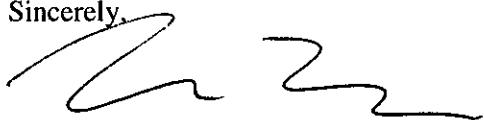
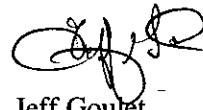


# Intertek ETL SEMKO

2/27/2005


John Lair  
Freelinc  
2144 S. Highland Drive Suite #160  
Salt Lake City, UT, 84106

John Lair,


Enclosed you will find our Emissions Test Report covering testing on your Free MIC 200 Wireless Microphone Unit.

If there are any questions regarding this report, please contact the undersigned or your account representative.

Sincerely,



Nicholas Abbondante  
Project Engineer



Jeff Goulet  
Team Leader, EMC

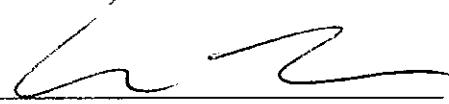
Enclosure

**EMISSIONS TEST REPORT**

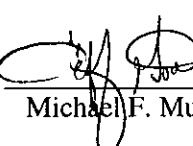
**Report Number: 3091276BOX.001**  
**Project Number: 3091276**

**Testing performed on the**  
**Model: FREE MIC 200 Wireless Microphone Unit**

**to**


**FCC Part 15 Subpart C 15.225**

**For**


**Freelinc**

Test Performed by:  
Intertek – ETL SEMKO  
70 Codman Hill Road  
Boxborough, MA 01719

Test Authorized by:  
Freelinc  
2144 S. Highland Drive Suite #160  
Salt Lake City, UT, 84106

Prepared by:   
Nicholas Abbondante

Date: 2/27/06

Reviewed by:   
Michael F. Murphy

Date: 02-28-06

*This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.*

## 1.0 Job Description

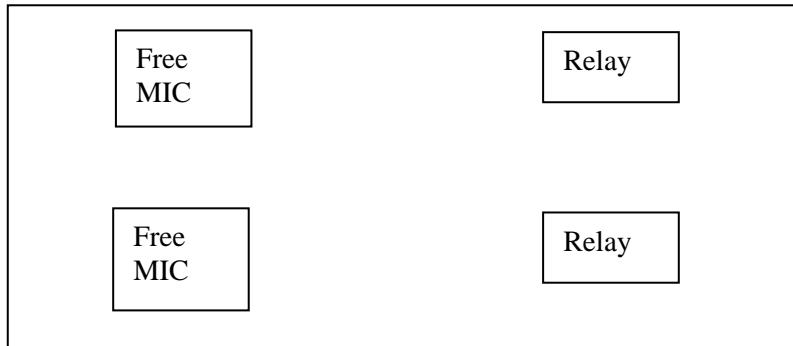
### 1.1 Client Information

This EUT has been tested at the request of

**Company:** Freelinc  
2144 S. Highland Drive Suite #160  
Salt Lake City, UT, 84106

**Contact:** John Lair  
**Telephone:** 801-467-1199  
**Fax:** 801-467-6099

### 1.2 Equipment Under Test


**Equipment Type:** Wireless Microphone  
**Model Number(s):** FREE MIC 200 Wireless Microphone Unit  
**Serial number(s):** A & B  
**Manufacturer:** Freelinc  
**EUT receive date:** 02/14/2006  
**EUT received condition:** Prototype in Good condition  
**Test start date:** 02/15/2006  
**Test end date:** 02/22/2006

**1.3 Test Plan Reference:** Tested according to the standards listed and ANSI C63.4-2003.

### 1.4 Test Configuration

#### 1.4.1 Block Diagram

The EUT set must be in the proximity of another EUT set in order to trigger transmission at 13.956 MHz in addition to the normal 13.56 MHz transmission. The Wireless Microphone and Relay must be ~1.1 meters apart maximum, and the two systems must be ~0.5 meters apart.



Turntable

**1.4.2 Cable List:**

| Cable            | Shielding | Connector | Length (m) | Qty. |
|------------------|-----------|-----------|------------|------|
| Charger AC Mains | None      | Mini-USB  | 1.5        | 1    |

**1.4.3 Support Equipment:**

Name: Freelinc Adapter Relay  
Model No.: Freelinc Wireless Headset System  
Serial No.: A

Name: Freelinc Adapter Relay  
Model No.: Freelinc Wireless Headset System  
Serial No.: B

Name: Freelinc Charger  
Model No.: S003BU0600030  
Serial No.: N/L

**1.5 Mode of Operation:**

The EUT was activated from a fresh, charged battery in transmit mode, communicating with the adapter relay. The nominal battery voltage is 3.7V. The battery operating end point is 2.9V. The EUT software disables transmission while in charge mode, so this mode was not tested to the transmitter requirements.

**2.0 Test Summary**

| TEST STANDARD                                                                                             | RESULTS                                         |         |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|
| <b>FCC Part 15 Subpart C 15.225</b>                                                                       |                                                 |         |
| SUB-TEST                                                                                                  | TEST PARAMETER                                  | COMMENT |
| FCC Parts 15.205, 15.209, 15.215, 15.225<br>RF Output Power and Radiated and<br>Restricted Band Emissions | Emissions below specified limits                | Pass    |
| FCC Part 15.207<br>Line-Conducted Emissions                                                               | Emissions below specified limits                | Pass    |
| FCC Parts 15.225<br>Frequency Stability                                                                   | Frequency drift must not exceed<br>$\pm 0.01\%$ | Pass    |

### 3.0 Sample Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where  $FS$  = Field Strength in  $\text{dB}\mu\text{V}/\text{m}$

$RA$  = Receiver Amplitude (including preamplifier) in  $\text{dB}\mu\text{V}$

$CF$  = Cable Attenuation Factor in dB

$AF$  = Antenna Factor in dB

$AG$  = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0  $\text{dB}\mu\text{V}$  is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32  $\text{dB}\mu\text{V}/\text{m}$ . This value in  $\text{dB}\mu\text{V}/\text{m}$  was converted to its corresponding level in  $\mu\text{V}/\text{m}$ .

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}/\text{m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = [10(32 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

The following is how net line-conducted readings were determined:

$$NF = RF + LF + CF + AF$$

Where  $NF$  = Net Reading in  $\text{dB}\mu\text{V}$

$RF$  = Reading from receiver in  $\text{dB}\mu\text{V}$

$LF$  = LISN Correction Factor in dB

$CF$  = Cable Correction Factor in dB

$AF$  = Attenuator Loss Factor in dB

To convert from  $\text{dB}\mu\text{V}$  to  $\mu\text{V}$  or  $\text{mV}$  the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

#### Example:

$$NF = RF + LF + CF + AF = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$$

$$UF = 10^{(49.1 \text{ dB}\mu\text{V}/20)} = 254 \mu\text{V}/\text{m}$$

### **3.1 Measurement Uncertainty**

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes.

The expanded uncertainty ( $k = 2$ ) for radiated emissions from 30 to 1000 MHz has been determined to be:  
 $\pm 3.5$  dB at 10m,  $\pm 3.8$  dB at 3m

The expanded uncertainty ( $k = 2$ ) for mains conducted emissions from 150 kHz to 30 MHz has been determined to be:

$\pm 2.6$  dB

The expanded uncertainty ( $k = 2$ ) for telecom port conducted emissions from 150 kHz to 30 MHz has been determined to be:

$\pm 3.2$  for ISN and voltage probe measurements  
 $\pm 3.1$  for current probe measurements

### 3.2 Site Description

**Test Site(s):** 2, Parking lot by Site 2

Our OATS are 3m and 10m sheltered emissions measurement ranges located in a light commercial environment in Boxborough, Massachusetts. They meet the technical requirements of ANSI C63.4-2003 and CISPR 22:1993/EN 55022:1994 for radiated and conducted emission measurements. The shelter structure is entirely fiberglass and plastic, with outside dimensions of 33 ft x 57 ft. The structure resembles a quonset hut with a center ceiling height of 16.5 ft.

The testing floor is covered by a galvanized sheet metal groundplane that is earth-grounded via copper rods around the perimeter of the site. The joints between individual metal sheets are bridged with a 2 inch wide metal strips to provide low RF impedance contact throughout. The sheets are screwed in place with stainless steel, round-head screws every three inches. Site illumination and HVAC are provided from beneath the ground reference plane through flush entry ports, the port covers are electrically bonded to the ground plane.

A flush metal turntable with 12 ft. diameter and 5000 lb. load capacity (12,000 lb. in Site 3) is provided for floor-standing equipment. A wooden table 80 cm high is used for table-top equipment. The turntable is electrically connected to the ground plane with three copper straps. The straps are connected to the turntable at the center of it with ground braid. The copper strap is directly connected to the groundplane at the edges of the turntable. The turntable is located on the south end of the structure and the antennas are mounted 3 and 10 meters away to the north. The antenna mast is a non-conductive with remote control of antenna height and polarization. The antenna height is adjustable from 1 to 4 meters.

All final radiated emission measurements are performed with the testing personnel and measurement equipment located below the ground reference plane. The site has a full basement underneath the turntable where support equipment may be remotely located. Operation of the antenna, turntable and equipment under test is controlled by remote controls that manipulate the antenna height and polarization and with a turntable control. Test personnel are located below the ellipse when measurements are performed, however the site maintains the ability of having personnel manipulate cables while monitoring test equipment. Ambient radiated emissions are 6 dB or more below the relevant FCC emission limits.

AC mains power is brought to the equipment under test through a power line filter, to remove ambient conducted noise. 50 Hz (240 VAC single phase), 60 Hz power (120 VAC single phase, 208 VAC three phase), and 60 Hz (480 VAC three phase) are available. Conducted emission measurements are performed with a Line Impedance Stabilization Network (LISN) or Artificial Mains Network (AMN) bonded to the ground reference plane. A removable vertical groundplane (2 meter X 2 meter area) is used for line-conducted measurements for table top equipment. The vertical groundplane is electrically connected to the reference groundplane.

The EMC Lab has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference groundplanes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

**Test Results:** Pass**Test Standard:** FCC Parts 15.205, 15.209, 15.225**Test:** RF Output Power and Radiated and Restricted Band Emissions**Performance Criterion:** RF Output Power is subject to the limits set forth in FCC Part 15.225, Spurious Emissions up to the tenth harmonic and in restricted bands are subject to the limits set forth in FCC Part 15.209. Spurious emissions must not exceed the fundamental field strength.**Test Environment:**

See Data Tables

**Maximum Test Disturbance Parameters:** Emissions must not exceed specified limits.**Software:**

| Name           | Manufacturer          | Version          |
|----------------|-----------------------|------------------|
| EXCEL 2000     | Microsoft Corporation | 9.0.6926 SP-3    |
| EMI BOXBOROUGH | Intertek              | 1/12/06 Revision |

**Test Date:** 02/21/2006**Engineer Initials:** NNA**Date:** 2/21/06**Test Engineer:** Nicholas Abbondante**Reviewer Initials:** JK**Date:** 02-28-06**Test Equipment Used:**

| TEST EQUIPMENT LIST |                                    |         |           |            |               |
|---------------------|------------------------------------|---------|-----------|------------|---------------|
| Item                | Equipment Type                     | Make    | Model No. | Serial No. | Next Cal. Due |
| 1                   | Digital 4 Line Barometer           | Mannix  | 0ABA116   | BAR2       | 08/02/2007    |
| 2                   | ANTENNA                            | EMCO    | 3142      | 9701-1116  | 11/10/2006    |
| 3                   | 10 Meter in floor cable for site 2 | ITS     | RG214B/U  | S2 10M FLR | 09/02/2006    |
| 4                   | Spectrum Analyzer                  | Agilent | E7405A    | US40240205 | 08/09/2006    |
| 5                   | LOOP ANTENNA                       | Empire  | LP-105    | 905        | 08/15/2006    |
| 6                   | Cable, BNC - BNC, 15' long         | Belden  | RG-58/U   | CBL022     | 01/03/2007    |

**Test Details:**
**Radiated Emissions**

Company: Freelinc  
 Model #: FREE MIC 200 Wireless Microphone Unit  
 Serial #: A & B  
 Engineers: Nicholas Abbondante  
 Project #: 3091276 Date(s): 02/21/06  
 Standard: FCC Part 15 Subpart C 15.225  
 Receiver: Agilent E7405A (AGL001) Limit Distance (m): 3  
 PreAmp: NONE. Test Distance (m): 3  
 Barometer: BAR2 Temp/Humidity/Pressure: 20c 24% 1001 mB  
 PreAmp Used? (Y or N): N Voltage/Frequency: Fresh Battery Frequency Range: 150 kHz - 30 MHz  
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

| Detector Type | Ant. Pol. (V/H) | Frequency MHz | Reading dB(uV) | Antenna Factor dB(1/m) | Cable Loss dB | Pre-amp Factor dB | Distance Factor dB | Net dB(uV/m) | Limit dB(uV/m) | Margin dB | Bandwidth |
|---------------|-----------------|---------------|----------------|------------------------|---------------|-------------------|--------------------|--------------|----------------|-----------|-----------|
| QP            | V               | 13.405        | -10.6          | 41.3                   | 20.7          | 0.0               | 0.0                | 51.3         | 80.5           | -29.2     | 9/30 kHz  |
| QP            | V               | 13.465        | -1.2           | 41.3                   | 20.7          | 0.0               | 0.0                | 60.7         | 90.5           | -29.8     | 9/30 kHz  |
| QP            | V               | 13.515        | 10.3           | 41.3                   | 20.7          | 0.0               | 0.0                | 72.2         | 90.5           | -18.3     | 9/30 kHz  |
| QP            | V               | 13.565        | 13.0           | 41.3                   | 20.7          | 0.0               | 0.0                | 74.9         | 124.0          | -49.1     | 9/30 kHz  |
| QP            | V               | 13.610        | 12.3           | 41.3                   | 20.7          | 0.0               | 0.0                | 74.2         | 90.5           | -16.3     | 9/30 kHz  |
| QP            | V               | 13.665        | 1.6            | 41.3                   | 20.7          | 0.0               | 0.0                | 63.5         | 90.5           | -27.0     | 9/30 kHz  |
| QP            | V               | 13.711        | -10.8          | 41.3                   | 20.7          | 0.0               | 0.0                | 51.1         | 80.5           | -29.4     | 9/30 kHz  |
| QP            | V               | 13.915        | -4.1           | 41.2                   | 20.7          | 0.0               | 0.0                | 57.8         | 80.5           | -22.7     | 9/30 kHz  |
| QP            | V               | 13.965        | -4.1           | 41.2                   | 20.7          | 0.0               | 0.0                | 57.8         | 80.5           | -22.7     | 9/30 kHz  |
| QP            | V               | 14.015        | -6.4           | 41.2                   | 20.7          | 0.0               | 0.0                | 55.5         | 69.5           | -14.0     | 9/30 kHz  |
| QP            | V               | 27.120        | -17.1          | 40.2                   | 20.6          | 0.0               | 0.0                | 43.7         | 69.5           | -25.8     | 9/30 kHz  |
| QP            | V               | 27.912        | -17.1          | 40.0                   | 20.6          | 0.0               | 0.0                | 43.6         | 69.5           | -25.9     | 9/30 kHz  |

Transmit Mode, 13.56 and 13.956 MHz fundamentals. Limit has been extrapolated to 3 meters from the specified 30 meters. This has been done to facilitate comparison between the readings below 30 MHz to the readings above 30 MHz in order to demonstrate that the fundamental field strength is higher than the spurious emissions field strength.

**Radiated Emissions**

Company: Freelinc  
 Model #: FREE MIC 200 Wireless Microphone Unit  
 Serial #: A & B  
 Engineers: Nicholas Abbondante  
 Project #: 3091276 Date(s): 02/21/06  
 Standard: FCC Part 15 Subpart C 15.225  
 Receiver: Agilent E7405A (AGL001) Limit Distance (m): 3  
 PreAmp: NONE. Test Distance (m): 10  
 Barometer: BAR2 Temp/Humidity/Pressure: 20c 24% 1001 mB  
 PreAmp Used? (Y or N): N Voltage/Frequency: Fresh Battery Frequency Range: 30 - 1000 MHz  
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

| Detector Type | Ant. Pol. (V/H) | Frequency MHz | Reading dB(uV) | Antenna Factor dB(1/m) | Cable Loss dB | Pre-amp Factor dB | Distance Factor dB | Net dB(uV/m) | Limit dB(uV/m) | Margin dB | Bandwidth   |
|---------------|-----------------|---------------|----------------|------------------------|---------------|-------------------|--------------------|--------------|----------------|-----------|-------------|
| QP            | V               | 40.600        | 11.8           | 10.7                   | 1.5           | 0.0               | -10.5              | 34.5         | 40.0           | -5.5      | 120/300 kHz |
| QP            | V               | 42.000        | 12.1           | 10.2                   | 1.5           | 0.0               | -10.5              | 34.3         | 40.0           | -5.7      | 120/300 kHz |
| QP            | V               | 135.600       | 11.3           | 6.6                    | 2.0           | 0.0               | -10.5              | 30.5         | 43.5           | -13.0     | 120/300 kHz |
| QP            | V               | 295.000       | 12.0           | 13.2                   | 3.0           | 0.0               | -10.5              | 38.6         | 46.0           | -7.4      | 120/300 kHz |
| QP            | V               | 346.700       | 11.9           | 15.2                   | 3.3           | 0.0               | -10.5              | 40.8         | 46.0           | -5.2      | 120/300 kHz |
| QP            | V               | 400.200       | 11.1           | 15.9                   | 3.5           | 0.0               | -10.5              | 41.0         | 46.0           | -5.0      | 120/300 kHz |

Transmit Mode, 13.56 and 13.956 MHz fundamentals. All readings are measurements of instrumentation noise floor.

Setup Photos









**Test Results:** Pass**Test Standard:** FCC Part 15.207**Test:** Line-conducted Emissions**Performance Criterion:** Spurious emissions on the AC line are subject to the requirements of FCC 15.207.**Test Environment:**

See Data Table

**Maximum Test Disturbance Parameters:** Emissions must not exceed specified limits**Software:**

| Name           | Manufacturer          | Version          |
|----------------|-----------------------|------------------|
| EXCEL 2000     | Microsoft Corporation | 9.0.6926 SP-3    |
| EMI BOXBOROUGH | Intertek              | 1/12/06 Revision |

Test Date: 02/22/2006

Engineer Initials: NNADate: 2/27/06

Test Engineer: Nicholas Abbondante

Reviewer Initials: SADate: 4/22/06**Test Equipment Used:**

| TEST EQUIPMENT LIST |                              |                   |                  |            |               |
|---------------------|------------------------------|-------------------|------------------|------------|---------------|
| Item                | Equipment Type               | Make              | Model No.        | Serial No. | Next Cal. Due |
| 1                   | Digital 4 Line Barometer     | Mannix            | 0ABA116          | BAR2       | 08/02/2007    |
| 2                   | LISN, 50uH, .01 - 50MHz, 24A | Solar Electronics | 9252-50-R-24-BNC | 941713     | 07/05/2007    |
| 3                   | Cable, BNC - BNC, 15' long   | Belden            | RG-58/U          | CBL022     | 01/03/2007    |
| 4                   | Attenuator, 20dB             | Mini Circuits     | 20dB, 50 ohm     | DS24       | 08/12/2006    |
| 5                   | Spectrum Analyzer            | Agilent           | E7405A           | US40240205 | 08/09/2006    |

**Test Details:**

Note that the EUT cannot transmit while charging. The EUT was not transmitting during the test.

**Conducted Emissions**

Company: Freelinc  
 Model #: FREE MIC 200 Wireless Microphone Unit  
 Serial #: B  
 Engineer(s): Nicholas Abbondante  
 Project #: 3091276 Date: 02/22/06  
 Standard: FCC Part 15 Subpart C 15.225  
 Barometer: BAR2 Temp/Humidity/Pressure: 19c 25% 1007 mB Attenuator: DS24 8-12-06.txt  
 Voltage/Frequency: 120V/60Hz Frequency Range: 150 kHz - 30 MHz  
 Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown  
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor; Bandwidth denoted as RBW/VBW

| Detector Type | Frequency MHz | Reading Line 1 dB(uV) | Reading Line 2 dB(uV) | Reading Line 3 dB(uV) | Reading Line 4 dB(uV) | Net dB(uV) | QP Limit dB(uV) | Margin dB | Bandwidth |
|---------------|---------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|-----------------|-----------|-----------|
| QP            | 0.181         | 22.3                  | 18.0                  |                       |                       | 42.4       | 64.4            | -22.0     | 9/30 kHz  |
| QP            | 0.362         | 23.0                  | 22.2                  |                       |                       | 43.2       | 58.7            | -15.5     | 9/30 kHz  |
| QP            | 0.486         | 25.7                  | 22.6                  |                       |                       | 45.9       | 56.2            | -10.4     | 9/30 kHz  |
| QP            | 0.541         | 23.7                  | 24.7                  |                       |                       | 44.8       | 56.0            | -11.2     | 9/30 kHz  |
| QP            | 1.991         | 17.6                  | 19.8                  |                       |                       | 40.1       | 56.0            | -15.9     | 9/30 kHz  |
| QP            | 5.852         | 10.3                  | 14.3                  |                       |                       | 34.7       | 60.0            | -25.3     | 9/30 kHz  |

| Detector Type | Frequency MHz | Reading Line 1 dB(uV) | Reading Line 2 dB(uV) | Reading Line 3 dB(uV) | Reading Line 4 dB(uV) | Net dB(uV) | Average Limit dB(uV) | Margin dB | Bandwidth |
|---------------|---------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|----------------------|-----------|-----------|
| AVG           | 0.181         | 13.1                  | 13.0                  |                       |                       | 33.2       | 54.4                 | -21.3     | 9/30 kHz  |
| AVG           | 0.362         | 16.6                  | 15.5                  |                       |                       | 36.7       | 48.7                 | -12.0     | 9/30 kHz  |
| AVG           | 0.486         | 18.0                  | 16.1                  |                       |                       | 38.2       | 46.2                 | -8.0      | 9/30 kHz  |
| AVG           | 0.541         | 17.3                  | 18.1                  |                       |                       | 38.2       | 46.0                 | -7.8      | 9/30 kHz  |
| AVG           | 1.991         | 11.9                  | 14.1                  |                       |                       | 34.4       | 46.0                 | -11.6     | 9/30 kHz  |
| AVG           | 5.852         | 0.9                   | 7.4                   |                       |                       | 27.8       | 50.0                 | -22.2     | 9/30 kHz  |

Setup Photos





**Test Results:** Pass

**Test Standard:** FCC Parts 15.225

**Test:** Frequency Stability

**Performance Criterion:** The EUT must meet the requirements of FCC Part 15.225

**Maximum Test Disturbance Parameters:** Frequency drift shall not exceed  $\pm 0.01\%$

**Software:**

| Description | Manufacturer          | Version       |
|-------------|-----------------------|---------------|
| EXCEL 2000  | Microsoft Corporation | 9.0.6926 SP-3 |

**Test Date:** 02/15/2006

**Engineer Initials:** NWA

**Date:** 2/27/06

**Test Engineer:** Nicholas Abbondante

**Reviewer Initials:** JB

**Date:** 02-28-06

**Test Equipment Used:**

| TEST EQUIPMENT LIST |                                    |                      |               |            |               |
|---------------------|------------------------------------|----------------------|---------------|------------|---------------|
| Item                | Equipment Type                     | Make                 | Model No.     | Serial No. | Next Cal. Due |
| 1                   | Small Temperature/Humidity Chamber | Bryant Manufacturing | TH-5S         | 1207       | 04/06/2006    |
| 2                   | DC Power Supply, Programmable      | Kepco                | MBT 75-5M     | F 81015    | Verified      |
| 3                   | Spectrum Analyzer                  | Agilent              | E7405A        | US40240205 | 08/09/2006    |
| 4                   | Digital Multimeter                 | Meterman             | 15XP          | 050407779  | 07/28/2006    |
| 5                   | High Frequency Cable 40Ghz         | Megaphase            | TM40 K1K1 197 | CBL027     | 12/20/2006    |

**Test Details:**

The EUT was tested at nominal voltage (3.7V) and at the battery operating end point, which is 2.9V.

Limit: 100 PPM  
Nominal f: 13.56 MHz

Nominal V: 3.7 VDC

| %        | Voltage Volts | Frequency MHz | Deviation kHz | Limit kHz |
|----------|---------------|---------------|---------------|-----------|
| +0%      | 3.7           | 13.55850      | 13558.5       | 1.36      |
| Endpoint | 2.9           | 13.55800      | 13558         | 1.36      |

| Temperature Celsius | Frequency MHz | Deviation kHz | Limit kHz |
|---------------------|---------------|---------------|-----------|
| -20                 | 13.55900      | 0.5           | 1.36      |
| -10                 | 13.55900      | 0.5           | 1.36      |
| 0                   | 13.55900      | 0.5           | 1.36      |
| 10                  | 13.55900      | 0.5           | 1.36      |
| 20                  | 13.55850      | 0             | 1.36      |
| 30                  | 13.55850      | 0             | 1.36      |
| 40                  | 13.55900      | 0.5           | 1.36      |
| 50                  | 13.55850      | 0             | 1.36      |