) After the host is available, depending on the interrupt priority and other host tasks, it masks the firmware interrupt. The WLAN_IRQ line returns to 1 (0-to-1 transition on the WLAN_IRQ line).

(c) The host reads the internal register status to determine the interrupt sources - the register is cleared after the read

- (d) The host processes in sequence all the interrupts read from this register
- (e) The host unmasks the firmware interrupts.
- 4. The host is ready to receive another interrupt from the WLAN device.

DR-WLS1271L-102 BT function Low Power Mode Protocols

The DR-WLS1271L-102 device includes a mechanism that handles the transition between operating mode and deep sleep low-power mode. The protocol is done via the UART and is known as eHCILL (enhanced HCI Low Level) power management protocol. This protocol is backward compatible with the BRF6150/ BRF6300/BRF6350/WL1273 HCILL Protocol, so a Host that implements the HCILL for BRF6150/ BRF6350 does not need to change anything in order to work with the DR-WLS1271L-102. The "Enhanced" portion of the HCILL introduces changes that allow a simpler host implementation of this protocol. See BT-SW-0024 (BRF Enhanced HCILL 4 wire Power Management Protocol). In addition to the HCILL protocol, the WL1273 also supports the power management schemes inherent in the UART H5 transport layers.

DC and RF Characteristics for IEEE 802.11b, 11 Mbps

System Specifications		Data				
Standard		IEEE802.11b				
Mode		DSSS/CCK				
Frequency		2412 to	2462 MHz			
Data Rate		1, 2, 5.5	, 11 Mbps			
DC Specifications	Minimum	Typical	Maximum	Units		
DC Current:						
TX Mode	-	250	320	mA		
RX Mode	-	100	150	mA		
Sleep Mode	-	100	200	μA		
Transmitter Specifications	Minimum	Typical	Maximum	Units		
RF Output Power	14	16	18	dBm		
Spectrum Mask:						
1st Sidelobes	-	-40	-30	dBr		
2nd Sidelobes	-	-55	-50	dBr		
Power-on and Power-off Ramp	-	0.1	2.0	μs		
RF Carrier Suppression	15	37	-	dB		
Modulation Accuracy (EVM)	-	10	35	%		
Spurious Emissions:						
0.03 to 1.00 GHz	-	-80	-36	dBm		
1.00 to 12.75 GHz	-	-60	-30	dBm		
1.80 to 1.90 GHz	-	-80	-47	dBm		
5.15 to 5.30 GHz	-	-80	-47	dBm		
Receiver Specifications	Minimum	Typical	Maximum	Units		
Sensitivity:						
Minimum Input Level, 11 Mbps, FER $\leq 8\%$	-	-87	-76	dBm		
Maximum Input Level, FER $\leq 8\%$	-10	0	-	dBm		

DC and RF Characteristics for IEEE 802.11g Operation, 54 Mbps

System Specifications		Data					
Standard		IEEE802.11g					
Mode		OFDM					
Frequency		2412 to	o 2462 MHz				
Data Rate		6, 9, 12, 18, 2	4, 36, 48, 54 Mbr	os			
DC Specifications	Minimum	Typical	Maximum	Units			
DC Current:							
TX Mode	-	180	245	mA			
RX Mode	-	100	150	mA			
Sleep Mode	-	100	200	μA			
Transmitter Specifications	Minimum	Typical	Maximum	Units			
RF Output Power	11	13	15	dBm			
Spectrum Mask:							
at f _c ±11 MHz	-	-30	-20	dBr			
at f _c ±20 MHz	-	-33	-28	dBr			
at f _c ±30 MHz	-	-45	-40	dBr			
Spurious Emissions:							
0.03 to 1.00 GHz	-	-80	-36	dBm			
1.00 to 12.75 GHz	-	-65	-30	dBm			
1.80 to 1.90 GHz	-	-80	-47	dBm			
5.15 to 5.30 GHz	-	-80	-47	dBm			
Constellation Error (EVM)	-	-30	-25	dB			
Receiver Specifications	Minimum	Typical	Maximum	Units			
Sensitivity:							
Minimum Input Level, 54 Mbps, PER \leq 10%	-	-73	-65	dBm			
Maximum Input Level, PER ≤ 10%	-20	-4	-	dBm			

DC and RF Characteristics for IEEE 802.11n Operation, 65 Mbps (MCS7)

System Specifications		Data					
Standard		IEEE802.11n-2.4G					
Mode		OFDM					
Frequency		2412 to	2462 MHz				
Data Rate	6.5	, 13, 19.5, 26, 3	39, 52, 58.5, 65 N	/lbps			
DC Specifications	Minimum	Typical	Maximum	Units			
DC Current:							
TX Mode	-	180	245	mA			
RX Mode	-	100	150	mA			
Sleep Mode	-	100	200	μA			
Transmitter Specifications	Minimum	Typical	Maximum	Units			
RF Output Power	10	12	14	dBm			
Spectrum Mask:							
at f _c ±11 MHz	-	-30	-20	dBr			
at f _c ±20 MHz	-	-35	-28	dBr			
at f _c ±30 MHz	-	-50	-45	dBr			
Constellation Error (EVM)	-	-80	-28	dB			
Spurious Emissions:							
0.03 to 1.00 GHz	-	-80	-36	dBm			
1.00 to 12.75 GHz	-	-65	-30	dBm			
1.80 to 1.90 GHz	-	-80	-47	dBm			
5.15 to 5.30 GHz		-80	-47	dBm			
Receiver Specifications	Minimum	Typical	Maximum	Units			
Sensitivity:							
Minimum Input Level, 65 Mbps, PER \leq 10%	-	-67	-64	dBm			
Maximum Input Level, PER \leq 10%	-20	-5	-	dBm			

DC and RF Characteristics for Bluetooth Operation

System Specifications	Data				
Bluetooth Standard	Version 4.0				
Channel Spacing	1 MHz				
Number of RF Channels	79				
Power Class	1				
Operating Mode	Frequency hopping spread spectrum, pseudorandom hop pattern, time division multiple access on transmit or rece frequency hop after each RX/TX cycle				
DC Specifications	Minimum	Typical	Maximum	Units	
DC Current:					
DH1 Packet, 50% RX/TX Slot Duty Cycle	-	37	60	mA	
DH3 Packet, 50% RX/TX Slot Duty Cycle	-	46	60	mA	
DH5 Packet, 50% RX/TX Slot Duty Cycle	-	48	60	mA	
Transmitter Specifications	Minimum	Typical	Maximum	Units	
RF Output Power	4.5	8.0	-	dBm	
Frequency Range, RX/TX		2400 to 2483.5	5	MHz	
-20 dB Bandwidth	-	0.8	1.0	MHz	
Adjacent Channel Power ¹ :					
M - N = 2	-	-45	-20	dBm	
M - N ≥ 3	-	-46	-40	dBm	
Modulation Characteristics:					
Modulation δ f ₁ average	140	158	175	kHz	
Modulation δ f ₂ maximum	115	132	-	kHz	
Modulation δ f_2 average / δ f_1 average	0.8	0.9	-	-	
Carrier Frequency Drift:					
1 Slot	-25	-	+25	kHz	
3 Slots	-40	-	+40	kHz	
5 Slots	-40	-	+40	kHz	
Maximum Frequency Drift Rate	-20	-	+20	kHz/50 μs	
Spurious Emissions:					
0.03 to 1.00 GHz	-	-58	-36	dBm	
1.00 to 12.75 GHz	-	-40	-30	dBm	
1.80 to 1.90 GHz	-	80	-47	dBm	
5.15 to 5.30 GHz	-	80	-47	dBm	
ERD Relative Power, π /4-DPQSK and 8DPSK	-4	-0.2	1	dB	
EDR Carrier Frequency Stability and Modulation Accuracy:					
$\omega\iota, \pi/4$ -DPQSK and 8DPSK	-75	-	+75	kHz	
$\omega 0, \pi/4$ -DPQSK and 8DPSK	-10	-	+10	kHz	
$\omega \iota + \omega 0, \pi/4$ -DPQSK and 8DPSK	-75	-	+75	kHz	
RMS DEVM, $\pi/4$ -DPQSK	-	6	20	%	
99% DEVM, π/4-DPQSK	-	10	30	%	
Peak DEVM, $\pi/4$ -DPQSK	-	14	35	%	

Transmitter Specifications (continued)	Minimum	Typical	Maximum	Units
RMS DEVM, 8DPSK	-	6	13	%
99% DEVM, 8DPSK	-	10	20	%
Peak DEVM, 8DPSK	-	15	25	%
Receiver Specifications	Minimum	Typical	Maximum	Units
Sensitivity, BER $\leq 0.1\%$:				
2402 MHz	-	-90	-70	dBm
2441 MHz	-	-90	-70	dBm
2480 MHz	-	-90	-70	dBm
C/I Performance, BER $\leq 0.1\%^2$:				
Co-channel ratio, -60 dBm Input	-	7	11	dB
1 MHz ratio, -60 dBm Input	-	-9	0	dB
2 MHz ratio, -60 dBm Input	-	-46	-30	dB
3 MHz ratio, -67 dBm Input	-	-48	-40	dB
Image ±1 MHz ratio, -67 dBm input	-	-30	-20	dB
Blocking Performance, BER $\leq 0.1\%^3$:				
30 to 2000 MHz	-10	-8	-	dBm
2000 to 2400 MHz	-27	0	-	dBm
2500 to 3000 MHz	-27	0	-	dBm
3000 to 12750 MHz	-10	-5	-	dBm
Intermodulation Performance, -64 dBm Input, BER $\leq 0.1\%$	-39	-30	-	dBm
Maximum Input Level	-20	10	-	dBm
EDR Sensitivity, BER \leq 0.01%:				
π /4-DQPSK	-	-90	-70	dBm
8DPSK	-	-84	-70	dBm

1. Up to three spurious responses within Bluetooth limits are allowed.

2. Up to five spurious responses within Bluetooth limits are allowed.

3. Up to twenty-four spurious responses within Bluetooth limits are allowed.

Storage Conditions

This product should be stored without opening the packing in an ambient temperature range of 5 to 35 °C and humidity range from 20 to 70% RH, and be used within six months of receipt. Packing materials can be deformed at temperatures above 40 °C. If the product is not used six months or more after receipt, its solderbility should be tested before being used. The product should be stored in non-corrosive gas. Any excess mechanical shock such as sticking the packing materials with a sharp object or dropping the product, etc., must be avoided in order not to damage the packing materials. This product is applicable to MSL3, based on JEDEC Standard J-STD-020.

After the packing is opened, the product should be stored at an ambient temperature below 30 °C and at humidity level less than 60% RH. The product should be used within 168 hours. If the color of the indicator in the packing has changed, the product should be baked before soldering at 125 to 130 °C for 24 hours. The products should be baked on the heat-resistant tray, as the tape and reel materials are not heat-resistant.

Handling Conditions

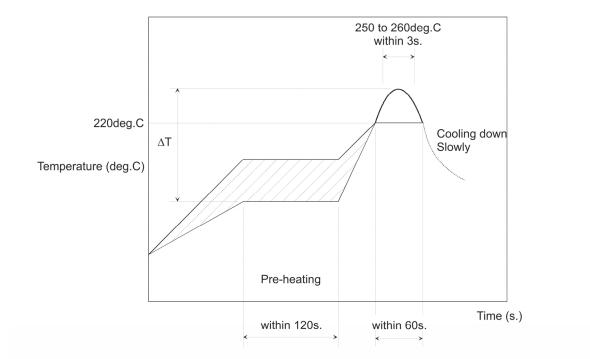
Use care in handling or transporting this product as excessive stress or mechanical shock can crack or break the product. Do not touch this product with bare hands as this can result in poor solderability.

Standard PCB Design (Land Pattern and Dimensions)

All the ground terminals should be connected to the ground patterns, and unconnected terminals should be soldered to unconnected PCB pads for mechanical strength. The best land pattern depends on the pattern generation method, grounding method, land dimensions, land forming method of the unconnected terminals and the PCB material and thickness. Contact RFM technical support if you have any questions about adapting the recommend land pattern to your application specifics or before using non-standard land dimensions, etc.

Module PCB Placement

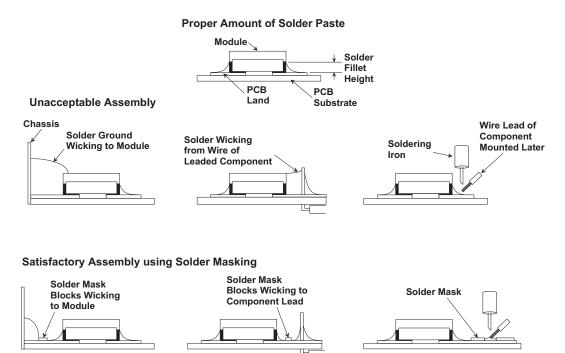
This product can be broken by uneven forces from a worn-out chucking locating claw or a suction nozzle. To prevent damage, be sure to follow the specifications for the maintenance of the chip placer being used. Be aware that mechanical chucking can damage this product when used for mounting it on a PCB.


Module Soldering

Preheat so that the temperature difference ΔT between the solder and module surface is less than 130 °C. If the module is immersed in solvent after mounting, care should be taken to limit the temperature difference to 100 °C. These provisions are necessary to prevent damage due to excessive differential expansion. Contact RFM technical support if you have any questions about soldering methods or are considering other soldering conditions.

Using a Soldering Iron

A soldering iron of 18 W or less, using a ceramic heater is recommended. The soldering iron tip diameter should be 3 mm maximum, and the tip temperature should be 350 °C or less. The iron contact time at each terminal should be limited to 3 seconds. The soldering iron should be applied to the land pattern next to the module terminal, not directly on the module ceramic substrate.


Example Reflow Soldering Profile

Use rosin flux or a weakly active flux with a chlorine content of 0.2% or less by weight.

Solder Paste Amount and Assembly Standards

Ensure that solder is applied smoothly to a minimum height of 0.2 to 0.5 mm at the end surface of the module's external pads. If too much or little solder is applied, the mechanical strength can be insufficient.

Cleaning

This product is moisture sensitive and not suitable for water-based cleaning.

Operational Conditions

This product is designed to work under normal environmental conditions - ambient temperature, humidity and pressure. If this product is used under the following circumstances, erratic operation or complete failure can occur:

Atmosphere containing a corrosive gas (Cl₂, NH₃, SO_x, NO_x, etc.) Atmosphere containing a combustible or volatile gas Dusty location Location with direct sunlight Location subject to water splashes, high humidity or condensation

If the customer's application could subject a module to one or more of the above conditions, consult with RFM technical support before use. Avoid static electricity or excessive voltage while assembling this module on a PCB or testing it.

Power Supply Voltages

Power supply voltages applied to this product must conform to the specifications for the module. Contact RFM technical support if you have any questions about power supply requirements.

Labeling Requirements

FCC Certification - The WLS1271L-102 hardware has been certified for operation under FCC Part 15 Rules, Section 15.247.

FCC Notice - This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

A clearly visible label is required on the outside of the user's (OEM) enclosure stating the following text:

Contains FCC ID: HSW-WLS1271L-102 Contains IC: 4492A-WLS1271L-102

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

WARNING: This device operates under Part 15 of the FCC rules. Any modification to this device, not expressly authorized by RFM, Inc., may void the user's authority to operate this device.

This apparatus complies with Health Canada's Safety Code 6 / IC RSS 210.

IC RSS-210 Notice - Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

ICES-003

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of Industry Canada.

Le present appareil numerique n'emet pas de bruits radioelectriques depassant les limites applicables aux appareils numeriques de Classe B prescrites dans le reglement sur le brouillage radioelectrique edicte par Industrie Canada.