Test Report

Serial No: RFI/SARE2/RP72510JD03A

Page: 20 of 46

Issue Date: 27 July 2007

Test of: GE Security

ActiveKey

To: OET Bulletin 65 Supplement C:2001-01

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1094	Digital Camera	Sony	MVC - FD81	125805	Calibration not required	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223 -30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1182	Handset Positioner	Schmid & Partners	V3.0	None	Calibration not required	-
A1184	Data Acquisition Electronics	Schmid & Partner	DAE3	394	24 May 2007	12
A1186	Probe	Schmid & Partners	ET3 DV6	1529	30 Aug 2006	12
A1235	900MHz Dipole	Schmid & Partners	D900V2	124	31 Aug 2005	24
A1237	1900MHz Dipole	Schmid & Partners	D1900V2	540	11 June 2007	24
A1238	SAM Phantom	Schmid & Partners	001	001	Calibrated before use	-
A1287	Power head	Rohde & Schwarz	URY-Z4	880 174/12	02 Oct 2006	12
A1410	DC-4.0GHz 3dB	Omni Spectra	FSC 16179	20510-3	Calibrated as part of system	-
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	SPEAG	002	002	Calibrated before use	-
A215	20 dB Attenuator to 4GHz 20W	Narda	766-20	9402	Calibrated as part of system	-

RFI GLOBAL SERVICES LTD

Test Report

Serial No: RFI/SARE2/RP72510JD03A

Page: 21 of 46

Issue Date: 27 July 2007

Test of: GE Security ActiveKey

To: OET Bulletin 65 Supplement C:2001-01

Test Equipment Used (Continued)

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
C1144	155 mm UTIFLEX Cable	Rosenberger MICRO-COAX	FA147AF 00150303 0	41842-1	Calibrated as part of system	-
C1145	300 mm UTIFLEX Cable	Rosenberger MICRO-COAX	FA147AF 00300303 0	41843-1	Calibrated as part of system	-
C1146	3 m UTIFLEX Cable	Rosenberger MICRO-COAX	FA147AF 03000303 0	41752-1	Calibrated as part of system	-
G051	10 MHz to 20.1 GHz	Gigatronics	7100/.01- 20	749472	06 Nov 2006	12
G0528	Robot Power Supply	Schmid & Partner	DASY	None	Calibrated before use	-
G087	Dual 35V 10A	Thurlby Thandar	CPX200	100701	Calibration not required	-
M095	URY Power Meter	Rohde & Schwarz	URY	891 491/078	12 Dec 2006	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	19 Sep 2006	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/ A/01	Calibrated before use	-
M1069	Power Head	Rohde & Schwarz	NRV-Z2	838824/010	19 Apr 2007	12
M136	4 Display Digital Version	RS Components	None	None	19 Apr 2007	12
M509	High Accuracy Digital Thermometer	Testo	110	4037880043 3	20 Apr 2007	12
S256	SAR Laboratory	RFI	N/A	Site56	Calibrated before use	-

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule. All equipment was within calibration at the time of the test.

RFI GLOBAL SERVICES LTD

Test Report

Serial No: RFI/SARE2/RP72510JD03A

Page: 22 of 46

Issue Date: 27 July 2007

Test of: GE Security ActiveKey

To: OET Bulletin 65 Supplement C:2001-01

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

A1186 Checked 07/09/06

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: ET3-1529 Aug06

CALIBRATION	CERTIFICATE
-------------	-------------

Object

ET3DV6 - SN:1529

Calibration procedure(s)

QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date:

August 30, 2006

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
ID#	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov 06
Name	Function	Signature
Katja Pokovic	Technical Manager	Der - Hot
Niels Kuster	Quality Manager X	115-
	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name Katja Pokovic	GB41293874 5-Apr-06 (METAS, No. 251-00557) MY41495277 5-Apr-06 (METAS, No. 251-00557) MY41498087 5-Apr-06 (METAS, No. 251-00557) SN: S5054 (3c) 10-Aug-06 (METAS, No. 217-00592) SN: S5086 (20b) 4-Apr-06 (METAS, No. 251-00558) SN: S5129 (30b) 10-Aug-06 (METAS, No. 217-00593) SN: 3013 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) SN: 654 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) ID # Check Date (in house) US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) US37390585 18-Oct-01 (SPEAG, in house check Nov-05) Name Function Katja Pokovic Technical Manager

Issued: August 30, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1529 Aug06

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space ConF sensitivity in TSL / NOR

ConF sensitivity in TSL / NORMx,y,z DCP diode compression point ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1529_Aug06 Page 2 of 9

August 30, 2006

ET3DV6 SN:1529

Probe ET3DV6

SN:1529

Manufactured:

March 21, 2000

Last calibrated:

September 2, 2005

Recalibrated:

August 30, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

August 30, 2006 ET3DV6 SN:1529

DASY - Parameters of Probe: ET3DV6 SN:1529

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP X	99 mV
NormY	1.92 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	1.74 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.6	4.3
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

TSL

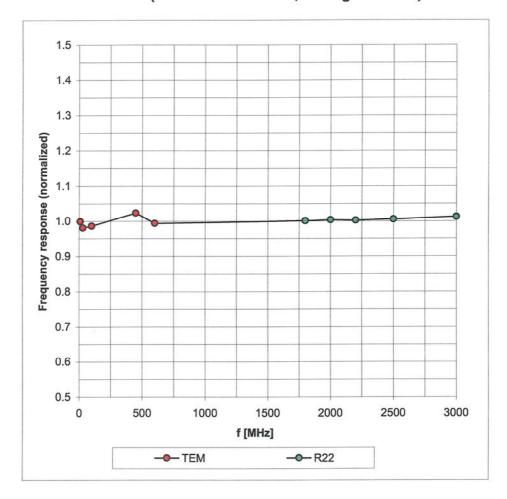
1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.8	7.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

Sensor Offset

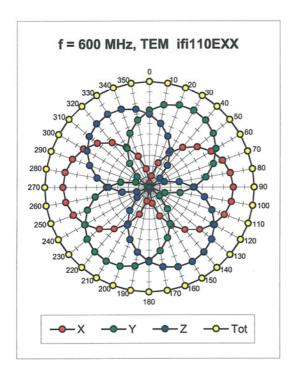
Probe Tip to Sensor Center

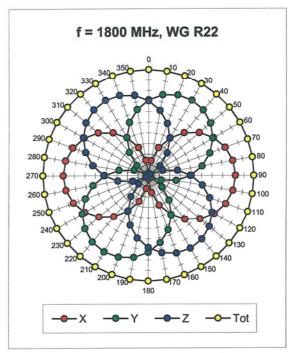
2.7 mm

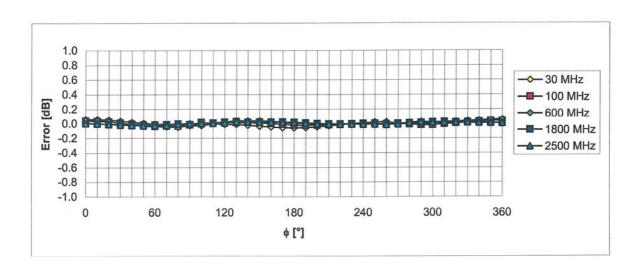

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

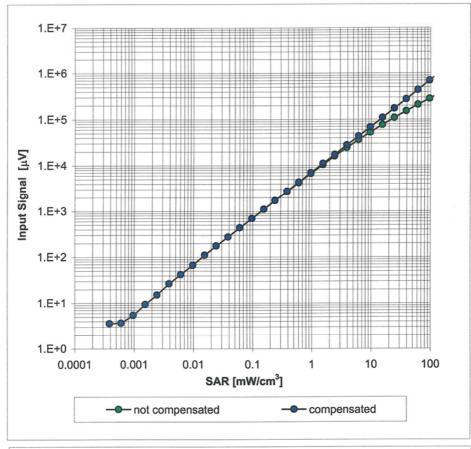

Frequency Response of E-Field

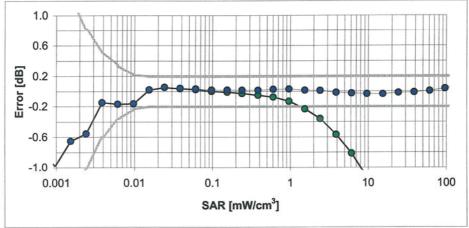

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

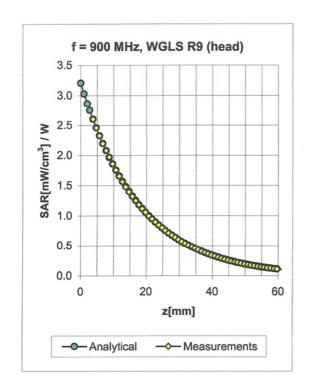
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

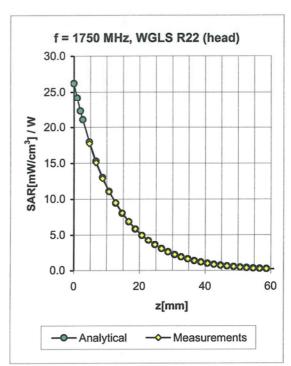




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

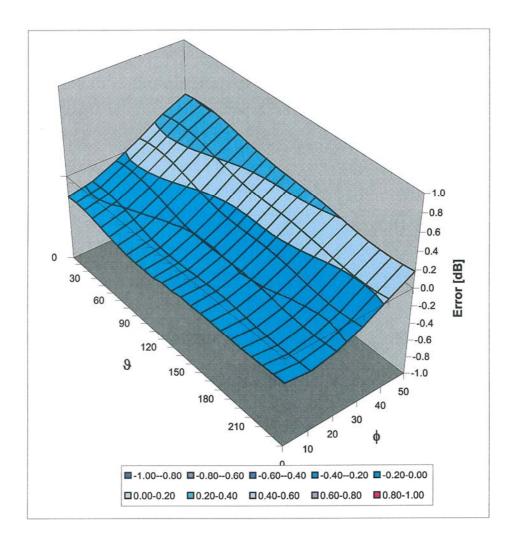
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.64	1.72	6.42 ± 11.0% (k=2)
± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.75	1.64	6.23 ± 11.0% (k=2)
± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.55	2.51	5.01 ± 11.0% (k=2)
± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.56	2.68	4.87 ± 11.0% (k=2)
± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.93	1.59	4.32 ± 11.8% (k=2)
± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.47	2.11	6.16 ± 11.0% (k=2)
± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.52	2.05	6.06 ± 11.0% (k=2)
± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.58	2.89	4.54 ± 11.0% (k=2)
± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.68	2.53	4.44 ± 11.0% (k=2)
± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.82	1.15	4.10 ± 11.8% (k=2)
	± 50 / ± 100 ± 50 / ± 100	± 50 / ± 100 Head ± 50 / ± 100 Body ± 50 / ± 100 Body ± 50 / ± 100 Body ± 50 / ± 100 Body	$\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $\pm 50 / \pm 100$ Head $40.1 \pm 5\%$ $\pm 50 / \pm 100$ Head $40.0 \pm 5\%$ $\pm 50 / \pm 100$ Head $39.2 \pm 5\%$ $\pm 50 / \pm 100$ Body $55.2 \pm 5\%$ $\pm 50 / \pm 100$ Body $55.0 \pm 5\%$ $\pm 50 / \pm 100$ Body $53.4 \pm 5\%$ $\pm 50 / \pm 100$ Body $53.3 \pm 5\%$	$\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $0.90 \pm 5\%$ $\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ $\pm 50 / \pm 100$ Head $40.1 \pm 5\%$ $1.37 \pm 5\%$ $\pm 50 / \pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ $\pm 50 / \pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ $\pm 50 / \pm 100$ Body $55.2 \pm 5\%$ $0.97 \pm 5\%$ $\pm 50 / \pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ $\pm 50 / \pm 100$ Body $53.4 \pm 5\%$ $1.49 \pm 5\%$ $\pm 50 / \pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$	$\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $0.90 \pm 5\%$ 0.64 $\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 0.75 $\pm 50 / \pm 100$ Head $40.1 \pm 5\%$ $1.37 \pm 5\%$ 0.55 $\pm 50 / \pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.56 $\pm 50 / \pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ 0.93 $\pm 50 / \pm 100$ Body $55.2 \pm 5\%$ $0.97 \pm 5\%$ 0.47 $\pm 50 / \pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ 0.52 $\pm 50 / \pm 100$ Body $53.4 \pm 5\%$ $1.49 \pm 5\%$ 0.58 $\pm 50 / \pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.68	$\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $0.90 \pm 5\%$ 0.64 1.72 $\pm 50 / \pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 0.75 1.64 $\pm 50 / \pm 100$ Head $40.1 \pm 5\%$ $1.37 \pm 5\%$ 0.55 2.51 $\pm 50 / \pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.56 2.68 $\pm 50 / \pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ 0.93 1.59 $\pm 50 / \pm 100$ Body $55.2 \pm 5\%$ $0.97 \pm 5\%$ 0.47 2.11 $\pm 50 / \pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ 0.52 2.05 $\pm 50 / \pm 100$ Body $53.4 \pm 5\%$ $1.49 \pm 5\%$ 0.58 2.89 $\pm 50 / \pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.68 2.53

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

A1237

20/06/07

NM

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

RF

Certificate No: D1900V2-540 Jun07

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 540

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

June 11, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ET3DV6	SN: 1507	19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Oct-07
Reference Probe ES3DV3	SN: 3025	19-Oct-06 (SPEAG, No. ES3-3025_Oct06)	Oct-07
DAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
		-	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	

Katja Pokovic

Technical Manager

Issued: June 14, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540_Jun07

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.46 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.25 mW / g
SAR normalized	normalized to 1W	37.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	36.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.89 mW / g
SAR normalized	normalized to 1W	19.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	19.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Jun07

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.52 mW / g
SAR normalized	normalized to 1W	38.1 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	38.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	-
SAR measured	250 mW input power	5.14 mW / g
SAR normalized	normalized to 1W	20.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Jun07

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9 Ω + 5.1 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 4.8 jΩ
Return Loss	- 25.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D1900V2-540_Jun07

DASY4 Validation Report for Head TSL

Date/Time: 11.06.2007 10:40:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 39.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.97, 4.97, 4.97); Calibrated: 19.10.2006

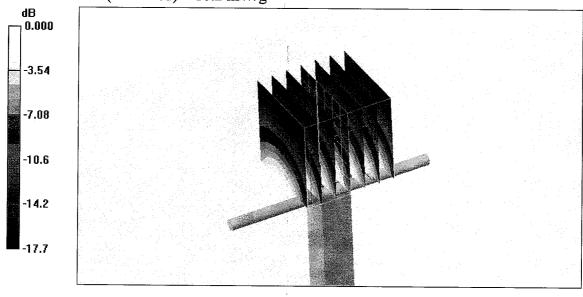
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;

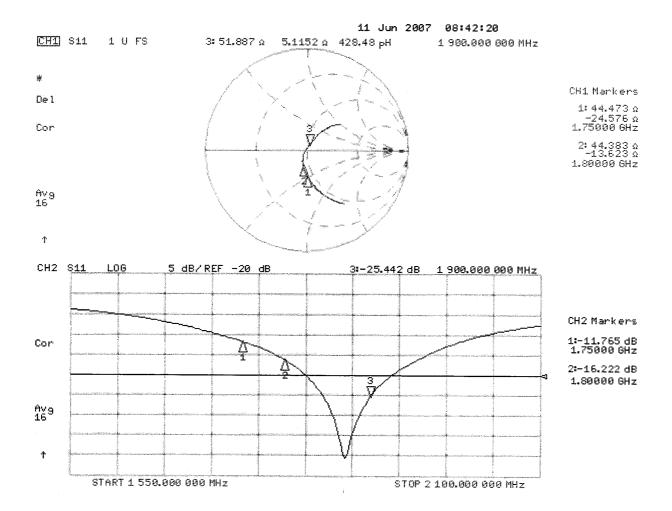
Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.9 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 15.7 W/kg


SAR(1 g) = 9.25 mW/g; SAR(10 g) = 4.89 mW/g

Maximum value of SAR (measured) = 10.2 mW/g

0 dB = 10.2 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 11.06.2007 11:24:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.43, 4.43, 4.43); Calibrated: 19.10.2006

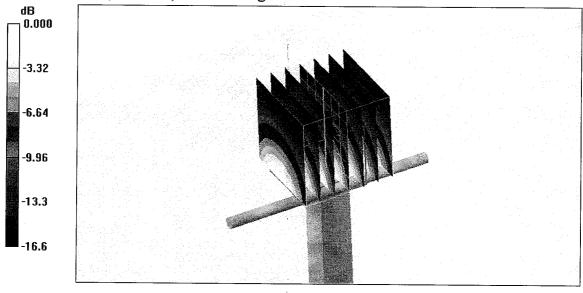
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;

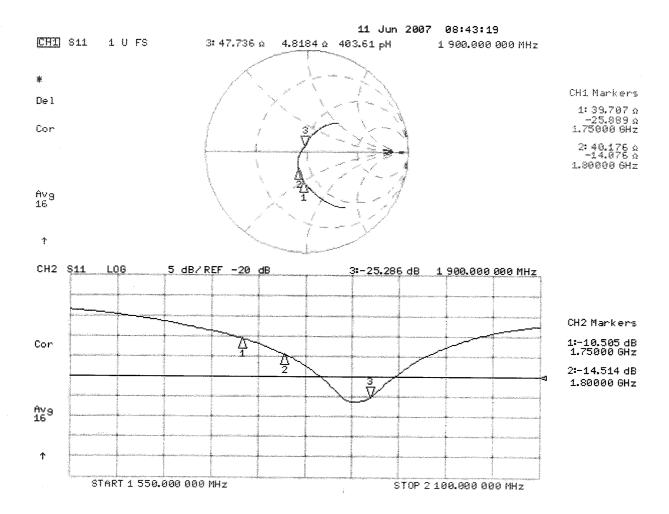
Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.9 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 15.8 W/kg


SAR(1 g) = 9.52 mW/g; SAR(10 g) = 5.14 mW/g

Maximum value of SAR (measured) = 10.6 mW/g

0 dB = 10.6 mW/g

Impedance Measurement Plot for Body TSL

