

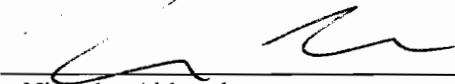
EMISSIONS TEST REPORT

Report Number: 3079725.EMI
Project Number: 3079725

Testing performed on the
Model: Freelinc Wireless Headset System

to

FCC Part 15 Subpart C 15.225


For

Radeum

Test Performed by:
Intertek – ETL SEMKO
70 Codman Hill Road
Boxborough, MA 01719

Test Authorized by:
Radeum
2144 S. Highland Drive Suite #160
Salt Lake City, UT, 84106

Prepared by:

Nicholas Abbondante

Date:

10/10/05

Reviewed by:

Michael F. Murphy

Date:

10/10/05

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

1.0 Job Description

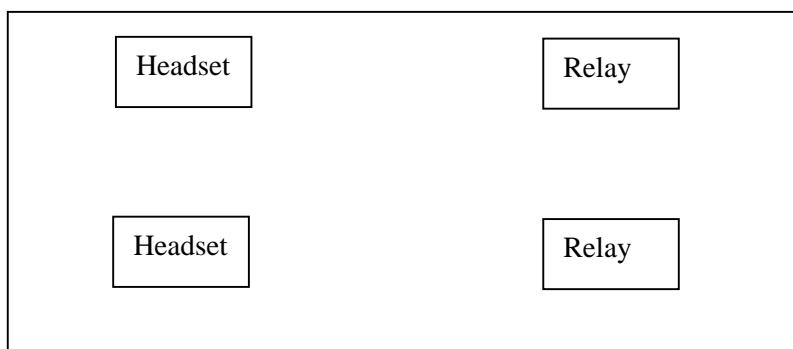
1.1 Client Information

This EUT has been tested at the request of

Company: Radeum
2144 S. Highland Drive Suite #160
Salt Lake City, UT, 84106

Contact: John Lair
Telephone: 801-467-1199
Fax: 801-467-6099

1.2 Equipment Under Test


Equipment Type: Wireless Headset System
Model Number(s): Freelinc Wireless Headset System
Serial number(s): BOX0507271156-(001, 003, 005, 007) (ITS assigned)
-001 and -005 are Headsets, -003 and -007 are Relays
Manufacturer: Radeum
EUT receive date: 07/27/2005
EUT received condition: Good
Test start date: 07/28/2005
Test end date: 08/12/2005

1.3 Test Plan Reference: Tested according to the standards listed and ANSI C63.4-2003.

1.4 Test Configuration

1.4.1 Block Diagram

The EUT set must be in the proximity of another EUT set in order to trigger transmission at 13.956 MHz in addition to the normal 13.56 MHz transmission. The Headset and Relay must be ~1.1 meters apart maximum, and the two systems must be ~0.5 meters apart.

Turntable

1.4.2 Cable List:

Cable	Shielding	Connector	Length (m)	Qty.
None				

1.4.3 Support Equipment:

Name: None
Model No.:
Serial No.:

1.5 Mode of Operation:

The EUT was activated from a fresh, charged battery in transmit mode. The EUT software disables transmission while in charge mode, so this mode was not tested to the transmitter requirements.

2.0 Test Summary

TEST STANDARD	RESULTS	
FCC Part 15 Subpart C 15.225		
SUB-TEST	TEST PARAMETER	COMMENT
FCC Parts 15.205, 15.209, 15.215, 15.225 RF Output Power and Radiated and Restricted Band Emissions	Emissions below specified limits	Pass
FCC Part 15.207 Line-Conducted Emissions	Emissions below specified limits	Pass
FCC Parts 15.225 Frequency Stability	Frequency drift must not exceed $\pm 0.01\%$	Pass
FCC Parts 15.205 Occupied Bandwidth and Restricted Bands	The 20dB bandwidth must not extend into or drift into the restricted bands	Pass

3.0 Sample Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$RA = 52.0 \text{ dB}\mu\text{V}$

$AF = 7.4 \text{ dB}/\text{m}$

$CF = 1.6 \text{ dB}$

$AG = 29.0 \text{ dB}$

$FS = 32 \text{ dB}\mu\text{V}/\text{m}$

$$\text{Level in } \mu\text{V}/\text{m} = [10(32 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

The following is how net line-conducted readings were determined:

$$NF = RF + LF + CF + AF$$

Where NF = Net Reading in $\text{dB}\mu\text{V}$

RF = Reading from receiver in $\text{dB}\mu\text{V}$

LF = LISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from $\text{dB}\mu\text{V}$ to μV or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

Example:

$$NF = RF + LF + CF + AF = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$$

$$UF = 10^{(49.1 \text{ dB}\mu\text{V}/20)} = 254 \mu\text{V}/\text{m}$$

3.1 Measurement Uncertainty

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes.

The expanded uncertainty ($k = 2$) for radiated emissions from 30 to 1000 MHz has been determined to be:
 ± 3.5 dB at 10m, ± 3.8 dB at 3m

The expanded uncertainty ($k = 2$) for mains conducted emissions from 150 kHz to 30 MHz has been determined to be:

± 2.6 dB

The expanded uncertainty ($k = 2$) for telecom port conducted emissions from 150 kHz to 30 MHz has been determined to be:

± 3.2 for ISN and voltage probe measurements
 ± 3.1 for current probe measurements

3.2 Site Description

Test Site(s): 2, Field Behind Site 2

Our OATS are 3m and 10m sheltered emissions measurement ranges located in a light commercial environment in Boxborough, Massachusetts. They meet the technical requirements of ANSI C63.4-2003 and CISPR 22:1993/EN 55022:1994 for radiated and conducted emission measurements. The shelter structure is entirely fiberglass and plastic, with outside dimensions of 33 ft x 57 ft. The structure resembles a quonset hut with a center ceiling height of 16.5 ft.

The testing floor is covered by a galvanized sheet metal groundplane that is earth-grounded via copper rods around the perimeter of the site. The joints between individual metal sheets are bridged with a 2 inch wide metal strips to provide low RF impedance contact throughout. The sheets are screwed in place with stainless steel, round-head screws every three inches. Site illumination and HVAC are provided from beneath the ground reference plane through flush entry ports, the port covers are electrically bonded to the ground plane.

A flush metal turntable with 12 ft. diameter and 5000 lb. load capacity (12,000 lb. in Site 3) is provided for floor-standing equipment. A wooden table 80 cm high is used for table-top equipment. The turntable is electrically connected to the ground plane with three copper straps. The straps are connected to the turntable at the center of it with ground braid. The copper strap is directly connected to the groundplane at the edges of the turntable. The turntable is located on the south end of the structure and the antennas are mounted 3 and 10 meters away to the north. The antenna mast is a non-conductive with remote control of antenna height and polarization. The antenna height is adjustable from 1 to 4 meters.

All final radiated emission measurements are performed with the testing personnel and measurement equipment located below the ground reference plane. The site has a full basement underneath the turntable where support equipment may be remotely located. Operation of the antenna, turntable and equipment under test is controlled by remote controls that manipulate the antenna height and polarization and with a turntable control. Test personnel are located below the ellipse when measurements are performed, however the site maintains the ability of having personnel manipulate cables while monitoring test equipment. Ambient radiated emissions are 6 dB or more below the relevant FCC emission limits.

AC mains power is brought to the equipment under test through a power line filter, to remove ambient conducted noise. 50 Hz (240 VAC single phase), 60 Hz power (120 VAC single phase, 208 VAC three phase), and 60 Hz (480 VAC three phase) are available. Conducted emission measurements are performed with a Line Impedance Stabilization Network (LISN) or Artificial Mains Network (AMN) bonded to the ground reference plane. A removable vertical groundplane (2 meter X 2 meter area) is used for line-conducted measurements for table top equipment. The vertical groundplane is electrically connected to the reference groundplane.

The EMC Lab has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference groundplanes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Test Results: Pass**Test Standard:** FCC Parts 15.205, 15.209, 15.225**Test:** RF Output Power and Radiated and Restricted Band Emissions**Performance Criterion:** RF Output Power is subject to the limits set forth in FCC Part 15.225, Spurious Emissions up to the tenth harmonic and in restricted bands are subject to the limits set forth in FCC Part 15.209. Spurious emissions must not exceed the fundamental field strength.**Test Environment:**

See Data Tables

Maximum Test Disturbance Parameters: Emissions must not exceed specified limits.**Software:**

Name	Manufacturer	Version
EXCEL 2000	Microsoft Corporation	9.0.6926 SP-3
EMI BOXBOROUGH	Intertek	2/07/05 Revision

Test Date: 07/29/2005 and 08/10/2005 **Engineer Initials:** NNA **Date:** 10/10/05
Test Engineer: Nicholas Abbondante **Reviewer Initials:** NFM **Date:** 10/10/05**Test Equipment Used:**

Intertek ID	Manufacturer	Model	Serial Number	Cal. Due
BAR2	Mannix	0ABA116	BAR2	08/02/2006
LOG2	EMCO	3142	9711-1223	12/13/2005
-	Agilent	E7405A	US39150114	07/29/2005*
ROS002	Rohde & Schwarz	ESCI	100067	11/25/2005
CBL022	Belden	RG-58/U	CBL022	11/17/2005
LOOP 145-019	EMCO	6502/1	9902-3267	01/26/2006
S2, 10M FLR	ITS	RG-214B/U	S2, 10M FLR	09/15/2005

* - used only for the 07/29/2005 testing

Test Details:

Radiated Emissions / Interference

Company: Radeum
 Engineer: Nicholas Abbondante Barometer: BAR2
 Project #: 3079725 Pressure: 1004mB
 Date: 08/10/05 Temp: 27c
 Standard: FCC Part 15.225 Humidity: 60%
 Class: - Group: -
 Antenna Band: LF Bands: N, LF, HF, SHF SHF Antenna: NONE.
 PreAmp: NONE. HF Antenna: NONE. NONE.
 Limit Distance: 30 meters Test Distance: 3 meters Location: Site 2 Field
 Voltage/Frequency: Fresh Battery Frequency Range: 150 kHz - 30 MHz
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
QP	V	13.560	41.0	10.5	0.4	0.0	40.0	11.9	84.0	-72.1	9/30 kHz
QP	V	13.552	36.2	10.5	0.4	0.0	40.0	7.1	50.5	-43.4	9/30 kHz
QP	V	13.568	32.2	10.5	0.4	0.0	40.0	3.1	50.5	-47.4	9/30 kHz
QP	V	13.509	37.4	10.5	0.4	0.0	40.0	8.2	50.5	-42.3	9/30 kHz
QP	V	13.611	40.8	10.5	0.4	0.0	40.0	11.7	50.5	-38.8	9/30 kHz
QP	V	13.458	27.1	10.5	0.4	0.0	40.0	-2.0	50.5	-52.5	9/30 kHz
QP	V	13.662	32.0	10.5	0.4	0.0	40.0	2.9	50.5	-47.6	9/30 kHz
QP	V	13.409	6.5	10.5	0.4	0.0	40.0	-22.6	40.5	-63.1	9/30 kHz
QP	V	13.711	17.4	10.5	0.4	0.0	40.0	-11.7	40.5	-52.2	9/30 kHz
QP	V	27.120	1.4	9.5	0.6	0.0	40.0	-28.5	29.5	-58.0	9/30 kHz
QP	V	13.956	34.4	10.5	0.4	0.0	40.0	5.3	29.5	-24.2	9/30 kHz
QP	V	27.912	1.8	9.5	0.6	0.0	40.0	-28.1	29.5	-57.6	9/30 kHz

Transmit Mode, 13.56 and 13.956 MHz fundamentals

Radiated Emissions / Interference

Company: Radeum
 Engineer: Nicholas Abbondante Barometer: N/A
 Project #: 3079725 Pressure: N/A
 Date: 07/28/05 Temp: N/A
 Standard: FCC Part 15.209 Humidity: N/A
 Model #: Freelinc Wireless Headset System
 Class: - Group: - HF Antenna: NONE. NONE.
 Antenna Band: N Bands: N, LF, HF, SHF SHF Antenna: NONE. NONE.
 PreAmp: NONE. Cable(s): Site2, 10M Floor 9-15-05.cbl NONE.
 Limit Distance: 3 meters Test Distance: 3 meters Location: Site 2
 Voltage/Frequency: Fresh Battery Frequency Range: 30 - 1000 MHz
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
QP	V	40.680	0.6	11.3	1.0	0.0	0.0	12.9	40.0	-27.1	120/300 kHz
QP	V	108.480	-1.7	7.6	1.6	0.0	0.0	7.5	43.5	-36.0	120/300 kHz
QP	V	122.040	-0.7	6.8	1.7	0.0	0.0	7.8	43.5	-35.7	120/300 kHz
QP	V	135.600	0.1	7.1	1.8	0.0	0.0	9.0	43.5	-34.5	120/300 kHz
QP	V	41.868	-0.2	10.9	1.0	0.0	0.0	11.7	40.0	-28.3	120/300 kHz
QP	V	83.736	-0.3	7.2	1.4	0.0	0.0	8.4	40.0	-31.6	120/300 kHz
QP	H	111.200	1.8	7.5	1.6	0.0	0.0	10.9	43.5	-32.6	120/300 kHz
QP	V	125.900	12.7	6.7	1.7	0.0	0.0	21.2	43.5	-22.3	120/300 kHz
QP	V	140.400	5.2	7.5	1.9	0.0	0.0	14.6	43.5	-28.9	120/300 kHz
QP	V	326.700	9.3	14.5	3.0	0.0	0.0	26.7	46.0	-19.3	120/300 kHz
QP	V	336.300	19.7	14.8	3.1	0.0	0.0	37.6	46.0	-8.4	120/300 kHz
QP	V	340.300	15.8	15.0	3.1	0.0	0.0	33.8	46.0	-12.2	120/300 kHz
QP	V	347.700	12.9	15.2	3.1	0.0	0.0	31.2	46.0	-14.8	120/300 kHz
QP	V	361.600	8.3	15.6	3.2	0.0	0.0	27.1	46.0	-18.9	120/300 kHz
QP	V	378.300	5.1	16.2	3.3	0.0	0.0	24.6	46.0	-21.4	120/300 kHz
QP	V	394.700	9.9	17.1	3.3	0.0	0.0	30.3	46.0	-15.7	120/300 kHz
QP	V	408.300	13.0	17.2	3.4	0.0	0.0	33.6	46.0	-12.4	120/300 kHz
QP	V	421.800	15.6	16.8	3.5	0.0	0.0	35.8	46.0	-10.2	120/300 kHz
QP	V	435.500	17.3	17.1	3.5	0.0	0.0	37.9	46.0	-8.1	120/300 kHz
QP	V	449.100	16.1	17.7	3.6	0.0	0.0	37.3	46.0	-8.7	120/300 kHz
QP	V	459.300	8.4	17.8	3.6	0.0	0.0	29.8	46.0	-16.2	120/300 kHz
QP	V	462.700	10.8	17.9	3.6	0.0	0.0	32.3	46.0	-13.7	120/300 kHz
QP	V	476.400	12.6	18.0	3.7	0.0	0.0	34.3	46.0	-11.7	120/300 kHz
QP	V	490.000	11.0	18.0	3.8	0.0	0.0	32.8	46.0	-13.2	120/300 kHz

Transmit Mode, 13.56 and 13.956 MHz fundamentals

Radiated Emissions / Interference

Company: Radeum
 Engineer: Nicholas Abbondante Barometer: BAR2
 Project #: 3079725 Pressure: 1004mB
 Date: 08/10/05 Temp: 27c
 Standard: FCC Part 15.215 Humidity: 60%
 Class: - Group: - HF Antenna: NONE. NONE.
 Antenna Band: LF Bands: N, LF, HF, SHF SHF Antenna: NONE. NONE.
 PreAmp: NONE. Cable(s): CBL022 11-17-2005.cbl NONE.
 Limit Distance: - meters Test Distance: 3 meters Location: Site 2 Field
 Voltage/Frequency: Fresh Battery Frequency Range: 150 kHz - 30 MHz
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
QP	V	13.560	41.0	10.5	0.4	0.0	0.0	51.9	-	-	9/30 kHz
QP	V	13.552	36.2	10.5	0.4	0.0	0.0	47.1	51.9	-4.7	9/30 kHz
QP	V	13.568	32.2	10.5	0.4	0.0	0.0	43.1	51.9	-8.7	9/30 kHz
QP	V	13.509	37.4	10.5	0.4	0.0	0.0	48.2	51.9	-3.6	9/30 kHz
QP	V	13.611	40.8	10.5	0.4	0.0	0.0	51.7	51.9	-0.2	9/30 kHz
QP	V	13.458	27.1	10.5	0.4	0.0	0.0	38.0	51.9	-13.9	9/30 kHz
QP	V	13.662	32.0	10.5	0.4	0.0	0.0	42.9	51.9	-9.0	9/30 kHz
QP	V	13.409	6.5	10.5	0.4	0.0	0.0	17.4	51.9	-34.5	9/30 kHz
QP	V	13.711	17.4	10.5	0.4	0.0	0.0	28.3	51.9	-23.6	9/30 kHz
QP	V	27.120	1.4	9.5	0.6	0.0	0.0	11.5	51.9	-40.3	9/30 kHz
QP	V	13.956	34.4	10.5	0.4	0.0	0.0	45.3	-	-	9/30 kHz
QP	V	27.912	1.8	9.5	0.6	0.0	0.0	11.9	45.3	-33.4	9/30 kHz

Transmit Mode, 13.56 and 13.956 MHz fundamentals. Field strength at 3m for comparison of spurious with fundamental field strength.

Radiated Emissions / Interference

Company: Radeum
 Engineer: Nicholas Abbondante Barometer: N/A
 Project #: 3079725 Pressure: N/A
 Date: 07/28/05 Temp: N/A
 Standard: FCC Part 15.215 Humidity: N/A
 Class: - Group: - HF Antenna: NONE. Model #: Freelinc Wireless Headset System
 Antenna Band: N Bands: N, LF, HF, SHF SHF Antenna: NONE. Serial #: BOX0507271156-(001, 003, 005, 007) (ITS assigned)
 PreAmp: NONE. N Antenna: LOG2 12-13-05 V10.txt LOG2 12-13-05 H10.txt
 Limit Distance: - meters Test Distance: 3 meters Location: Site 2
 Voltage/Frequency: Fresh Battery Frequency Range: 30 - 1000 MHz
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
QP	V	40.680	0.6	11.3	1.0	0.0	0.0	12.9	51.9	-39.0	120/300 kHz
QP	V	108.480	-1.7	7.6	1.6	0.0	0.0	7.5	51.9	-44.4	120/300 kHz
QP	V	122.040	-0.7	6.8	1.7	0.0	0.0	7.8	51.9	-44.1	120/300 kHz
QP	V	135.600	0.1	7.1	1.8	0.0	0.0	9.0	51.9	-42.9	120/300 kHz
QP	V	41.868	-0.2	10.9	1.0	0.0	0.0	11.7	45.3	-33.6	120/300 kHz
QP	V	83.736	-0.3	7.2	1.4	0.0	0.0	8.4	45.3	-37.0	120/300 kHz
QP	H	111.200	1.8	7.5	1.6	0.0	0.0	10.9	45.3	-34.4	120/300 kHz
QP	V	125.900	12.7	6.7	1.7	0.0	0.0	21.2	45.3	-24.1	120/300 kHz
QP	V	140.400	5.2	7.5	1.9	0.0	0.0	14.6	45.3	-30.8	120/300 kHz
QP	V	326.700	9.3	14.5	3.0	0.0	0.0	26.7	45.3	-18.6	120/300 kHz
QP	V	336.300	19.7	14.8	3.1	0.0	0.0	37.6	45.3	-7.7	120/300 kHz
QP	V	340.300	15.8	15.0	3.1	0.0	0.0	33.8	45.3	-11.5	120/300 kHz
QP	V	347.700	12.9	15.2	3.1	0.0	0.0	31.2	45.3	-14.1	120/300 kHz
QP	V	361.600	8.3	15.6	3.2	0.0	0.0	27.1	45.3	-18.2	120/300 kHz
QP	V	378.300	5.1	16.2	3.3	0.0	0.0	24.6	45.3	-20.8	120/300 kHz
QP	V	394.700	9.9	17.1	3.3	0.0	0.0	30.3	45.3	-15.0	120/300 kHz
QP	V	408.300	13.0	17.2	3.4	0.0	0.0	33.6	45.3	-11.7	120/300 kHz
QP	V	421.800	15.6	16.8	3.5	0.0	0.0	35.8	45.3	-9.5	120/300 kHz
QP	V	435.500	17.3	17.1	3.5	0.0	0.0	37.9	45.3	-7.4	120/300 kHz
QP	V	449.100	16.1	17.7	3.6	0.0	0.0	37.3	45.3	-8.0	120/300 kHz
QP	V	459.300	8.4	17.8	3.6	0.0	0.0	29.8	45.3	-15.5	120/300 kHz
QP	V	462.700	10.8	17.9	3.6	0.0	0.0	32.3	45.3	-13.0	120/300 kHz
QP	V	476.400	12.6	18.0	3.7	0.0	0.0	34.3	45.3	-11.0	120/300 kHz
QP	V	490.000	11.0	18.0	3.8	0.0	0.0	32.8	45.3	-12.6	120/300 kHz

Transmit Mode, 13.56 and 13.956 MHz fundamentals. Field strength at 3m for comparison of spurious with fundamental field strength. Note that the spurious emissions above the tenth harmonic were compared to the lower of the two fundamental field strengths.

Setup Photos

Test Results: Pass**Test Standard:** FCC Part 15.207**Test:** Line-conducted Emissions**Performance Criterion:** N/A, EUT is battery powered**Test Environment:**

See Data Table

Maximum Test Disturbance Parameters: Emissions must not exceed specified limits**Software:**

Name	Manufacturer	Version
EXCEL 2000	Microsoft Corporation	9.0.6926 SP-3
EMI BOXBOROUGH	Intertek	2/07/05 Revision

Test Date: N/A**Engineer Initials:** ~~~ **Date:** 10/05/05**Test Engineer:** N/A**Reviewer Initials:** MFH **Date:** 10/05/05**Test Equipment Used:**

Intertek ID	Manufacturer	Model	Serial Number	Cal. Due
Test not performed, EUT is battery powered				

Test Details:

Test not performed, EUT is battery powered

Setup Photos

Test not performed, EUT is battery powered

Test Results: Pass

Test Standard: FCC Parts 15.225

Test: Frequency Stability

Performance Criterion: The EUT must meet the requirements of FCC Part 15.225

Test Environment:

Temp: 22°C

Humidity: 52%

Pressure: 1005 mbar

Maximum Test Disturbance Parameters: Frequency drift shall not exceed $\pm 0.01\%$

Software:

Description	Manufacturer	Version
EXCEL 2000	Microsoft Corporation	9.0.6926 SP-3

Test Date: 08/12/2005

Engineer Initials: nna **Date:** 10/10/05

Test Engineer: Nicholas Abbondante

Reviewer Initials: NFM **Date:** 10/10/05

Test Equipment Used:

Intertek ID	Manufacturer	Model	Serial Number	Cal. Due
CBL022	Belden	RG-58/U	CBL022	11/17/2005
SAF312	Mannix	0ABA116	SAF312	04/26/2006
ROS002	Rohde & Schwarz	ESCI	100067	11/25/2005
SAF187	Bryant Manufacturing	TH-5S	1207	04/06/2006
MET2	Meterman	15XP	050407779	07/28/2006
LOOP 145-019	EMCO	6502/1	9902-3267	01/26/2006
KEP2	Kepco	MBT 75-5M	F 81015	Verified

Test Details:

Channels Freq MHz Relay Voltage: 9VDC
 Channel 1 13.56 Headset Voltage: 4VDC
 Channel 2 13.956 (not tested)
 Passband: 13.56 - 13.956 MHz

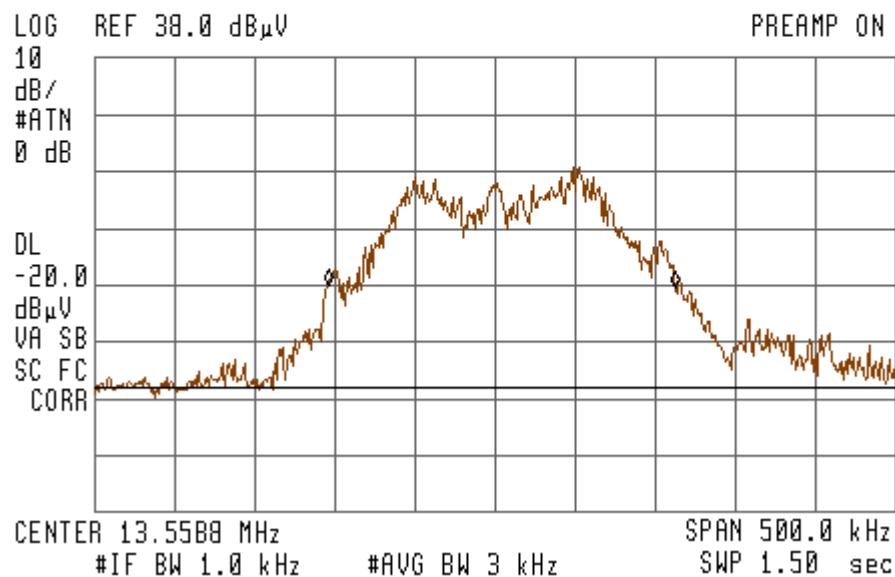
Power measurements in this test are relative and do not represent actual power of EUT, the measurement was performed to show relative power drift only

Frequency and Power Stability over Voltage & Temperature 8/12/05 performed by Nicholas Abbondante							
Temp	Freq MHz	Deviation, Hz	Deviation, MHz	PPM	Limit, Hz	Power dBuV	Deviation, dB
-20	13.508418	-62	-0.000062	-4.59	1350.85	62.70	2.80
-10	13.509388	908	0.000908	67.21	1350.85	58.60	-1.30
0	13.508420	-60	-0.000060	-4.44	1350.85	60.70	0.80
10	13.508496	16	0.000016	1.18	1350.85	59.76	-0.14
20	13.508480	0	0.000000	0.00	1350.85	59.90	0.00
30	13.508458	-22	-0.000022	-1.63	1350.85	62.50	2.60
40	13.508740	260	0.000260	19.25	1350.85	60.20	0.30
50	13.509144	664	0.000664	49.15	1350.85	64.20	4.30
Voltage	Freq MHz	Deviation, Hz	Deviation, MHz	PPM	Limit, Hz	Power dBuV	Deviation, dB
3.6 & 8.1 VDC	13.509390	910	0.000910	67.36	1350.85	60.60	0.70
4 & 9 VDC	13.508480	0	0.000000	0.00	1350.85	59.90	0.00
3.4 & 7.65 VDC	13.509550	1070	0.001070	79.20	1350.85	60.20	0.30

Test Results: Pass**Test Standard:** FCC Parts 15.205**Test:** Occupied Bandwidth and Restricted Bands**Performance Criterion:** The 20dB bandwidth must not extend into or drift into the restricted bands**Test Environment:**

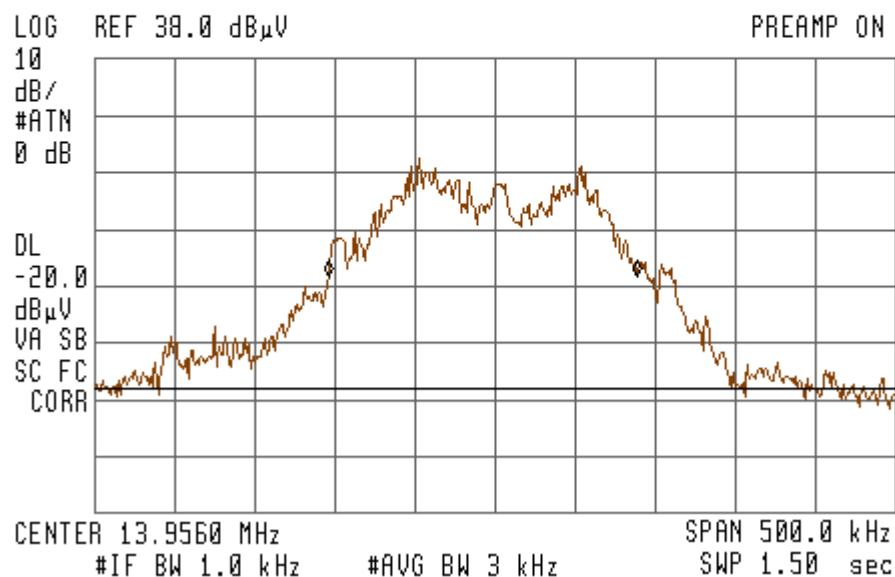
N/A

Maximum Test Disturbance Parameters: There is no limit on 20dB bandwidth**Test Date:** 08/10/2005**Engineer Initials:** NNN **Date:** 08/10/05**Test Engineer:** Nicholas Abbondante**Reviewer Initials:** MFN **Date:** 10/10/05**Test Equipment Used:**


Intertek ID	Manufacturer	Model	Serial Number	Cal. Due
REC2	Hewlett Packard	8542E	3520A00125	02/08/2006
RECFL2	Hewlett Packard	85420E	3427A00126	02/08/2006

Test Details:

The maximum 20dB bandwidth is 216.3 kHz, and the frequency drift measured is 908 Hz. The nearest restricted bands are located at 13.36-13.41 MHz and 16.42-16.423 MHz. Devices tested to FCC Part 15.225 are exempted from the restricted band requirements for the 13.36-13.41 MHz band, therefore the nearest restricted band below the fundamental frequency is 12.57675-12.57725 MHz. Since the fundamental at nominal temperature and voltage is centered at 13.508480 MHz for channel 1 and at 13.910640 MHz for channel 2, the fundamental will not ever extend beyond 13.399422-14.011698 MHz.


16:26:02 10 AUG 2005

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKRA 216.3 kHz
-.25 dB

16:42:32 10 AUG 2005

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKRA 192.5 kHz
-.23 dB

