

# FCC PART 15.407 ISEDC RSS-247, ISSUE 3, AUGUST 2023 TEST REPORT

For

# Roku, Inc.

1173 Coleman Avenue., San Jose, CA 95110, USA

# FCC ID: TC2-R1051 IC: 5959A-R1049

| Report Type:                                                                                                        |                                  | Product Type:     |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|--|--|
| Original                                                                                                            | Report                           | Remote Controller |  |  |
| Prepared By:                                                                                                        | Michael Papa<br>RF Test Engined  | er Michel Run     |  |  |
| Report Number:                                                                                                      | R2310133-407                     |                   |  |  |
| Report Date:                                                                                                        | 2024-02-15                       |                   |  |  |
| Reviewed By:                                                                                                        | Christian McCa<br>RF Lead Engine |                   |  |  |
| Bay Area Compliance Laboratories Corp.<br>1274 Anvilwood Avenue,<br>Sunnyvale, CA 94089, USA<br>Tel: (408) 732-9162 |                                  |                   |  |  |
|                                                                                                                     | Fax: (408                        | 3) 732-9164       |  |  |



Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA\*, NIST, or any agency of the Federal Government.

# TABLE OF CONTENTS

| 1 | GEN                                                         | ERAL DESCRIPTION                                                                                                                                                                                                                                | 5                                                  |
|---|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|   | 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br>1.8        | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)<br>OBJECTIVE<br>MECHANICAL DESCRIPTION OF EUT<br>RELATED SUBMITTAL(S)/GRANT(S)<br>TEST METHODOLOGY<br>MEASUREMENT UNCERTAINTY<br>TEST FACILITY REGISTRATIONS<br>TEST FACILITY ACCREDITATIONS | 5<br>5<br>6<br>6<br>6<br>7                         |
| 2 | SYS                                                         | FEM TEST CONFIGURATION                                                                                                                                                                                                                          | 9                                                  |
|   | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7               | JUSTIFICATION<br>EUT EXERCISE SOFTWARE<br>DUTY CYCLE CORRECTION FACTOR<br>EQUIPMENT MODIFICATION<br>LOCAL SUPPORT EQUIPMENT<br>REMOTE SUPPORT EQUIPMENT<br>INTERFACE PORTS AND CABLING                                                          | 10<br>11<br>14<br>14<br>14                         |
| 3 | SUM                                                         | IMARY OF TEST RESULTS                                                                                                                                                                                                                           | 15                                                 |
| 4 | FCC                                                         | \$15.203 & ISEDC RSS-GEN \$6.8 - ANTENNA REQUIREMENTS                                                                                                                                                                                           | 16                                                 |
|   | 4.1                                                         | APPLICABLE STANDARDS                                                                                                                                                                                                                            |                                                    |
|   | 4.2                                                         | ANTENNA DESCRIPTION                                                                                                                                                                                                                             |                                                    |
| 5 | FCC                                                         | \$15.207& ISEDC RSS-GEN \$8.8 - AC LINE CONDUCTED EMISSIONS                                                                                                                                                                                     |                                                    |
|   | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9 | APPLICABLE STANDARDS                                                                                                                                                                                                                            | 17<br>17<br>18<br>18<br>19<br>19<br>19<br>19<br>20 |
| 6 |                                                             | \$15.209, \$15.407(B) & ISEDC RSS-247 \$6.2 - SPURIOUS RADIATED EMISSIONS                                                                                                                                                                       |                                                    |
|   | 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6<br>6.7<br>6.8<br>6.9 | APPLICABLE STANDARD<br>TEST SETUP<br>TEST PROCEDURE                                                                                                                                                                                             | 24<br>24<br>24<br>25<br>27<br>28<br>28             |
| 7 | FCC                                                         | \$15.407(E) & ISEDC RSS-247 \$6.2 - 6 DB, 26 DB, & 99% - OCCUPIED BANDWIDTH                                                                                                                                                                     | 90                                                 |
|   | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6                      | APPLICABLE STANDARDS<br>MEASUREMENT PROCEDURE<br>TEST SETUP BLOCK DIAGRAM<br>TEST EQUIPMENT LIST AND DETAILS<br>TEST ENVIRONMENTAL CONDITIONS<br>TEST RESULTS                                                                                   | 90<br>90<br>90<br>91                               |

| 8 FC       | CC §407(A) & ISEDC RSS-247 §6.2 - OUTPUT POWER                   |     |
|------------|------------------------------------------------------------------|-----|
| 8.1<br>8.2 | Applicable Standards<br>Measurement Procedure                    |     |
| 8.2<br>8.3 | TEST SETUP BLOCK DIAGRAM                                         |     |
| 8.3<br>8.4 | TEST SETUP BLOCK DIAGRAM<br>TEST EQUIPMENT LIST AND DETAILS      |     |
| 8.5        | TEST EQUI MENT EIST AND DETAILS<br>TEST ENVIRONMENTAL CONDITIONS |     |
| 8.6        | TEST RESULTS                                                     |     |
| 9 FC       | CC §15.407(A) & ISEDC RSS-247 §6.2 - POWER SPECTRAL DENSITY      |     |
| 9.1        | APPLICABLE STANDARDS                                             |     |
| 9.2        | Measurement Procedure                                            |     |
| 9.3        | TEST SETUP BLOCK DIAGRAM                                         |     |
| 9.4        | TEST EQUIPMENT LIST AND DETAILS                                  |     |
| 9.5        | TEST ENVIRONMENTAL CONDITIONS                                    |     |
| 9.6        | TEST RESULTS                                                     | 107 |
| 10 FC      | CC §15.407(H) & ISEDC RSS-247 §6.3 – DYNAMIC FREQUENCY SELECTION | 113 |
| 10.1       | APPLICABLE STANDARDS                                             |     |
| 10.2       | DFS MEASUREMENT SYSTEM                                           |     |
| 10.3       | System Block Diagram                                             |     |
| 10.4       | RADIATED METHOD                                                  |     |
| 10.5       | TEST PROCEDURE                                                   |     |
| 10.6       | TEST EQUIPMENT LIST AND DETAILS                                  |     |
| 10.7       | TEST ENVIRONMENTAL CONDITIONS                                    |     |
| 10.8       | TEST RESULTS                                                     |     |
| 11 Al      | PPENDIX A – EUT TEST SETUP PHOTOGRAPHS                           |     |
| 12 Al      | PPENDIX B –EXTERNAL PHOTOGRAPHS                                  |     |
| 13 Al      | PPENDIX C –INTERNAL PHOTOGRAPHS                                  |     |
| 14 Al      | PPENDIX D (NORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE      |     |
|            |                                                                  |     |

# **DOCUMENT REVISION HISTORY**

| <b>Revision Number</b> | Report Number | Description of Revision | Date of Revision |
|------------------------|---------------|-------------------------|------------------|
| 0                      | R2310133-407  | Original Report         | 2024-02-15       |

#### **1** General Description

#### **1.1 Product Description for Equipment Under Test (EUT)**

This test report was prepared on behalf of *Roku, Inc.*, and their product model: RC-OS1, FCC ID: TC2-R1051, IC: 5959A-R1049, the "EUT" as referred to in this report. The EUT is a Remote Controller.

| Model Number                 | RC-OS1       |
|------------------------------|--------------|
| FCC ID                       | TC2-R1051    |
| IC                           | 5959A-R1049  |
| Radio Type                   | WLAN         |
| Operating Frequency          | 5.15~5.85GHz |
| Modulation                   | OFDM (WLAN)  |
| Channel Spacing              | 20MHz, 40MHz |
| Omnidirectional Antenna Gain | 3.0dBi       |

#### 1.2 Objective

This report was prepared on behalf of *Roku, Inc.*, in accordance with FCC CFR47 §15.407 and ISEDC RSS-247 Issue 3, August 2023.

The objective was to determine compliance with FCC Part 15.407 and ISEDC RSS-247 rules for Output Power, Antenna Requirements, AC Line Conducted Emissions, Emission Bandwidth, Power spectral density, Conducted and Radiated Spurious Emissions.

In order to determine compliance, the manufacturer or a contracted laboratory makes measurements and takes the necessary steps to ensure that the equipment complies with the appropriate technical standards.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the immunity should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing and/or I/O cable changes, etc.).

#### **1.3** Mechanical Description of EUT

**Dimensions:** 140 mm (Length) 45 mm (Width) 15 mm (Height). **Serial Number:** 20EFBDFF4F50 **EUT Photos:** See Attachments Appendix B andC

#### **1.4** Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment Class: DTS with FCC ID: TC2-R1051, IC: 5959A-R1049

#### 1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz, and FCC KDB 789033 D02 General UNII Test Procedure New Rules v02r01.

#### **1.6 Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

| Parameter                         | Measurement uncertainty |
|-----------------------------------|-------------------------|
| Occupied Channel Bandwidth        | ±5 %                    |
| RF output power, conducted        | ±0.57 dB                |
| Power Spectral Density, conducted | ±1.48dB                 |
| Unwanted Emissions, conducted     | ±1.57dB                 |
| All emissions, radiated           | ±4.0 dB                 |
| AC power line Conducted Emission  | ±2.0 dB                 |
| Temperature                       | ±2 ° C                  |
| Humidity                          | ±5 %                    |
| DC and low frequency voltages     | ±1.0 %                  |
| Time                              | ±2 %                    |
| Duty Cycle                        | ±3 %                    |

#### **1.7** Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

#### 1.8 **Test Facility Accreditations**

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3<sup>rd</sup>-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2017 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (\*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report.

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

#### B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):

- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4; 1-
- 2-All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3-All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- All Scope 2-Licensed Personal Mobile Radio Services; 2
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services:
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
  - All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment -1 Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
  - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment - Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
  - All Radio Equipment, per KHCA 10XX-series Specifications; 1
  - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications; 3
    - All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

1

- MIC Telecommunication Business Law (Terminal Equipment):
- All Scope A1 Terminal Equipment for the Purpose of Calls;
- All Scope A2 Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
  - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
  - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
  - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

# C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
  - for Telephony (ver. 3.0)
  - for Audio/Video (ver. 3.0)
  - for Battery Charging Systems (ver. 1.1)
  - for Set-top Boxes & Cable Boxes (ver. 4.1)
  - for Televisions (ver. 6.1)
  - for Computers (ver. 6.0)
  - for Displays (ver. 6.0)
  - for Imaging Equipment (ver. 2.0)
  - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
  - for Commercial Dishwashers (ver. 2.0)
  - for Commercial Ice Machines (ver. 2.0)
  - for Commercial Ovens (ver. 2.1)
  - for Commercial Refrigerators and Freezers
- 3 Lighting Products
  - For Decorative Light Strings (ver. 1.5)
  - For Luminaires (including sub-components) and Lamps (ver. 1.2)
  - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
  - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
  - for Residential Ceiling Fans (ver. 3.0)
  - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

# **D-** A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada ISEDC) Foreign Certification Body FCB APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China Taiwan):
  - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
  - NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
  - EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
  - Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
  - Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
  - ENERGY STAR Recognized Test Laboratory US EPA
  - Telecommunications Certification Body (TCB) US FCC;
  - $\circ$  Nationally Recognized Test Laboratory (NRTL) US OSHA

Vietnam: APEC Tel MRA -Phase I;

# 2 System Test Configuration

#### 2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

Roku, Inc.

#### 2.2 EUT Exercise Software

The test utility used was the "UI\_mptool", provided by *Roku*, *Inc.*, the software is compliant with the standard requirements being tested against.

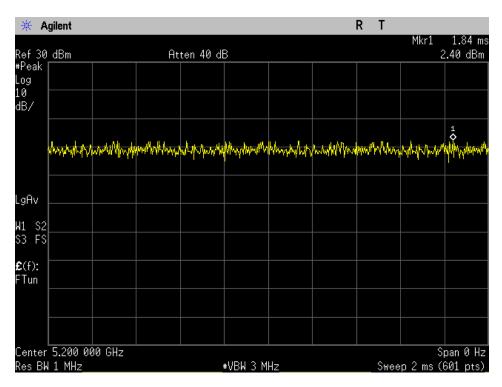
| Radio        | Channel                          | Frequency (MHz) | Modulation                   | Power<br>Setting |
|--------------|----------------------------------|-----------------|------------------------------|------------------|
|              | Low                              | 5180            |                              | 109              |
|              | Middle                           | 5200            |                              | 121              |
|              | High                             | 5240            |                              | 120              |
|              | Low                              | 5260            |                              | 120              |
|              | Middle                           | 5280            |                              | 118              |
|              | Middle                           | 5300            |                              | 118              |
|              | High                             | 5320            |                              | 107              |
|              | Low                              | 5500            | 802.11a                      | 109              |
|              | Middle                           | 5600            |                              | 110              |
|              | Middle                           | 5700            |                              | 112              |
|              | High                             | 5720            |                              | 112              |
|              | Low                              | 5745            |                              | 107              |
|              | Middle                           | 5785            |                              | 107              |
|              | High                             | 5825            |                              | 107              |
|              | Low                              | 5180            |                              | 108              |
|              | Middle                           |                 | 5200<br>5240<br>5260<br>5280 | 122              |
|              | High                             |                 |                              | 119              |
|              | Low                              |                 |                              | 119              |
| 5 GHz Wi-Fi  | Wi-Fi Middle 5280<br>Middle 5300 | 5280            |                              | 119              |
| J OHZ WI-I'I |                                  | 119             |                              |                  |
|              | High                             | 5320            | 802.11n20                    | 104              |
|              | Low                              | 5500            | 002.111120                   | 108              |
|              | Middle                           | 5600            |                              | 109              |
|              | Middle                           | 5700            |                              | 108              |
|              | High                             | 5720            |                              | 108              |
|              | Low                              | 5745            |                              | 107              |
|              | Middle                           | 5785            |                              | 107              |
|              | High                             | 5825            |                              | 107              |
|              | Low                              | 5190            |                              | 103              |
|              | High                             | 5230            |                              | 122              |
|              | Low                              | 5270            |                              | 121              |
|              | High                             | 5310            |                              | 99<br>95         |
|              | Low                              | 5510            | 000 11 40                    |                  |
|              | Middle<br>Middle                 | 5550            | 802.11n40                    | 113              |
|              |                                  | 5590            |                              | 113<br>95        |
|              | Middle<br>High                   | 5670<br>5710    |                              | 95               |
|              | Low                              | 5755            |                              | 95               |
|              | High                             | 5795            |                              | 111              |
| 1            | підіі                            | 5195            |                              | 111              |

Note: 5600-5650MHz range is not applicable for ISED Data Rates Tested: 802.11a mode: 6Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 Roku, Inc.

# 2.3 Duty Cycle Correction Factor

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 section B:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.


| Radio Mode | On Time<br>(ms) | Period<br>(ms) | Duty Cycle<br>(%) | Duty Cycle<br>Correction<br>Factor<br>(dB) |
|------------|-----------------|----------------|-------------------|--------------------------------------------|
| 802.11a    | -               | -              | 100%              | 0                                          |
| 802.11n20  | -               | -              | 100%              | 0                                          |
| 802.11n40  | -               | -              | 100%              | 0                                          |

Note: Duty Cycle Correction Factor =  $10*\log(1/duty \text{ cycle})$ Please refer to the following plots.

| ₩ А                   | gilent            |             |         |               |          |           |             | RΤ         |                          |                             |
|-----------------------|-------------------|-------------|---------|---------------|----------|-----------|-------------|------------|--------------------------|-----------------------------|
| Ref 30                | dBm               |             | At      | ten 40 di     | 3        |           |             |            |                          | 533.3 <b>µ</b> s<br>.56 dBm |
| #Peak<br>Log          |                   |             |         |               |          |           |             |            |                          |                             |
| 10<br>dB/             |                   |             |         |               |          |           |             |            |                          |                             |
|                       | phtystymbrites    | Muntrythyto | humpant | polother they | withthe  | Manghalan | white white | alywayyuny | Mart And And Mart Mary W | wytherbyterst               |
| LgAv                  |                   |             |         |               |          |           |             |            |                          |                             |
| W1 S2                 |                   |             |         |               |          |           |             |            |                          |                             |
| S3 FS                 |                   |             |         |               |          |           |             |            |                          |                             |
| <b>£</b> (f):<br>FTun |                   |             |         |               |          |           |             |            |                          |                             |
|                       |                   |             |         |               |          |           |             |            |                          |                             |
|                       |                   |             |         |               |          |           |             |            |                          |                             |
|                       | 5.200 00<br>1 MHz | 00 GHz      |         |               | ₩VBW 3 M | Hz        |             | Swee       | Si<br>Sp 2 ms (6         | oan 0 Hz<br>601 pts)_       |

#### 802.11a mode

#### 802.11n20 mode



Report Number: R2310133-407

| 802.11n40 | mode |
|-----------|------|
|-----------|------|

| 🔆 Agilent       |                    |           |         |         |         | RT           | Mkr1   | 566.7 μ |
|-----------------|--------------------|-----------|---------|---------|---------|--------------|--------|---------|
| ef 30_dBm       | At                 | ten 40 dB |         |         |         |              | -2     | .51 dBr |
| Peak            |                    |           |         |         |         |              |        |         |
| )g<br>)         |                    |           |         |         |         |              |        |         |
| š/              |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
|                 |                    |           |         | 1       |         |              |        |         |
| Nol Mary Mary   | ManurupullanManuMM | Manhamman | multion | MANINAN | w.w.w.w | her when had | Musham | WWWWWWW |
|                 |                    |           | 1 100   |         |         |              |        |         |
| ;Av             |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
| L S2<br>3 FS    |                    |           |         |         |         |              |        |         |
| 3 FS            |                    |           |         |         |         |              |        |         |
| (f):            |                    |           |         |         |         |              |        |         |
| Tun             |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
|                 |                    |           |         |         |         |              |        |         |
| enter 5.230 000 |                    |           |         |         |         |              |        | oan 0 H |

#### Roku, Inc.

### 2.4 Equipment Modification

None.

#### 2.5 Local Support Equipment

| Manufacturer | Description | Model         |
|--------------|-------------|---------------|
| Dell         | Laptop      | Latitude 5410 |

#### 2.6 Remote Support Equipment

| Manufacturer | Description          | Model      |
|--------------|----------------------|------------|
| Roku, Inc.   | Remote Serial Dongle | 2326000233 |
| Roku, Inc.   | AC/DC Adaptor        | -          |

#### 2.7 Interface Ports and Cabling

| Cable Descriptions | Length (m) | From                 | То                   |
|--------------------|------------|----------------------|----------------------|
| USB                | 1.5        | Laptop               | Remote Serial Dongle |
| USB                | 1.5        | Remote Serial Dongle | EUT                  |
| USB Power cable    | 1.5        | EUT                  | AC/DC Adaptor        |

### **3** Summary of Test Results

Results reported relate only to the product tested.

| FCC & ISEDC Rules                                                | Description of Test                        | Results                |
|------------------------------------------------------------------|--------------------------------------------|------------------------|
| FCC §2.1093, §15.407(f)<br>ISED RSS-102 §2.5                     | RF Exposure                                | Compliant <sup>1</sup> |
| FCC §15.203<br>ISED RSS-GEN §6.8                                 | Antenna Requirement                        | Compliant              |
| FCC §15.207<br>ISED RSS-GEN §8.8                                 | AC Power Line Conducted<br>Emissions       | Compliant              |
| FCC §2.1053, §15.205, §15.209,<br>15.407(b)<br>ISED RSS-247 §6.2 | Spurious Radiated Emissions                | Compliant              |
| FCC §15.407(e)<br>ISED RSS-247 §6.2                              | Emission Bandwidth                         | Compliant              |
| FCC §407(a)<br>ISED RSS-247 §6.2                                 | Output Power                               | Compliant              |
| FCC §15.407(a)<br>ISED RSS-247 §6.2                              | Power Spectral Density                     | Compliant              |
| FCC §2.1051, §15.407(b)<br>ISED RSS-247 §6.2                     | Spurious Emissions at Antenna<br>Terminals | Compliant              |
| FCC §15.407(h)<br>ISED RSS-247 §6.3                              | Dynamic Frequency Selection                | Compliant              |
| FCC §15.407(g)                                                   | Frequency Stability                        | Compliant <sup>2</sup> |

Note<sup>1</sup>: Please refer to Report Number *R2310133-SAR* and issued by Bay Area Compliance Labs for results. Note<sup>2</sup>: Customer confirmed an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

BACL is responsible for all the information provided in this report, except when information is provided by the customer as identified in this report. Information provided by the customer, e.g., antenna gain, can affect the validity of results.

# 4 FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements

#### 4.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISEDC RSS-Gen §6.8: Transmitter Antenna

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For license-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

#### 4.2 Antenna Description

| External/Internal/<br>Integral | Part Number            | Antenna Type | Frequency<br>Range (MHz) | Maximum<br>Antenna Gain<br>(dBi) |
|--------------------------------|------------------------|--------------|--------------------------|----------------------------------|
| Integral                       | ANT162442DT-<br>2001A2 | Trace        | 5.15~5.85GHz             | 3.0 dBi                          |

# 5 FCC §15.207& ISEDC RSS-Gen §8.8 - AC Line Conducted Emissions

#### 5.1 Applicable Standards

As per FCC §15.207 and ISEDC RSS GEN §8.8 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

| Frequency of Emission | Conducted Limit (dBuV)    |                |  |
|-----------------------|---------------------------|----------------|--|
| (MHz)                 | Quasi-Peak                | Average        |  |
| 0.15-0.5              | 66 to 56 <sup>Note1</sup> | 56 to 46 Note2 |  |
| 0.5-5                 | 56                        | 46             |  |
| 5-30                  | 60                        | 50             |  |

*Note1: Decreases with the logarithm of the frequency.* 

Note2: A linear average detector is required

#### 5.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2013 measurement procedure. The specification used were FCC §15.207 and ISEDC RSS GEN §8.8 .

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 (via AC/DC Adapter) which provided 120 V / 60 Hz AC power.

#### 5.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data were recorded in the peak, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

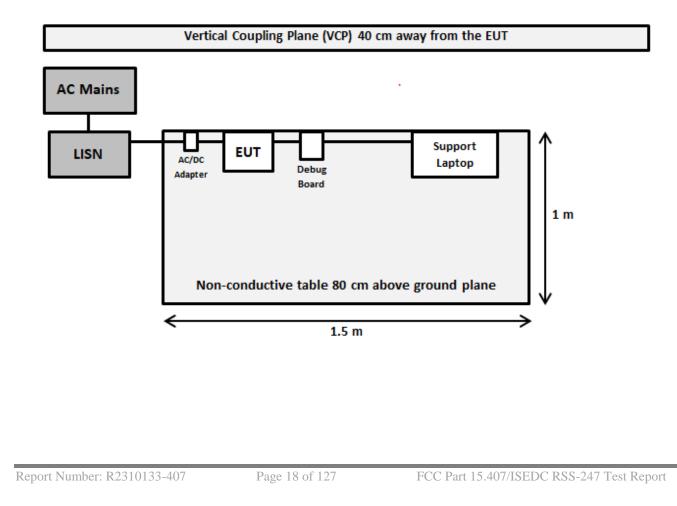
Roku, Inc.

#### 5.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Correction Factor (CF) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CF$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Correction Factor (13.7 dB)


The Correction Factor is calculated by adding Cable loss (CL) and attenuation of the impulse limiter and the high pass filter. The basic equation is as follows:

For example, a corrected amplitude of 13.7 dB = Cable Loss (3.7 dB) + Attenuation (10 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

#### 5.5 Test Setup Block Diagram



| BACL No. | Manufacturer                 | Description       | Model No.                           | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|----------|------------------------------|-------------------|-------------------------------------|------------|---------------------|-------------------------|
| 124      | Rohde &<br>Schwarz           | EMI Test Receiver | ESCI<br>1166.5950K03                | 100044     | 2023-06-16          | 1 year                  |
| 681      | Rohde &<br>Schwarz           | Impulse Limiter   | ESH3-Z2                             | 101962     | 2023-07-12          | 6 months                |
| 726      | Solar Electronics<br>Company | High Pass Filter  | Туре 7930-100                       | 7930150204 | 2023-07-24          | 6 months                |
| 732      | FCC                          | LISN              | FCC-LISN-50-<br>25-2-10-<br>CISPR16 | 160129     | 2023-09-12          | 1 year                  |
| 1226     | Fairview<br>Microwave        | Micro-Coax Cable  | FMC0101223-<br>240                  | 210241     | 2023-06-28          | 6 months                |

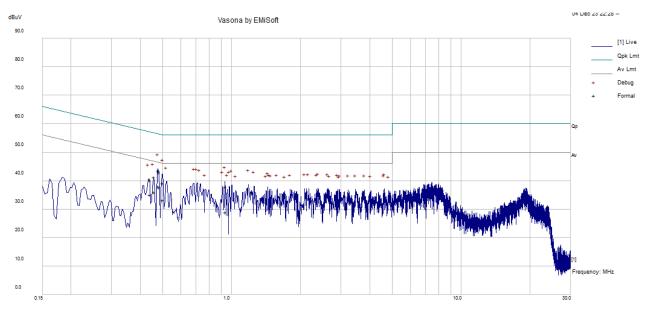
#### 5.6 Test Equipment List and Details

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

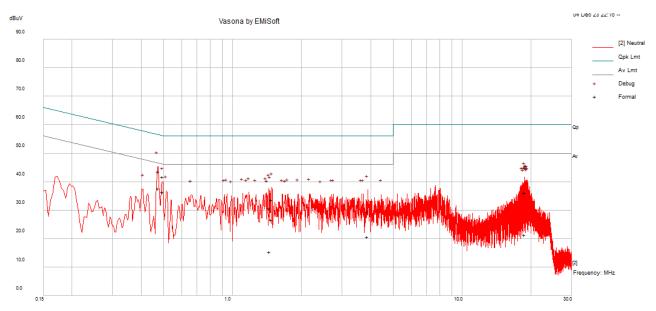
#### 5.7 Test Environmental Conditions

| Temperature:              | 18.3 to 18.7 °C |
|---------------------------|-----------------|
| <b>Relative Humidity:</b> | 62.1 to 62.3 %  |
| ATM Pressure:             | 102.6 kPa       |

The testing was performed by Steven Lianto on 2023-12-04 in the 5 meter chamber 3.


#### 5.8 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC 15C and ISEDC RSS-Gen</u> <u>standard's</u> conducted emissions limits, with the margin reading of:


| Worst Case(802.11n20 @ 5300MHz) - AC Line (via AC/DC Adapter): 120V, 60Hz |         |     |            |  |  |
|---------------------------------------------------------------------------|---------|-----|------------|--|--|
| Margin<br>(dB)                                                            |         |     |            |  |  |
| -8.18                                                                     | 0.48001 | Hot | 0.15 to 30 |  |  |

# 5.9 Conducted Emissions Test Plots and Data

### AC Line (via AC/DC Adapter): 120V, 60Hz – Hot Conductor



| Frequency<br>(MHz) | Ai. Reading<br>(dBuV) | Correction<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Detector |
|--------------------|-----------------------|------------------------------|----------------------------------|-----------------|----------------|----------|
| 0.48001            | 33.36                 | 10.32                        | 43.68                            | 56.34           | -12.66         | QP       |
| 0.482761           | 32.58                 | 10.32                        | 42.9                             | 56.29           | -13.39         | QP       |
| 0.460267           | 30.83                 | 10.35                        | 41.17                            | 56.69           | -15.51         | QP       |
| 0.943809           | 27.59                 | 10.18                        | 37.77                            | 56              | -18.23         | QP       |
| 0.501689           | 28.88                 | 10.3                         | 39.17                            | 56              | -16.83         | QP       |
| 0.441118           | 29.94                 | 10.36                        | 40.3                             | 57.04           | -16.74         | QP       |
| 0.48001            | 27.84                 | 10.32                        | 38.16                            | 46.34           | -8.18          | Ave      |
| 0.482761           | 27.39                 | 10.32                        | 37.7                             | 46.29           | -8.59          | Ave      |
| 0.460267           | 25.56                 | 10.35                        | 35.9                             | 46.69           | -10.78         | Ave      |
| 0.943809           | 18.67                 | 10.18                        | 28.85                            | 46              | -17.15         | Ave      |
| 0.501689           | 22.91                 | 10.3                         | 33.21                            | 46              | -12.79         | Ave      |
| 0.441118           | 24.76                 | 10.36                        | 35.12                            | 47.04           | -11.92         | Ave      |



#### AC Line (via AC/DC Adapter): 120V, 60Hz – Neutral Conductor

| Frequency<br>(MHz) | Ai. Reading<br>(dBuV) | Correction<br>Factor<br>(dB) | Corrected<br>Amplitude<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Detector |
|--------------------|-----------------------|------------------------------|----------------------------------|-----------------|----------------|----------|
| 0.474437           | 33.19                 | 10.33                        | 43.51                            | 56.44           | -12.92         | QP       |
| 0.495896           | 31.47                 | 10.3                         | 41.78                            | 56.07           | -14.29         | QP       |
| 1.471873           | 23.63                 | 10.07                        | 33.71                            | 56              | -22.29         | QP       |
| 18.65419           | 25.56                 | 10.56                        | 36.12                            | 60              | -23.88         | QP       |
| 1.445545           | 20.57                 | 10.08                        | 30.65                            | 56              | -25.35         | QP       |
| 3.867671           | 19.61                 | 10.05                        | 29.66                            | 56              | -26.34         | QP       |
| 0.474437           | 27.26                 | 10.33                        | 37.59                            | 46.44           | -8.85          | Ave      |
| 0.495896           | 26.04                 | 10.3                         | 36.34                            | 46.07           | -9.73          | Ave      |
| 1.471873           | 16.51                 | 10.07                        | 26.58                            | 46              | -19.42         | Ave      |
| 18.65419           | 10.65                 | 10.56                        | 21.21                            | 50              | -28.79         | Ave      |
| 1.445545           | 5.17                  | 10.08                        | 15.25                            | 46              | -30.75         | Ave      |
| 3.867671           | 10.66                 | 10.05                        | 20.71                            | 46              | -25.29         | Ave      |

Roku, Inc.

# 6 FCC §15.209, §15.407(b) & ISEDC RSS-247 §6.2 - Spurious Radiated Emissions

#### 6.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                 | MHz                   | MHz             | GHz           |
|---------------------|-----------------------|-----------------|---------------|
| 0.090 - 0.110       | 16.42 - 16.423        | 960 - 1240      | 4.5-5.15      |
| 0.495 - 0.505       | 16.69475 - 16.69525   | 1300 - 1427     | 5.35-5.46     |
| 2.1735 - 2.1905     | 25.5 - 25.67          | 1435 - 1626.5   | 7.25 - 7.75   |
| 4.125 - 4.128       | 37.5 - 38.25          | 1645.5 - 1646.5 | 8.025 - 8.5   |
| 4.17725 - 4.17775   | 73 - 74.6             | 1660 - 1710     | 9.0 - 9.2     |
| 4.20725 - 4.20775   | 74.8 - 75.2           | 1718.8 - 1722.2 | 9.3 - 9.5     |
| 6.215 - 6.218       | 108 - 121.94          | 2200 - 2300     | 10.6 - 12.7   |
| 6.26775 - 6.26825   | 123 - 138             | 2310 - 2390     | 13.25 - 13.4  |
| 6.31175 - 6.31225   | 149.9 - 150.05        | 2483.5 - 2500   | 14.47 - 14.5  |
| 8.291 - 8.294       | 156.52475 - 156.52525 | 2690 - 2900     | 15.35 - 16.2  |
| 8.362 - 8.366       | 156.7 - 156.9         | 3260 - 3267     | 17.7 - 21.4   |
| 8.37625 - 8.38675   | 162.0125 - 167.17     | 3.332 - 3.339   | 22.01 - 23.12 |
| 8.41425 - 8.41475   | 167.72 - 173.2        | 3 3458 - 3 358  | 23.6 - 24.0   |
| 12.29 - 12.293      | 240 - 285             | 3.600 - 4.400   | 31.2 - 31.8   |
| 12.51975 - 12.52025 | 322 - 335.4           |                 | 36.43 - 36.5  |
| 12.57675 - 12.57725 | 399.9 - 410           |                 | Above 38.6    |
| 13.36 - 13.41       | 608 - 614             |                 |               |

As per FCC §15.209: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

| Frequency<br>(MHz) | Field Strength<br>(micro volts/meter) | Measurement Distance<br>(meters) |
|--------------------|---------------------------------------|----------------------------------|
| 0.009 - 0.490      | 2400/F(kHz)                           | 300                              |
| 0.490 - 1.705      | 24000/F(kHz)                          | 30                               |
| 1.705 - 30.0       | 30                                    | 30                               |
| 30 - 88            | 100 Note 1                            | 3                                |
| 88 - 216           | 150 Note 1                            | 3                                |
| 216 - 960          | 200 Note 1                            | 3                                |
| Above 960          | 500                                   | 3                                |

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC Part 15.407 (b)

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall noet exceed an e.i.r.p. of -27 dBm/MHz.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

As per ISEDC RSS-247 §6.2

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250- 5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz

For devices with both operating frequencies and channel bandwidths contained within the band 5250-5350 MHz, the device shall comply with the following:

- 1. All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. if the equipment is intended for outdoor use; or
- 2. All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and any emissions within the band 5150-5250 MHz shall meet the power spectral density limits of Section 6.2.1. The device shall be labelled "for indoor use only."

For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only."

For transmitters operating in the band 5470-5725 MHz, emissions outside the band shall not exceed -27 dBm/MHz e.i.r.p.

For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p. For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz.

#### 6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15.407 and ISEDC RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

### 6.3 Test Procedure

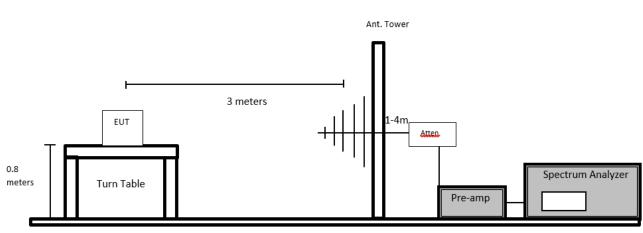
For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

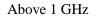
The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter or 1.5 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:


RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:


- (1) Peak: RBW = 1MHz / VBW = 3MHz / Sweep = 100ms
- (2) Average: RBW = 1MHz / VBW = 10Hz or 1/T / Sweep = Auto

6.4 Setup Diagrams





Ground Plane





#### 6.5 Corrected Amplitude and Margin Calculation

For emissions below 1 GHz,

Roku, Inc.

The Corrected Amplitude (CA) is calculated by adding the Correction Factor to the S.A. Reading. The basic equation is as follows:

CA = S.A. Reading + Correction Factor

For example, a corrected amplitude of 40.3 dBuV/m = S.A. Reading (32.5 dBuV) + Correction Factor (7.8 dB/m)

The Correction Factor is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) together. This calculation is done in the measurement software, and reported in the test result section. The basic equation is as follows:

Correction Factor = AF + CL + Atten - Ga

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

For emission above 1 GHz,

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5 dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

| BACL<br>No. | Manufacturer          | Description                          | Model                          | Serial<br>Number        | Calibration<br>Date | Calibration<br>Interval |
|-------------|-----------------------|--------------------------------------|--------------------------------|-------------------------|---------------------|-------------------------|
| 624         | Agilent               | Spectrum Analyzer                    | E4446A                         | MY48250238              | 2023-05-12          | 1 year                  |
| 124         | Rhode &<br>Schwarz    | EMI Test Receiver                    | ESCI                           | 100044                  | 2023-06-16          | 1 year                  |
| 327         | Sunol Sciences        | System Controller                    | SC110V                         | 122303-1                | N/R                 | N/R                     |
| 1075        | Sunol Sciences        | Boresight Tower                      | TLT3                           | 050119-7                | N/R                 | N/R                     |
| 1388        | Sunol Sciences        | Flush Mount Turntable                | FM                             | 112005-2                | N/R                 | N/R                     |
| 316         | Sonoma<br>Instruments | Preamplifier 10 kHz -<br>2.5 GHz     | 317                            | 260406                  | 2023-09-26          | 6 months                |
| 658         | HP/ Agilant           | Pre Amplifier                        | 8449B OPT<br>HO2               | 3008A01103              | 2023-06-13          | 6 months                |
| 1247        | Uti flex              | Micro - Coax                         | N/A                            | N/A                     | 2023-06-13          | 6 months                |
| 827         | AH Systems            | Preamplifier                         | PAM 1840 VH                    | 170                     | 2023-05-17          | 6 months                |
| 307         | Sunol Sciences        | Biconilog Antenna                    | JB3                            | A020106-3;<br>01182018A | 2022-03-21          | 2 years                 |
| 287         | Micro-Tronics         | 5150-5350 MHz Notch<br>Filter        | BRC50703                       | 006                     | 2023-03-02          | 1 year                  |
| 389         | Micro-Tronics         | 5.6 GHz Notch Filter                 | BRC 50704                      | 003                     | 2023-05-04          | 1 year                  |
| 1175        | Micro-Tronics         | Notch band 5725-<br>5875MHz filter   | BRC50705                       | 006                     | 2022-12-12          | 1 year                  |
| -           | -                     | 6dB Attenuator                       | PE7390-6                       | 01182018A               | 2022-03-21          | 2 years                 |
| 1192        | ETS Lindgren          | Horn Antenna                         | 3117                           | 00218973                | 2022-09-29          | 2 years                 |
| 90          | Wisewave              | Antenna, Horn                        | ARH-4223-02                    | 10555-01                | 2023-05-02          | 2 years                 |
| 92          | Wisewave              | Antenna, Horn                        | ARH-2823-02                    | 10555-01                | 2022-03-17          | 2 years                 |
| 1186        | Pasternack            | Coaxial Cable, RG214                 | PE3062-<br>1050CM              | N/A                     | 2023-10-03          | 6 months                |
| 1246        | Hewlet Packard        | RF Limiter                           | 11867A                         | 01734                   | 2023-04-13          | 1 year                  |
| 1248        | Pasternack            | RG214 COAX Cable                     | PE3062                         | N/A                     | 2023-10-04          | 6 months                |
| 1249        | Time<br>Microwave     | LMR-400 Cable Dc-3<br>GHz            | AE13684                        | 2k80612-5 6fts          | 2023-10-09          | 6 months                |
| 1346        | RFMW                  | 2.92mm 10ft RF cable                 | KMSE-<br>160SAW-<br>240.0-KSME | N/A                     | 2023-11-03          | 6 months <sup>1</sup>   |
| 1354        | RFMW                  | 2.92mm 10ft RF Cable<br>DC to 40 GHz | P1CA-<br>29M29M-F150-<br>120   | N/A                     | 2023-02-24          | 6 months                |
| 1295        | Carlisle              | 10m Ultra Low Loss<br>Coaxial Cable  | UFB142A-1-<br>3937-200200      | 64639890912-<br>001     | 2023-10-31          | 6 months <sup>1</sup>   |

# 6.6 Test Equipment List and Details

Note1: equipment was only used for testing performed on 2023-11-07

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

#### 6.7 Test Environmental Conditions

| Temperature:              | 21.4 - 22.6 ° C |
|---------------------------|-----------------|
| <b>Relative Humidity:</b> | 52.1-54.2%      |
| ATM Pressure:             | 101.8 kPa       |

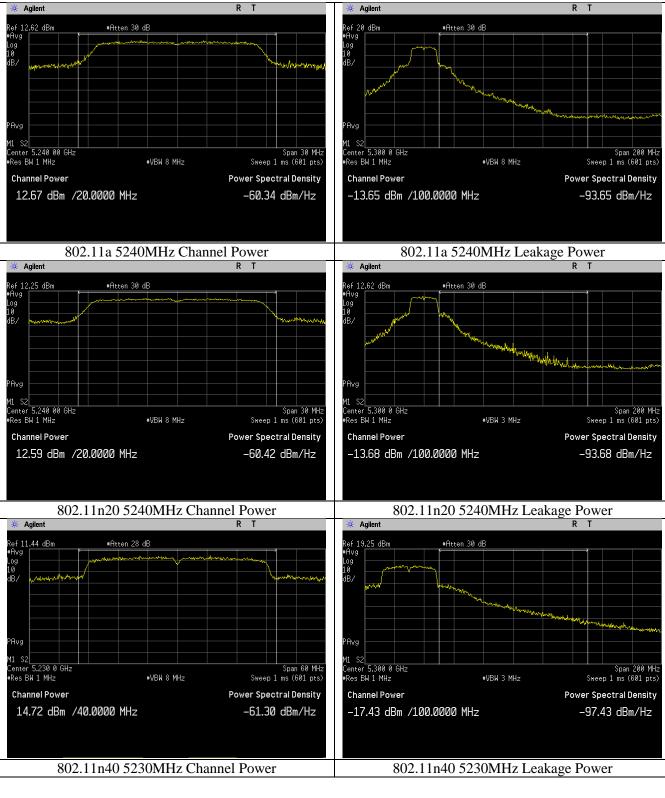
The testing was performed by Will Hu from 2023-10-30 to 2023-11-07 in 5m chamber 3.

#### 6.8 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15.407 and ISEDC RSS-247</u> standards' radiated emissions limits, and had the worst margin of:

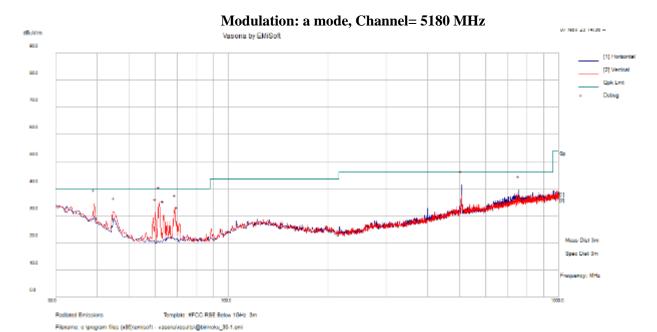
| Mode: Transmitting | Mode: Transmitting |                                       |                        |  |  |  |  |  |  |  |  |  |
|--------------------|--------------------|---------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|
| Margin<br>(dB)     | Frequency<br>(MHz) | Polarization<br>(Horizontal/Vertical) | Mode, Channel          |  |  |  |  |  |  |  |  |  |
| -0.05              | 40.185             | V                                     | 802.11a mode, 5320 MHz |  |  |  |  |  |  |  |  |  |

#### 6.9 Radiated Emissions Test Result Data


Note: Below test data are the radiated cabinet emissions, for conducted in-lieu of radiated measurements performed at the antenna port please refer to ANNEX C, ANNEX D, and ANNEX E. Note: Lowest frequency emitted by device is above 30MHz, thus below 30MHz spurious is not needed

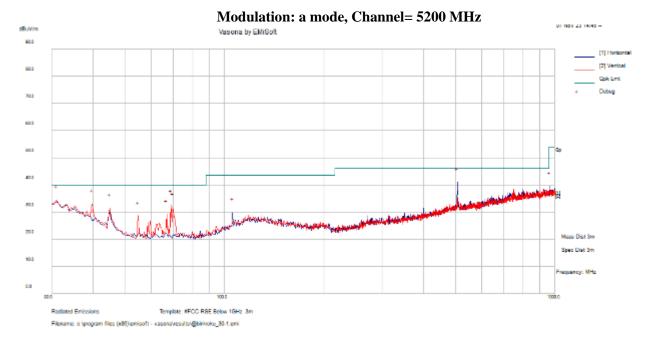
#### U-NII-2A Leakage:

| Output Power<br>(dBm) | Leakage Power<br>(dBm) | Threshold<br>(dB) |     |  |  |  |  |  |  |  |
|-----------------------|------------------------|-------------------|-----|--|--|--|--|--|--|--|
|                       | 802.11a                |                   |     |  |  |  |  |  |  |  |
| 12.67                 | -13.65                 | 26.32             | >26 |  |  |  |  |  |  |  |
|                       | 802.1                  | 1n20              |     |  |  |  |  |  |  |  |
| 12.59                 | -13.68                 | 26.27             | >26 |  |  |  |  |  |  |  |
| 802.11n40             |                        |                   |     |  |  |  |  |  |  |  |
| 14.72                 | -17.53                 | 32.25             | >26 |  |  |  |  |  |  |  |

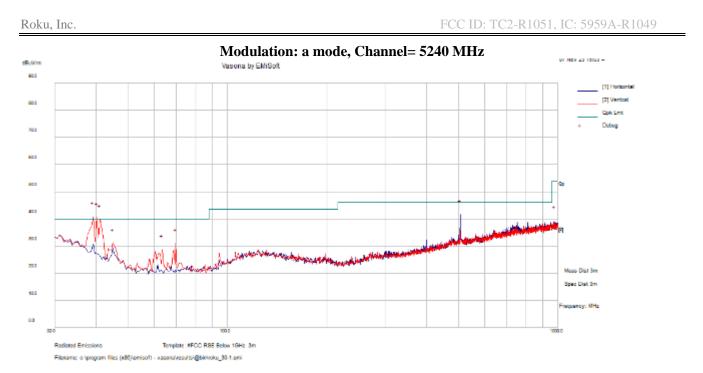

Please refer to the following plots for U-NII-2A Leakage test results



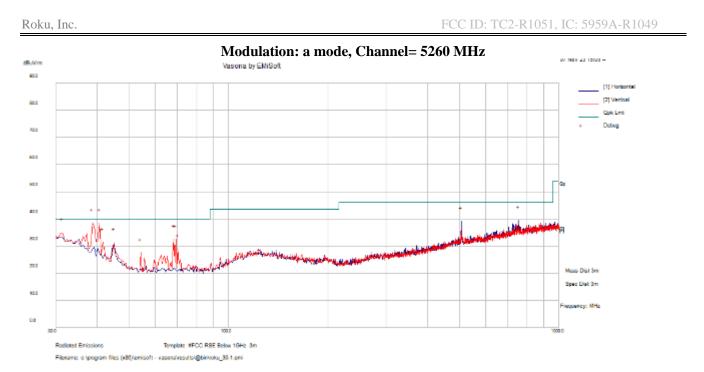



#### Roku, Inc.

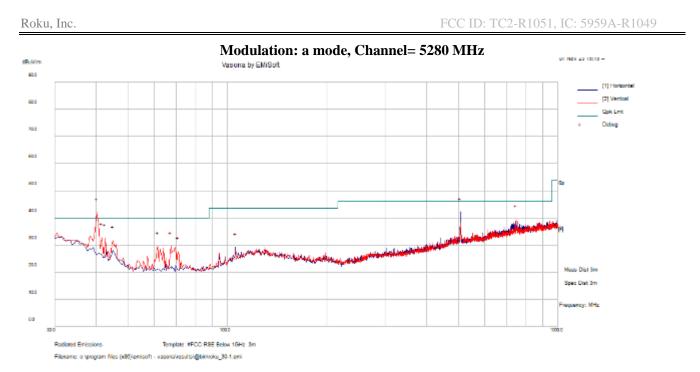
#### 1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters



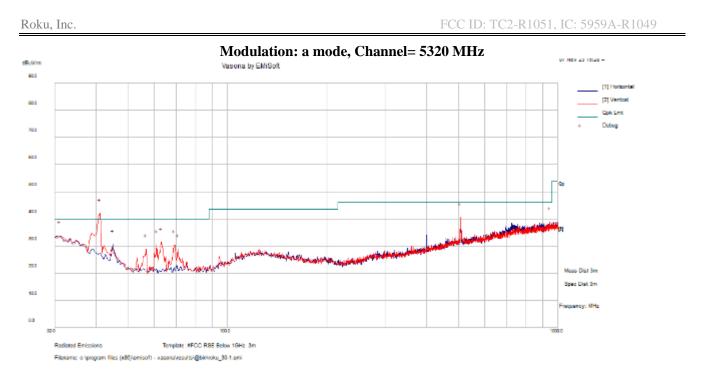

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 506.27             | 43.32                  | -1.96                          | 41.36                              | Н                         | 100                    | 0                                 | 46                | -4.64          |             |
| 61.525             | 48.88                  | -13.59                         | 35.29                              | V                         | 100                    | 0                                 | 40                | -4.71          |             |
| 39.215             | 41.69                  | -7.33                          | 34.36                              | V                         | 300                    | 0                                 | 40                | -5.64          | Peak        |
| 754.105            | 37.54                  | 1.87                           | 39.41                              | Н                         | 100                    | 0                                 | 46                | -6.59          | Peak        |
| 68.8               | 45.91                  | -13.27                         | 32.64                              | V                         | 100                    | 0                                 | 40                | -7.36          |             |
| 45.035             | 42.23                  | -10.75                         | 31.48                              | V                         | 100                    | 0                                 | 40                | -8.52          |             |



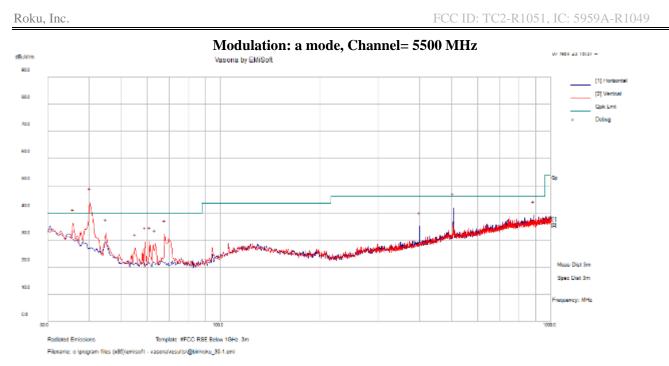




| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 506.27             | 42.87                  | -1.95                          | 40.92                              | Н                         | 100                    | 0                                 | 46                | -5.08          |             |
| 30.97              | 36.21                  | -1.72                          | 34.49                              | V                         | 100                    | 0                                 | 40                | -5.51          |             |
| 39.7               | 40.58                  | -7.67                          | 32.91                              | V                         | 300                    | 0                                 | 40                | -7.09          | Peak        |
| 68.8               | 45.99                  | -13.26                         | 32.73                              | V                         | 100                    | 0                                 | 40                | -7.27          | Peak        |
| 69.77              | 45.06                  | -13.26                         | 31.8                               | V                         | 100                    | 0                                 | 40                | -8.2           |             |
| 45.035             | 42.25                  | -10.75                         | 31.5                               | v                         | 100                    | 0                                 | 40                | -8.5           |             |




| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 39.215             | 46.13                  | -7.32                          | 38.81                              | v                         | 100                    | 0                                 | 40                | -1.19          |             |
| 40.185             | 46.67                  | -7.99                          | 38.68                              | V                         | 100                    | 0                                 | 40                | -1.32          |             |
| 41.155             | 48.39                  | -8.54                          | 39.85                              | V                         | 100                    | 0                                 | 40                | -0.15          | Deals       |
| 506.27             | 43.6                   | -1.95                          | 41.65                              | Н                         | 100                    | 0                                 | 46                | -4.35          | Peak        |
| 45.035             | 41.84                  | -10.75                         | 31.09                              | V                         | 100                    | 0                                 | 40                | -8.91          |             |
| 69.77              | 44.22                  | -13.26                         | 30.96                              | V                         | 300                    | 0                                 | 40                | -9.04          |             |

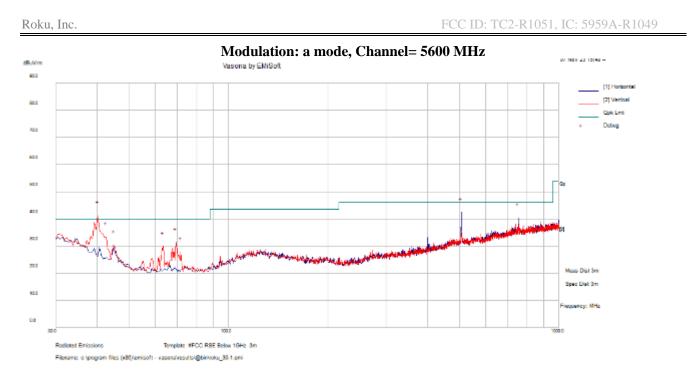



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 61.525             | 52.79                  | -13.59                         | 39.2                               | V                         | 100                    | 0                                 | 40                | -0.8           |             |
| 506.27             | 42.57                  | -1.96                          | 40.61                              | Н                         | 100                    | 0                                 | 46                | -5.39          |             |
| 30                 | 35.32                  | -0.97                          | 34.35                              | Н                         | 100                    | 0                                 | 40                | -5.65          | Peak        |
| 886.51             | 35.64                  | 3.25                           | 38.89                              | Н                         | 300                    | 0                                 | 46                | -7.11          | Реак        |
| 45.035             | 42.22                  | -10.75                         | 31.47                              | V                         | 100                    | 0                                 | 40                | -8.53          |             |
| 62.98              | 44.8                   | -13.5                          | 31.3                               | V                         | 300                    | 0                                 | 40                | -8.7           |             |

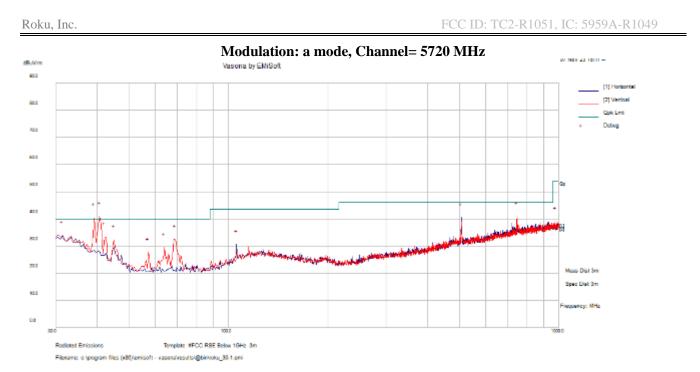


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 38.73              | 45.56                  | -6.98                          | 38.58                              | V                         | 100                    | 0                                 | 40                | -1.42          |             |
| 40.67              | 46.7                   | -8.26                          | 38.44                              | V                         | 100                    | 0                                 | 40                | -1.56          |             |
| 31.455             | 36.87                  | -2.06                          | 34.81                              | V                         | 300                    | 0                                 | 40                | -5.19          | Peak        |
| 754.105            | 37.59                  | 1.87                           | 39.46                              | Н                         | 100                    | 0                                 | 46                | -6.54          | Peak        |
| 506.27             | 41.08                  | -1.96                          | 39.12                              | Н                         | 100                    | 0                                 | 46                | -6.88          |             |
| 68.315             | 45.93                  | -13.28                         | 32.65                              | V                         | 100                    | 0                                 | 40                | -7.35          |             |

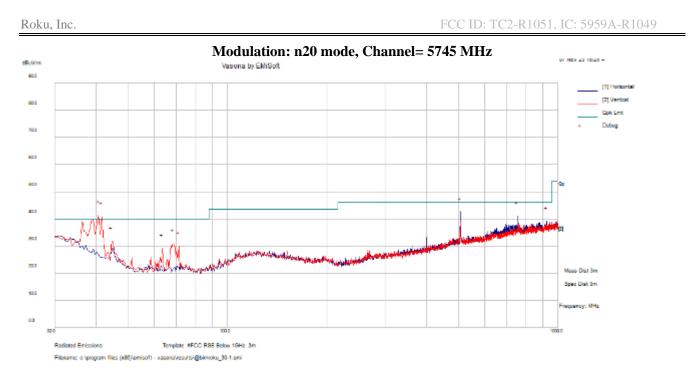



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 40.185             | 47.93                  | -7.98                          | 39.95                              | V                         | 100                    | 0                                 | 40                | -0.05          |             |
| 506.27             | 44.17                  | -1.95                          | 42.22                              | Н                         | 100                    | 0                                 | 46                | -3.78          |             |
| 746.83             | 37.64                  | 1.81                           | 39.45                              | V                         | 100                    | 0                                 | 46                | -6.55          | Peak        |
| 41.64              | 41.57                  | -8.8                           | 32.77                              | V                         | 100                    | 0                                 | 40                | -7.23          | Peak        |
| 42.61              | 41.84                  | -9.36                          | 32.48                              | V                         | 100                    | 0                                 | 40                | -7.52          |             |
| 45.035             | 42.42                  | -10.75                         | 31.67                              | V                         | 100                    | 0                                 | 40                | -8.33          |             |

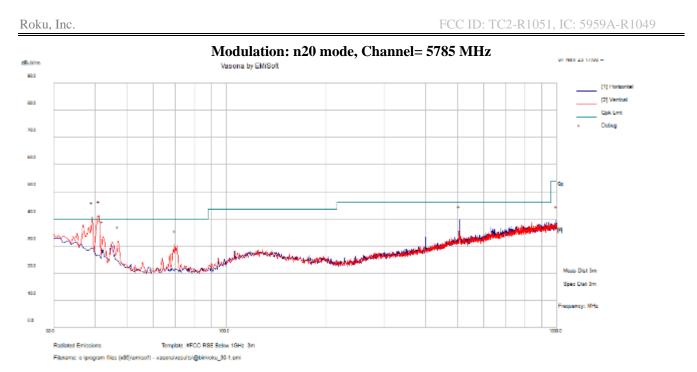



Note: a mode, channel =5500 MHz is the worst case for 5 GHz band.

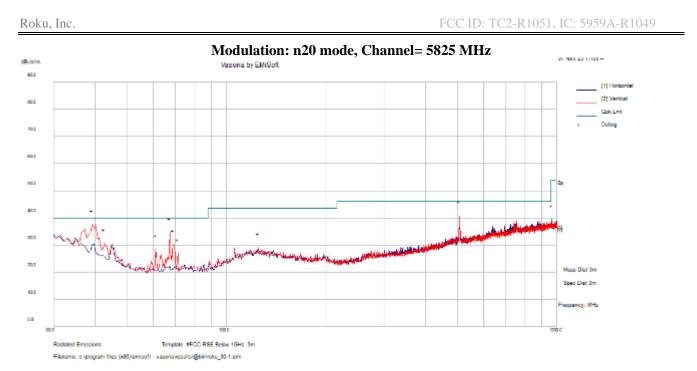
#### Formal data:


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 40.1945            | 30.39                  | -7.99                          | 22.4                               | V                         | 167                    | 76                                | 40                | -17.6          |             |
| 45.1965            | 35.93                  | -10.84                         | 25.09                              | V                         | 102                    | 352                               | 40                | -14.91         |             |
| 35.9075            | 29.82                  | -4.99                          | 24.83                              | V                         | 272                    | 32                                | 40                | -15.17         | Quesi Deelt |
| 67.60275           | 29.96                  | -13.31                         | 16.65                              | V                         | 232                    | 262                               | 40                | -23.35         | Quasi Peak  |
| 506.3035           | 42.68                  | -1.95                          | 40.73                              | Н                         | 100                    | 170                               | 46                | -5.27          |             |
| 885.4263           | 28.02                  | 3.25                           | 31.27                              | Н                         | 201                    | 260                               | 46                | -14.73         |             |




| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 40.185             | 47.22                  | -7.99                          | 39.23                              | v                         | 100                    | 0                                 | 40                | -0.77          |             |
| 506.27             | 44.36                  | -1.96                          | 42.4                               | Н                         | 100                    | 0                                 | 46                | -3.6           |             |
| 753.135            | 38.55                  | 1.88                           | 40.43                              | Н                         | 100                    | 0                                 | 46                | -5.57          | Peak        |
| 42.61              | 42.76                  | -9.36                          | 33.4                               | V                         | 100                    | 0                                 | 40                | -6.6           | Peak        |
| 69.285             | 44.57                  | -13.25                         | 31.32                              | V                         | 100                    | 0                                 | 40                | -8.68          |             |
| 45.035             | 41.14                  | -10.75                         | 30.39                              | V                         | 100                    | 0                                 | 40                | -9.61          |             |




| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 40.67              | 47.29                  | -8.26                          | 39.03                              | V                         | 100                    | 0                                 | 40                | -0.87          |             |
| 39.215             | 45.67                  | -7.32                          | 38.35                              | V                         | 100                    | 0                                 | 40                | -1.65          |             |
| 746.83             | 39.01                  | 1.81                           | 40.82                              | V                         | 100                    | 0                                 | 46                | -5.18          | Peak        |
| 506.27             | 42.4                   | -1.95                          | 40.45                              | Н                         | 100                    | 0                                 | 46                | -5.55          | Peak        |
| 31.455             | 36.02                  | -2.07                          | 33.95                              | Н                         | 100                    | 0                                 | 40                | -6.05          |             |
| 42.125             | 42.38                  | -9.07                          | 33.31                              | V                         | 100                    | 0                                 | 40                | -6.69          |             |

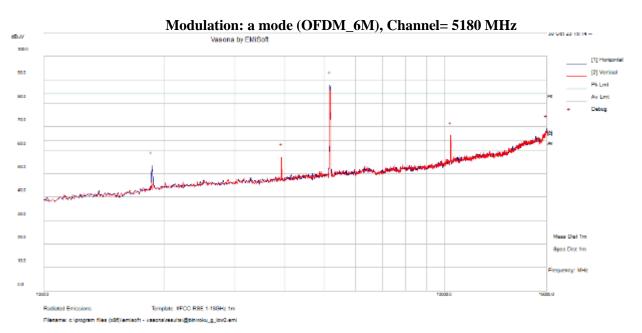


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 40.67              | 47.7                   | -8.26                          | 39.44                              | V                         | 100                    | 0                                 | 40                | -0.56          |             |
| 41.64              | 47.65                  | -8.8                           | 38.85                              | V                         | 100                    | 0                                 | 40                | -0.15          |             |
| 506.27             | 44.54                  | -1.96                          | 42.58                              | Н                         | 100                    | 0                                 | 46                | -3.42          | Peak        |
| 753.135            | 39.15                  | 1.88                           | 41.03                              | Н                         | 100                    | 0                                 | 46                | -4.97          | Peak        |
| 924.34             | 35.48                  | 3.58                           | 39.06                              | Н                         | 300                    | 0                                 | 46                | -6.94          |             |
| 44.55              | 42.21                  | -10.48                         | 31.73                              | V                         | 100                    | 0                                 | 40                | -8.27          |             |



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 41.155             | 47.74                  | -8.54                          | 39.2                               | V                         | 100                    | 0                                 | 40                | -0.8           |             |
| 39.215             | 46.07                  | -7.33                          | 38.74                              | V                         | 100                    | 0                                 | 40                | -1.26          |             |
| 42.125             | 42.79                  | -9.07                          | 33.72                              | V                         | 100                    | 0                                 | 40                | -6.28          | Peak        |
| 506.27             | 41.59                  | -1.96                          | 39.63                              | Н                         | 100                    | 0                                 | 46                | -6.37          | Реак        |
| 46.975             | 43.54                  | -11.69                         | 31.85                              | V                         | 100                    | 0                                 | 40                | -8.15          |             |
| 69.77              | 43.77                  | -13.25                         | 30.52                              | V                         | 100                    | 0                                 | 40                | -9.48          |             |




| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Measurement |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-------------|
| 39.215             | 44.97                  | -7.32                          | 37.65                              | v                         | 100                    | 0                                 | 40                | -2.35          |             |
| 506.27             | 42.76                  | -1.96                          | 40.8                               | V                         | 100                    | 0                                 | 46                | -5.2           |             |
| 67.345             | 47.9                   | -13.31                         | 34.59                              | V                         | 100                    | 0                                 | 40                | -5.41          | Peak        |
| 42.61              | 39.98                  | -9.36                          | 30.62                              | V                         | 100                    | 0                                 | 40                | -9.38          | Peak        |
| 68.8               | 43.57                  | -13.27                         | 30.3                               | V                         | 100                    | 0                                 | 40                | -9.7           |             |
| 61.04              | 42.23                  | -13.63                         | 28.6                               | V                         | 100                    | 0                                 | 40                | -11.4          |             |

# 2) 1-18 GHz Worst Case, Measured at 1 meter

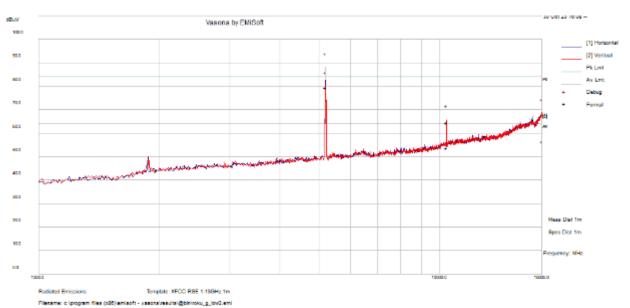
| FCC/IC Limits for 1 GHz to 40 GHz                                       |       |                      |                        |                                    |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-------|----------------------|------------------------|------------------------------------|--|--|--|--|--|--|
| Applicablity                                                            | (dBm) | (uV/m at<br>3meters) | (dBuV/m at<br>3meters) | (dBuV/m at<br>1meter) <sup>2</sup> |  |  |  |  |  |  |
| Restricted Band Average Limit                                           | -     | 500                  | 54                     | 63.54                              |  |  |  |  |  |  |
| Restricted Band Peak Limit <sup>1</sup>                                 | -     | -                    | 74                     | 83.54                              |  |  |  |  |  |  |
| FCC §15.407(b) & ISEDC RSS-247 §6.2<br>Defined Unwanted Emissions Limit | -27   | -                    | 68.2                   | 77.74                              |  |  |  |  |  |  |

Note<sup>1</sup>: Restricted Band Peak Limit is defined to be 20dB higher than Average Limit. Note<sup>2</sup>: Limits at 1 meter are determined by applying a Distance correction factor accounts for extrapolation from 1 meters to 3 meters. Formula used is as follows:  $20*\log(3meters/1meter) = 9.54$  (According to ANSI C63.10-2013 Section 9.4). i.e. 54[dBuV/m at 3m] + 9.54dB = 63.54[dBuV/m at 1m]

Note<sup>3</sup>: Where Restricted Band Peak Limit is replaced with stricter 78 dB $\mu$ V/m at 1 meter, compliance is being shown for unwmated emissions per FCC §15.407(b) & ISEDC RSS-247 §6.2 Note: dBuV/m = 20\*log(V/m) + 120. Thus 20\*log((500[uV/m]/1000000))+120=54[dBuV/m] Note: Per ANSI C63.10-2013 Section 12.7.2: E[dBuV/m] = EIRP[dBm] + 95.2, for d = 3meters. Thus - 27dBm + 95.2dB = 68.2dBuV/m at 3meters.



## Note: above plot shows all peak emissions below 16GHz pass under average limits

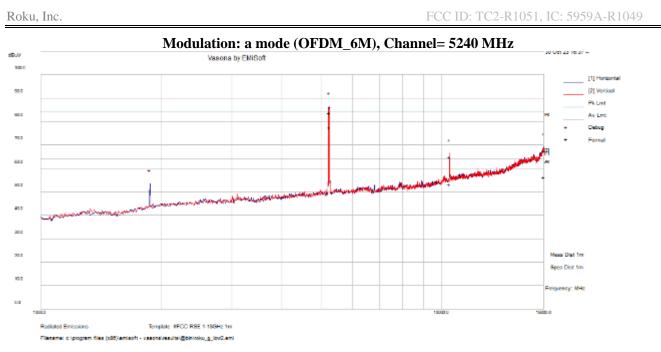

### Roku, Inc.

FCC ID: TC2-R1051, IC: 5959A-R1049

| 🔆 Agilent                                                                   |                       | RT                                           | Peak Search    |
|-----------------------------------------------------------------------------|-----------------------|----------------------------------------------|----------------|
| EMiSoft Vasona: EMi Emission S<br>Ref 96.99 dB <b>µ</b> V Atten 10<br>#Peak |                       | Mkr1 17.998 75 GHz<br>58.56 dB <b>µ</b> V    | Next Peak      |
| Log<br>10<br>dB/                                                            |                       |                                              | Next Pk Right  |
|                                                                             |                       |                                              | Next Pk Left   |
| #PAvg                                                                       |                       |                                              | Min Search     |
| M1 S2<br>S3 FS<br>A                                                         |                       |                                              | Pk-Pk Search   |
| £(f):<br>FTun<br>Swp 17.998750000                                           | GHz                   |                                              | Mkr → CF       |
| _ <b>58.56 dBµV</b> _<br>Start 16.000 00 GHz<br>≢Res BW 1 MHz               | #VBW 10 Hz Swe        | Stop 18.000 00 GHz^<br>ep 155.9 s (1601 pts) | More<br>1 of 2 |
| File Operation Status, C:/F                                                 | PICTURE.GIF file save | <b>.</b>                                     |                |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-----------------------------|
| 10359.89           | 52.79                  | 8.84                           | 61.63                              | Н                         | 130                    | 245                               | 83.54             | -21.91         | Peak                        |
| 10359.9            | 43.07                  | 8.84                           | 51.92                              | Н                         | 130                    | 245                               | 63.54             | -11.62         | Average                     |
| 17999              | 47.45                  | 21.66                          | 69.11                              | Н                         | 150                    | 0                                 | 83.54             | -14.43         | Peak                        |
| 17999              | 36.9                   | 21.66                          | 58.56                              | Н                         | 150                    | 0                                 | 63.54             | -4.98          | Average                     |

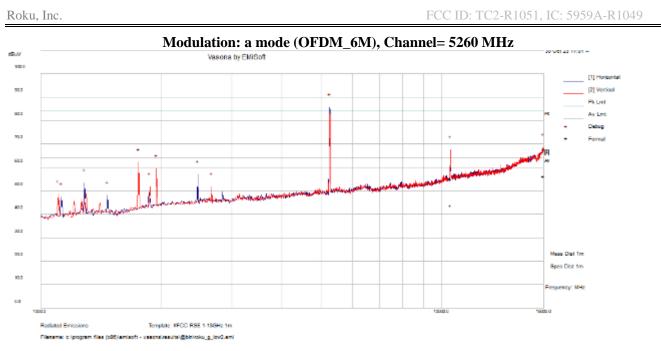





## Modulation: a mode (OFDM\_6M), Channel= 5200 MHz



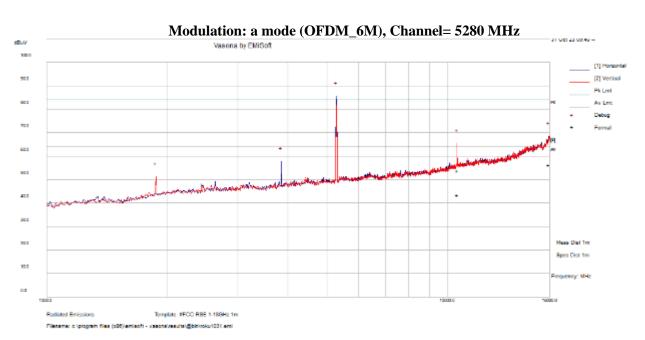
| 🔆 Agilent                                              |                    | RT                                             | Peak Search   |
|--------------------------------------------------------|--------------------|------------------------------------------------|---------------|
| EMiSoft Vasona: EMi Emission<br>Ref 96.99 dBµV Atten : |                    | Mkr1 18.000 00 GHz<br>58.58 dB <b>µ</b> V      | Next Peak     |
| #Peak                                                  |                    |                                                |               |
| Log<br>10<br>dB/                                       |                    |                                                | Next Pk Right |
|                                                        |                    |                                                | Next Pk Left  |
| #PAvg                                                  |                    |                                                | Min Search    |
| M1 S2<br>S3 FS<br>A                                    |                    |                                                | Pk-Pk Search  |
| £(f):<br>FTun Marker<br>Swp 18.00000000                | GHz                |                                                | Mkr → CF      |
| <b>58.58 dBµV</b><br>Start 16.000 00 GHz               |                    | Stop 18.000 00 GHz                             | More          |
| #Res BW 1 MHz                                          | ₩VBW 10 Hz         | Stup 10.000 00 GH2<br>Sweep 155.9 s (1601 pts) | 1 of 2        |
| File Operation Status, C:/                             | PICTURE.GIF file s | aved                                           |               |


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-----------------------------|
| 10393.8            | 55.68                  | 8.85                           | 64.54                              | V                         | 242                    | 338                               | 83.54             | -19            | Peak                        |
| 10393.8            | 44.73                  | 8.85                           | 53.58                              | V                         | 242                    | 338                               | 63.54             | -9.96          | Average                     |
| 17999              | 47.18                  | 21.66                          | 68.84                              | Н                         | 150                    | 0                                 | 83.54             | -14.7          | Peak                        |
| 17999              | 36.92                  | 21.66                          | 58.58                              | Н                         | 150                    | 0                                 | 63.54             | -4.96          | Average                     |



Note: above plot shows all peak emissions below 16GHz pass under average limits

| Trace          | ₹Т                        | F                      |      |     |      |        |                  |         |                         | gilent            | ₩ <b>A</b>           |
|----------------|---------------------------|------------------------|------|-----|------|--------|------------------|---------|-------------------------|-------------------|----------------------|
| Irace          | 00 GHz<br>7 dB <b>µ</b> V |                        | Mkr1 |     |      | are    | n Softw<br>10 dB |         | na: EMi<br>3 <b>µ</b> V | t Vaso<br>6.99 dE |                      |
| <u>1</u> 2 3   |                           |                        |      |     |      |        |                  |         |                         |                   | #Peak<br>Log         |
| Clear Write    |                           |                        |      |     |      |        |                  |         |                         |                   | 10<br>dB/            |
| Max Hold       |                           |                        |      |     |      |        |                  |         |                         |                   |                      |
| Min Hold       |                           |                        |      |     |      |        |                  |         |                         | <br>              | #PAvg                |
| View           |                           |                        |      |     |      |        |                  |         |                         |                   | M1 S2<br>S3 F3<br>A  |
| Blank          |                           |                        |      |     |      |        |                  |         |                         |                   | £(f):<br>FTun<br>Swp |
| More<br>1 of 2 | 00 GHz^<br>01 pts)        | <br>18.000<br>  s (160 |      | Swe | ) Hz | UBW 10 | #                | 2       | 00 GH:<br>Hz            | 16.000<br>3W 1 M  |                      |
|                |                           |                        |      |     |      |        |                  | tus, C: | ion Sta                 |                   |                      |

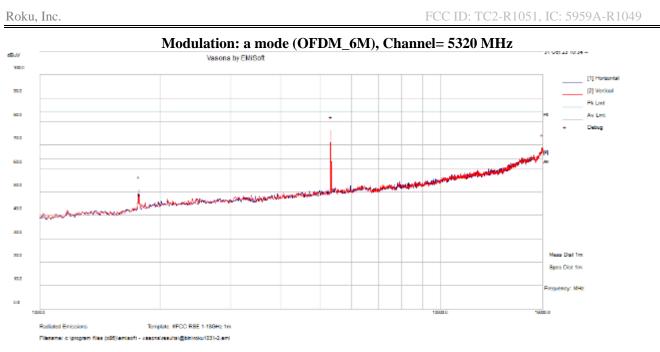

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-----------------------------|
| 10476.4            | 55.96                  | 9.13                           | 65.09                              | V                         | 210                    | 228                               | 83.54             | -18.45         | Peak                        |
| 10476.4            | 44.03                  | 9.13                           | 53.16                              | V                         | 210                    | 228                               | 63.54             | -10.38         | Average                     |
| 17999              | 47.57                  | 21.66                          | 69.23                              | Н                         | 150                    | 0                                 | 83.54             | -14.31         | Peak                        |
| 17999              | 36.91                  | 21.66                          | 58.57                              | Н                         | 150                    | 0                                 | 63.54             | -4.97          | Average                     |



Note: above plot shows all peak emissions below 16GHz pass under average limits

| Trace                 | Т                       | F                  |      |     |    |            |   |                   |              | ilent             | <b>₩ A</b> (         |
|-----------------------|-------------------------|--------------------|------|-----|----|------------|---|-------------------|--------------|-------------------|----------------------|
| <b>Trace</b><br>1 2 3 | 00 GHz<br>dB <b>µ</b> V | 18.000<br>58.58    | Mkr1 |     |    |            |   | Emissior<br>Atten |              | t Vasor<br>.99 dB |                      |
| <u> </u>              |                         |                    |      |     |    |            |   |                   |              |                   | #Peak<br>Log         |
| Clear Write           |                         |                    |      |     |    |            |   |                   |              |                   | 10<br>dB/            |
| Max Hold              |                         |                    |      |     |    |            |   |                   |              |                   |                      |
| -<br>Min Hold         |                         |                    |      |     |    |            |   |                   |              |                   | ₽Avg                 |
| -<br>View             |                         |                    |      |     |    |            |   |                   |              |                   | M1 S2<br>S3 FS<br>A  |
| Blank                 |                         |                    |      |     |    |            |   |                   |              |                   | €(f):<br>FTun<br>Swp |
| -<br>More<br>1 of 2   |                         | .8.000 (<br>s (160 |      | Swe | Hz | <br>VBW 10 | # | 2                 | 00 GH:<br>Hz | .6.000<br>W 1 MH  | Start∶               |
| ·                     |                         |                    |      |     |    |            |   | tus, C:,          |              |                   |                      |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-----------------------------|
| 10520.3            | 45.71                  | 9.28                           | 55                                 | V                         | 132                    | 101                               | 83.54             | -28.54         | Peak                        |
| 10520.3            | 34.41                  | 9.28                           | 43.7                               | V                         | 132                    | 101                               | 63.54             | -19.84         | Average                     |
| 17999              | 47.05                  | 21.66                          | 68.71                              | Н                         | 150                    | 0                                 | 83.54             | -14.83         | Peak                        |
| 17999              | 36.92                  | 21.66                          | 58.58                              | Н                         | 150                    | 0                                 | 63.54             | -4.96          | Average                     |

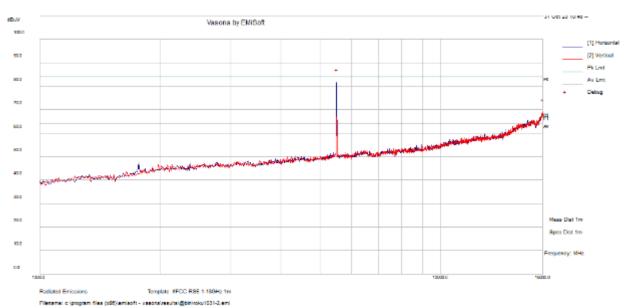



Note: above plot shows all peak emissions below 16GHz pass under average limits

Roku, Inc.

| Trace          | T                       | F |                   |     |        |        |        |          |                | ilent             | ₩ A                  |
|----------------|-------------------------|---|-------------------|-----|--------|--------|--------|----------|----------------|-------------------|----------------------|
| Irace          | 00 GHz<br>dB <b>µ</b> V |   | Mkr1              |     |        | are    |        |          | na: EMi<br>3µV | t Vasor<br>.99 dB |                      |
| <u>1</u> 2 3   |                         |   |                   |     |        |        |        |          |                |                   | #Peak<br>Log         |
| Clear Write    |                         |   |                   |     |        |        |        |          |                |                   | 10<br>10<br>dB/      |
| Max Hold       |                         |   |                   |     |        |        |        |          |                |                   |                      |
| Min Hold       |                         |   |                   |     |        |        |        |          |                |                   | ŧPAvg                |
| -<br>View      |                         |   |                   |     |        |        |        |          |                |                   | M1 S2<br>S3 FS<br>A  |
| Blank          |                         |   |                   |     |        |        |        |          |                |                   | €(f):<br>FTun<br>Swp |
| More<br>1 of 2 | )0 GHz^<br>1 pts)       |   | Stop 1<br>0 155.9 | Swe | Hz     | /BW 10 | #\     |          | 00 GHz<br>Hz   | .6.000<br>W 1 MH  | Start                |
|                |                         |   |                   |     | F file | JRE.GI | /PICTU | tus, C:, | on Stat        | perati            | File O               |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-----------------------------|
| 10561.1            | 44.32                  | 9.46                           | 53.78                              | V                         | 208                    | 14                                | 83.54             | -29.76         | Peak                        |
| 10561.1            | 34.11                  | 9.46                           | 43.57                              | V                         | 208                    | 14                                | 63.54             | -19.97         | Average                     |
| 17999              | 46.82                  | 21.66                          | 68.48                              | Н                         | 150                    | 0                                 | 83.54             | -15.06         | Peak                        |
| 17999              | 36.89                  | 21.66                          | 58.55                              | Н                         | 150                    | 0                                 | 63.54             | -4.99          | Average                     |



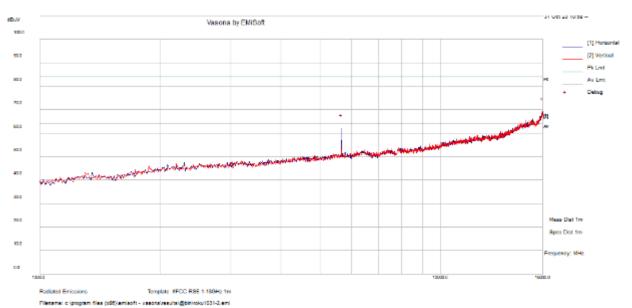

Note: above plot shows all peak emissions below 16GHz pass under average limits

| Trace          | RT                                    |        |     |        |             |        |                   |              | jilent             | ₩ A                  |
|----------------|---------------------------------------|--------|-----|--------|-------------|--------|-------------------|--------------|--------------------|----------------------|
|                | .000 00 GHz<br>58.58 dBµV             | Mkr1 1 |     |        | are         |        | Emissior<br>Atten | na:EMi<br>≥∪ | t Vasor<br>i.99 dB |                      |
| <u>1</u> 2 3   | 10.30 UD <b>4</b> V                   |        |     |        |             |        |                   | <u>vu</u> <  | .33 GE             | #Peak                |
| Clear Write    |                                       |        |     |        |             |        |                   |              |                    | Log<br>10<br>dB/     |
| Max Hold       |                                       |        |     |        |             |        |                   |              |                    |                      |
| -<br>Min Hold  |                                       |        |     |        |             |        |                   |              |                    | ŧPAvg                |
| -<br>Viev      |                                       |        |     |        |             |        |                   |              |                    | 41 S2<br>53 F3<br>A  |
| Blank          |                                       |        |     |        |             |        |                   |              |                    | €(f):<br>FTun<br>Swp |
| More<br>1 of 2 | 000 00 GHz <sup>°</sup><br>(1601 pts) |        | Swe | I Hz   | /<br>/BW 10 | #\     | 2                 | 00 GH:<br>Hz | 6.000<br>W 1 M     | Start                |
|                |                                       |        |     | F file | JRE.GI      | /PICTU | tus, C:           | on Sta       | perati             | File O               |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) | Ant.<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------|-------------------|----------------|-----------------------------|
| 10561.1            | 44.32                  | 9.46                           | 53.78                              | V                         | 208                    | 14                                | 83.54             | -29.76         | Peak                        |
| 10561.1            | 34.11                  | 9.46                           | 43.57                              | V                         | 208                    | 14                                | 63.54             | -19.97         | Average                     |
| 17999              | 47.17                  | 21.66                          | 68.83                              | Н                         | 150                    | 0                                 | 83.54             | -14.71         | Peak                        |
| 17999              | 36.92                  | 21.66                          | 58.58                              | Н                         | 150                    | 0                                 | 63.54             | -4.96          | Average                     |






## Modulation: a mode (OFDM\_6M), Channel= 5500 MHz

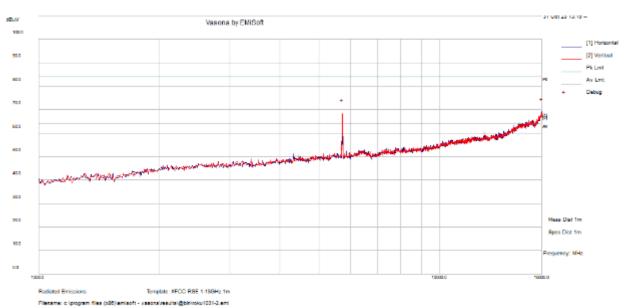
Note: above plot shows all peak emissions below 16GHz pass under average limits

| 🔆 Ag                       | jilent  |                        |                   |        |        |        |       |        | R                 | : T                     | Trace                        |
|----------------------------|---------|------------------------|-------------------|--------|--------|--------|-------|--------|-------------------|-------------------------|------------------------------|
| EMiSoft<br>Ref 96<br>#Peak |         | a: EMi (<br><b>µ</b> V | Emission<br>Atten |        | are    |        | 1     | Mkr1 : | 18.000<br>58.56   | 00 GHz<br>dB <b>µ</b> V | <b>Trace</b><br><u>1</u> 2 3 |
| Log<br>10<br>dB/           |         |                        |                   |        |        |        |       |        |                   |                         | Clear Write                  |
|                            |         |                        |                   |        |        |        |       |        |                   |                         | Max Hold                     |
| #PAvg                      |         |                        |                   |        |        |        |       |        |                   |                         | Min Hold                     |
| M1 S2<br>S3 FS<br>A        |         |                        |                   |        |        |        |       |        |                   |                         | View                         |
| €(f):<br>FTun<br>Swp       |         |                        |                   |        |        |        |       |        |                   |                         | Blank                        |
| Start 1<br>#Res B          |         | 00 GHz<br>Iz           |                   | #\     | BW 10  | Hz     | Sweer |        | 8.000 (<br>s (160 |                         | More<br>1 of 2               |
| File 0                     | peratio | on Stat                | us, C:,           | /PICTU | RE.GIF | file s | aved  |        |                   |                         |                              |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 17999              | 47.03                  | 21.66                          | 68.69                              | Н | 150 | 0                                 | 83.54             | -14.85         | Peak                        |
| 17999              | 36.9                   | 21.66                          | 58.56                              | Н | 150 | 0                                 | 63.54             | -4.98          | Average                     |






## Modulation: a mode (OFDM\_6M), Channel= 5600 MHz

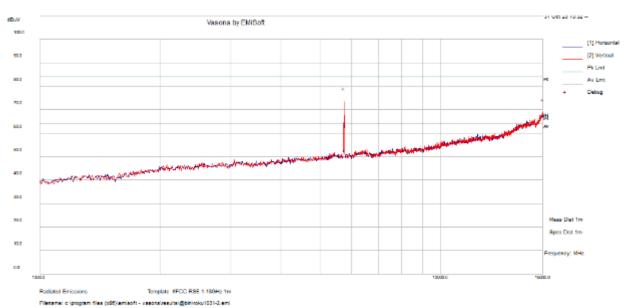
Note: above plot shows all peak emissions below 16GHz pass under average limits

| 🔆 Agilent                                        |                                 |       |        | RT                                   | Trace                 |
|--------------------------------------------------|---------------------------------|-------|--------|--------------------------------------|-----------------------|
| EMiSoft Vasona: EMi E<br>Ref 96.99 dB <b>µ</b> V | mission Software<br>Atten 10 dB |       | Mkr1 1 | 18.000 00 GHz<br>58.59 dB <b>µ</b> V | <b>Trace</b><br>1 2 3 |
| #Peak<br>Log                                     |                                 |       |        |                                      | <u> </u>              |
| 10<br>dB/                                        |                                 |       |        |                                      | Clear Write           |
|                                                  |                                 |       |        |                                      | Max Hold              |
| *PAvg                                            |                                 |       |        |                                      | Min Hold              |
| M1 S2<br>S3 FS<br>A                              |                                 |       |        |                                      | View                  |
| <b>£</b> (f):<br>FTun<br>Swp                     |                                 |       |        |                                      | Blank                 |
| Start 16.000 00 GHz<br>#Res BW 1 MHz             |                                 | 10 Hz |        | 8.000 00 GHz^<br>s (1601 pts)        | More<br>1 of 2        |
| File Operation Stat                              |                                 |       |        |                                      |                       |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 17999              | 47.53                  | 21.66                          | 69.19                              | Н | 150 | 0                                 | 83.54             | -14.35         | Peak                        |
| 17999              | 36.93                  | 21.66                          | 58.59                              | Н | 150 | 0                                 | 63.54             | -4.95          | Average                     |

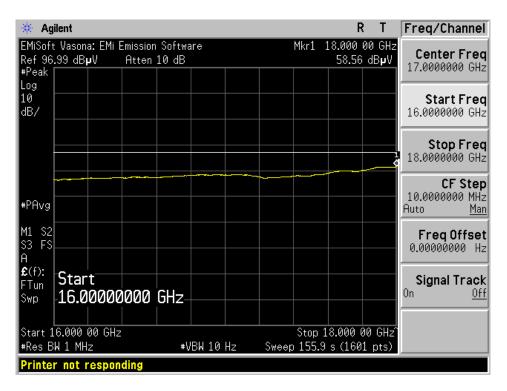





## Modulation: a mode (OFDM\_6M), Channel= 5720 MHz

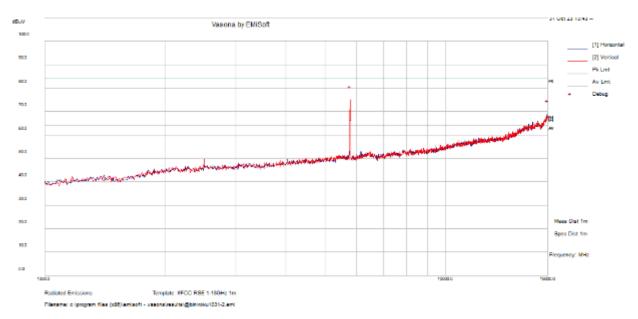
Note: above plot shows all peak emissions below 16GHz pass under average limits

| 🔆 Agilent                                                       |            | RT                                             | Trace          |
|-----------------------------------------------------------------|------------|------------------------------------------------|----------------|
| EMiSoft Vasona: EMi Emission<br>Ref 96.99 dB <b>µ</b> V Atten 1 |            | Mkr1 18.000 00 GHz<br>58.55 dBµV               | Trace          |
| #Peak<br>Log                                                    |            |                                                | <u> </u>       |
| 10<br>dB/                                                       |            |                                                | Clear Write    |
|                                                                 |            |                                                | Max Hold       |
| *PAvg                                                           |            |                                                | Min Hold       |
| M1 S2<br>S3 FS                                                  |            |                                                | View           |
| £(f):<br>FTun Sweep Time<br>Swp 155.9 s                         |            |                                                | Blank          |
| Start 16.000 00 GHz<br>#Res BW 1 MHz                            | #VBW 10 Hz | Stop 18.000 00 GHz<br>Sweep 155.9 s (1601 pts) | More<br>1 of 2 |
| File Operation Status, C:/                                      |            |                                                |                |


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 17999              | 47.39                  | 21.66                          | 69.05                              | Н | 150 | 0                                 | 83.54             | -14.49         | Peak                        |
| 17999              | 36.89                  | 21.66                          | 58.55                              | Н | 150 | 0                                 | 63.54             | -4.99          | Average                     |






Modulation: n20 mode (MCS0), Channel= 5745 MHz

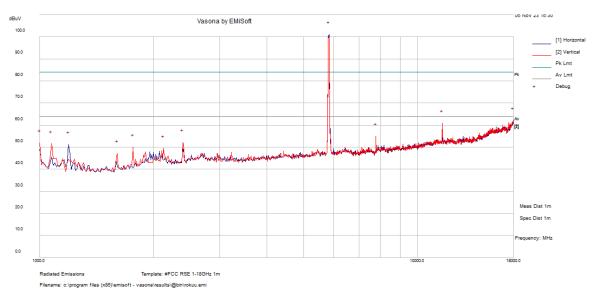
Note: above plot shows all peak emissions below 16GHz pass under average limits



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 17999              | 47.04                  | 21.66                          | 68.7                               | Н | 150 | 0                                 | 83.54             | -14.84         | Peak                        |
| 17999              | 36.9                   | 21.66                          | 58.56                              | Н | 150 | 0                                 | 63.54             | -4.98          | Average                     |






# Modulation: n20 mode (MCS0), Channel= 5785 MHz

Note: above plot shows all peak emissions below 17GHz pass under average limits

| 🔆 Agilent                                                                |                     |                                 | RT                  | Trace                        |
|--------------------------------------------------------------------------|---------------------|---------------------------------|---------------------|------------------------------|
| EMiSoft Vasona: EMi Emission<br>Ref 96.99 dB <b>µ</b> V Atten 1<br>#Peak |                     |                                 | 000 GHz<br>.45 dBµV | <b>Trace</b><br><u>1</u> 2 3 |
| Log<br>10<br>dB/                                                         |                     |                                 |                     | Clear Write                  |
|                                                                          |                     |                                 | 1                   | Max Hold                     |
| #PAvg                                                                    |                     |                                 |                     | Min Hold                     |
| M1 \$2<br>\$3 F\$<br>A                                                   |                     |                                 |                     | View                         |
| £(f):<br>FTun<br>Swp <b>18.00000000</b>                                  | GHz                 |                                 |                     | Blank                        |
| <b>58.45 dBµV</b><br>Start 17.000 000 GHz<br>#Res BW 1 MHz               | #VBW 10 Hz          | Stop 18.000<br>Sweep 77.97 s (1 |                     | <b>More</b><br>1 of 2        |
| File Operation Status, C:/                                               | PICTURE.GIF file sa | ved                             |                     |                              |

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 17999              | 47.29                  | 21.66                          | 68.95                              | Н | 150 | 0                                 | 83.54             | -14.59         | Peak                        |
| 17999              | 36.79                  | 21.66                          | 58.45                              | Н | 150 | 0                                 | 63.54             | -5.09          | Average                     |

Roku, Inc.

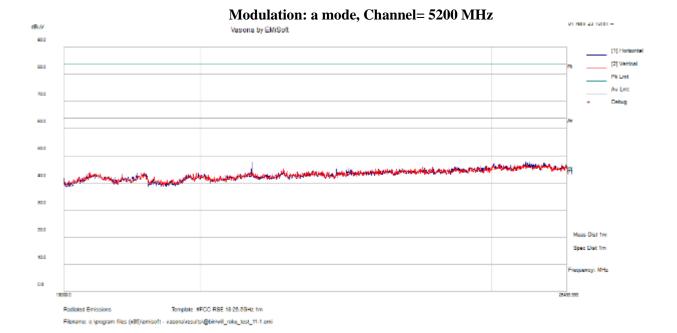



Modulation: n20 mode (MCS0), Channel= 5825 MHz

Note: above plot shows all peak emissions below 17GHz pass under average limits. The channel was tested with the notch filter applied.

Roku, Inc.

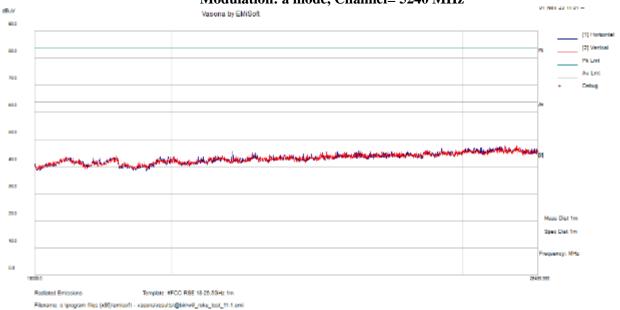
| 🗧 Agilent                 |            |                   | RL                | Sweep             |
|---------------------------|------------|-------------------|-------------------|-------------------|
| MiSoft Vasona: EMi Emissi |            |                   | 000 GHz           | Sweep Time        |
|                           | n 10 dB    | 58.6              | 61 dB <b>µ</b> V_ | 77.97             |
| Peak                      |            |                   |                   | <u>Auto</u> Mar   |
| og                        |            |                   |                   | <b>C</b>          |
| 0<br>IB/                  |            |                   |                   | Sweep             |
|                           |            |                   |                   | <u>Single</u> Con |
|                           |            |                   |                   | Auto Swee         |
|                           |            |                   |                   | Time              |
|                           |            |                   | 4                 | Norm Acc          |
|                           |            |                   |                   |                   |
|                           |            |                   |                   | Gate              |
| PAvg                      |            |                   |                   | 0n <u>Of</u>      |
|                           |            |                   |                   |                   |
| 11 S2                     |            |                   |                   |                   |
| 3 FS                      |            |                   |                   | Gate Setup        |
| 1     I                   |            |                   |                   |                   |
| :(f):                     |            |                   |                   | Doint             |
| Tun                       |            |                   |                   | Points<br>1603    |
| бжр — —                   |            |                   |                   | 100.              |
|                           |            |                   |                   |                   |
| tart 17.000 000 GHz       |            | Stop 18.000       | иии сну           |                   |
| Res BW 1 MHz              | ₩VBW 10 Hz | Sweep 77.97 s (16 |                   |                   |
| lust apply Amplitude C    |            |                   |                   |                   |


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 17999              | 49.45                  | 21.66                          | 71.11                              | Н | 150 | 0                                 | 83.54             | -12.43         | Peak                        |
| 17999              | 36.95                  | 21.66                          | 58.61                              | Н | 150 | 0                                 | 63.54             | -4.93          | Average                     |



# 3) 18-26.5 GHz, Measured at 1 meter

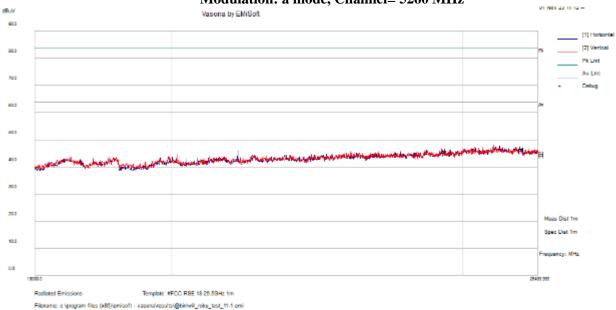
| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|--------|--------------------------------------------|
| 26499              | 41.59                  | 7.79                           | 49.38                              | Н | 150 | 0                                 | 63.54             | -14.16 | Peak<br>compared<br>to<br>Average<br>Limit |






#### Frequency S.A. Reading Corrected Ant. Ant. Turntable Detector Limit Margin Amplitude | Polarity Height Azimuth (Peak (MHz) (dBuV) $(dB\mu V/m)$ (**dB**) (degrees) (dB/m) $(dB\mu V/m)$ (H/V) (**cm**) /Ave.) Peak compared 26499 41.68 7.79 49.47 Η 150 0 63.54 -14.07 to Average Limit

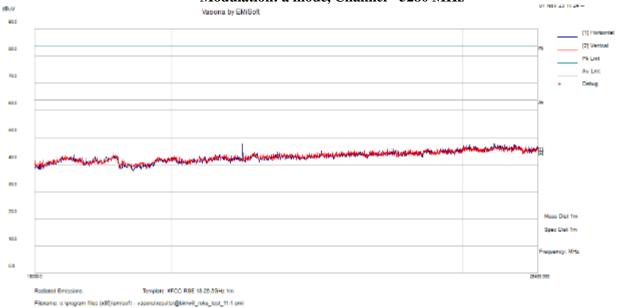
## Report Number: R2310133-407


Roku, Inc.



# Modulation: a mode, Channel= 5240 MHz

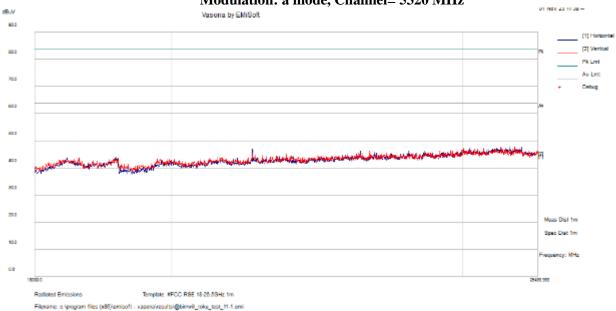
| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 26499              | 41.55                  | 7.79                           | 49.34                              | Н | 150 | 0                                 | 63.54             | -14.2          | Peak<br>compared<br>to<br>Average<br>Limit |






| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 26499              | 41.76                  | 7.79                           | 49.55                              | Н | 150 | 0                                 | 63.54             | -13.99         | Peak<br>compared<br>to<br>Average<br>Limit |

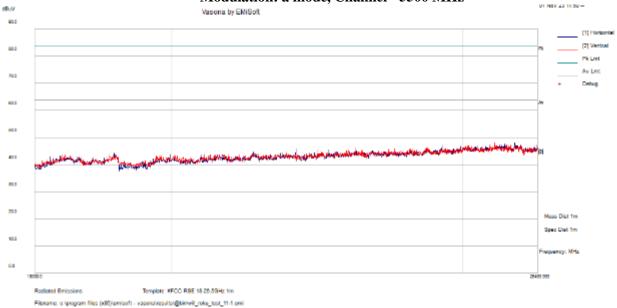
# Modulation: a mode, Channel= 5260 MHz






# Modulation: a mode, Channel= 5280 MHz

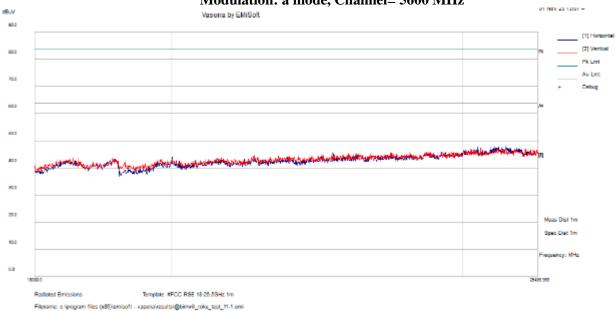
| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.) |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|-----|-----------------------------------|-------------------|----------------|-----------------------------|
| 26499              | 41.49                  | 7.79                           | 49.28                              | Н                         | 150 | 0                                 | 63.54             | -14.26         | Peak<br>compared<br>to      |
| 20499              | -117                   | 1.19                           | 49.20                              | 11                        | 150 | 0                                 | 03.34             | -14.20         | Average<br>Limit            |





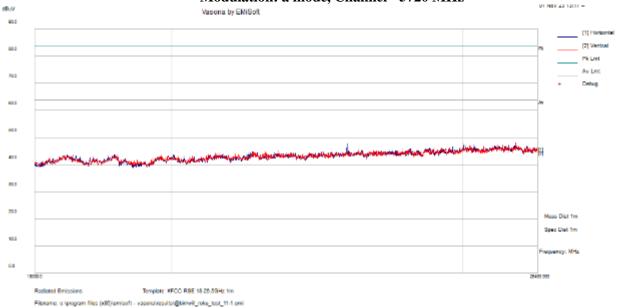

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Polarity |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|----------|-----|-----------------------------------|-------------------|--------|--------------------------------------------|
| 26499              | 41.85                  | 7.79                           | 49.64                              | Н        | 150 | 0                                 | 63.54             | -13.9  | Peak<br>compared<br>to<br>Average<br>Limit |

# Modulation: a mode, Channel= 5320 MHz





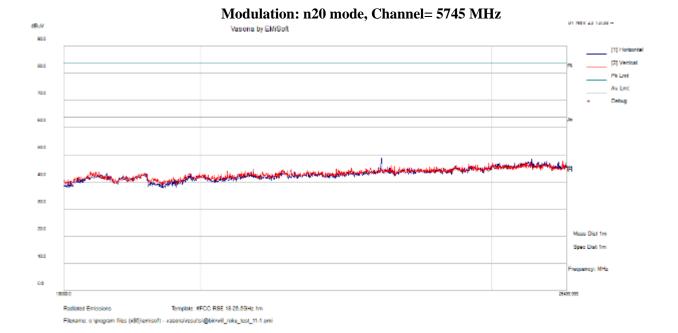

Modulation: a mode, Channel= 5500 MHz


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 26499              | 42.02                  | 7.79                           | 49.81                              | Н | 150 | 0                                 | 63.54             | -13.73         | Peak<br>compared<br>to<br>Average<br>Limit |



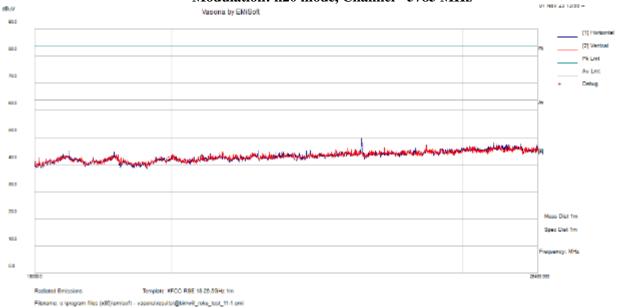


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|--------|--------------------------------------------|
| 26499              | 41.98                  | 7.79                           | 49.77                              | Н | 150 | 0                                 | 63.54             | -13.77 | Peak<br>compared<br>to<br>Average<br>Limit |


#### Modulation: a mode, Channel= 5600 MHz



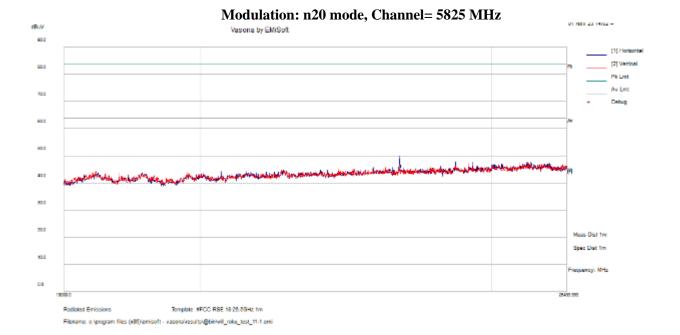
#### Modulation: a mode, Channel= 5720 MHz


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 26499              | 41.78                  | 7.79                           | 49.57                              | Н | 150 | 0                                 | 63.54             | -13.97         | Peak<br>compared<br>to<br>Average<br>Limit |

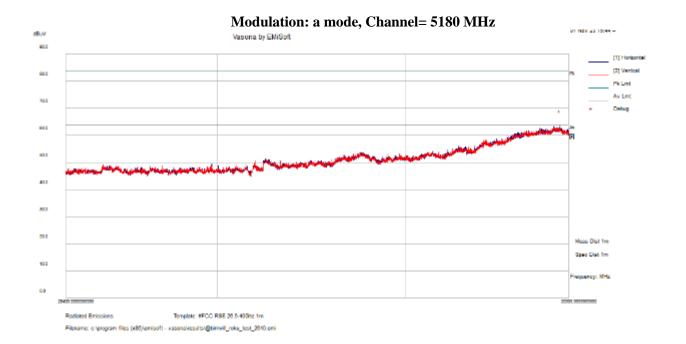




| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|--------|--------------------------------------------|
| 26499              | 41.59                  | 7.79                           | 49.38                              | Н | 150 | 0                                 | 63.54             | -14.16 | Peak<br>compared<br>to<br>Average<br>Limit |



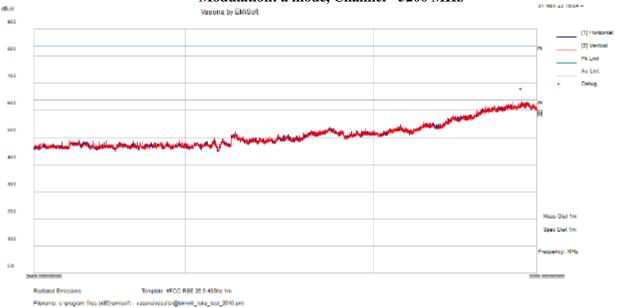




#### Modulation: n20 mode, Channel= 5785 MHz

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 26499              | 41.82                  | 7.79                           | 49.61                              | Н | 150 | 0                                 | 63.54             | -13.93         | Peak<br>compared<br>to<br>Average<br>Limit |



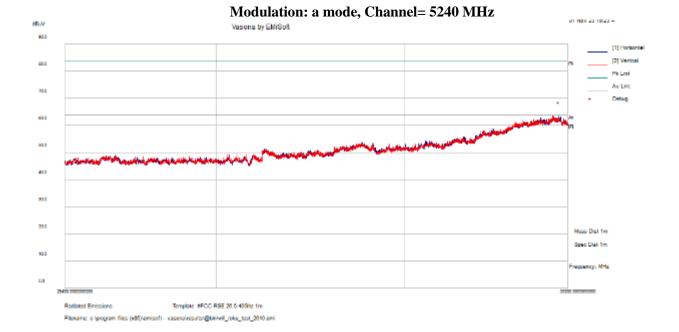



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | 1    | Corrected<br>Amplitude<br>(dBµV/m) | Polarity |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|------|------------------------------------|----------|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 26499              | 42.12                  | 7.79 | 49.91                              | Н        | 150 | 0                                 | 63.54             | -13.63         | Peak<br>compared<br>to<br>Average<br>Limit |



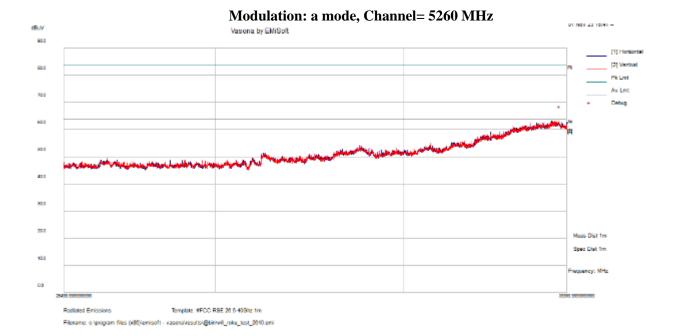
#### 4) 26.5-40 GHz, Measured at 1 meter

| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39485.31           | 49.83                  | 13.37                          | 63.2                               | Н | 150 | 0                                 | 63.54             | -0.34          | Peak<br>compared<br>to<br>Average<br>Limit |



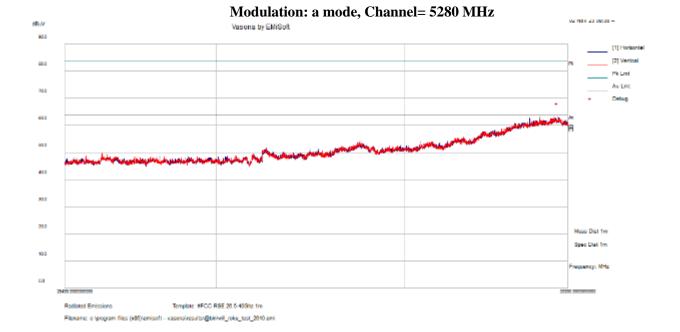



S.A. Reading Corrected Ant. Ant. Turntable Detector Frequency Limit Margin Amplitude | Polarity Height Azimuth (Peak  $(dB\mu V/m)$ (MHz) (dBuV) (**dB**)  $(dB\mu V/m)$ (dB/m)(H/V) (cm) (degrees) /Ave.) Peak compared 49.04 0 39692.03 14.16 63.2 Η 150 63.54 -0.34 to Average Limit


## Modulation: a mode, Channel= 5200 MHz

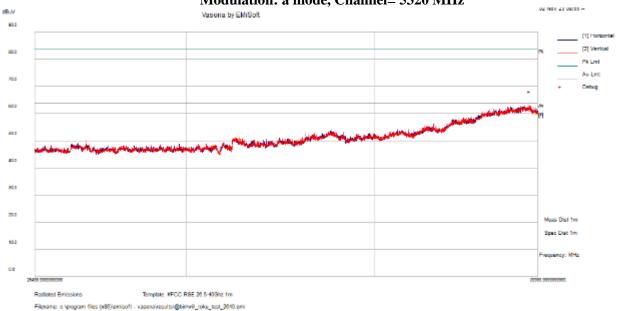





#### S.A. Reading Corrected Ant. Turntable Detector Ant. Frequency Limit Margin Amplitude Factor Azimuth **Polarity** Height (Peak (MHz) (dBuV) $(dB\mu V/m)$ (**dB**) (dB/m) $(dB\mu V/m)$ (H/V) (cm) (degrees) /Ave.) Peak compared 0 39751.09 48.85 14.07 62.92 Η 150 63.54 -0.62 to Average Limit



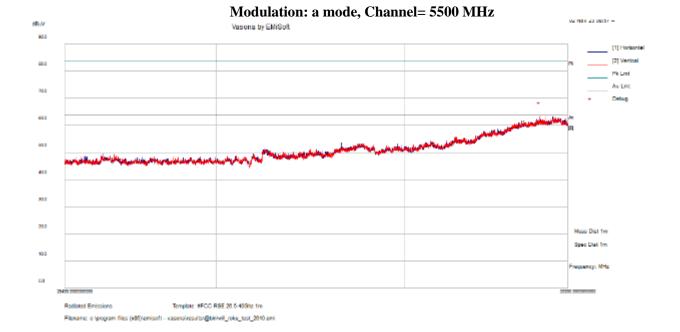



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39649.84           | 49.58                  | 13.65                          | 63.23                              | Н | 150 | 0                                 | 63.54             | -0.31          | Peak<br>compared<br>to<br>Average<br>Limit |



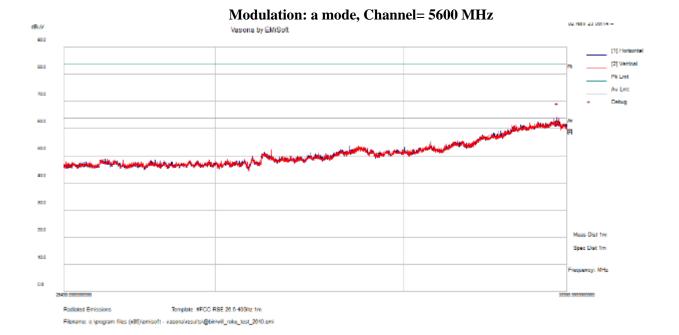


#### S.A. Reading Turntable Corrected Ant. Detector Ant. Frequency Limit Margin Amplitude Factor **Polarity** Azimuth Height (Peak (MHz) (dBuV) $(dB\mu V/m)$ (**dB**) (dB/m) $(dB\mu V/m)$ (H/V) (**cm**) (degrees) /Ave.) Peak compared 39708.91 0 48.76 14.31 63.07 Η 150 63.54 -0.47 to Average Limit



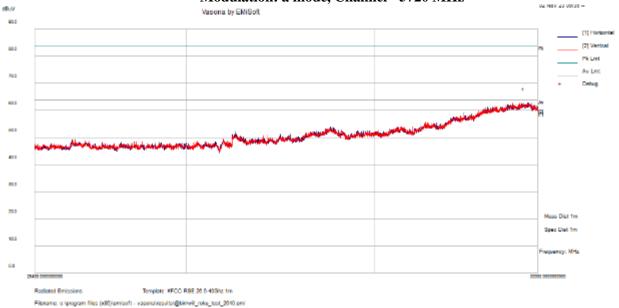



| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39071.88           | 50.53                  | 12.82                          | 63.35                              | Н | 150 | 0                                 | 63.54             | -0.19          | Peak<br>compared<br>to<br>Average<br>Limit |


#### Modulation: a mode, Channel= 5320 MHz



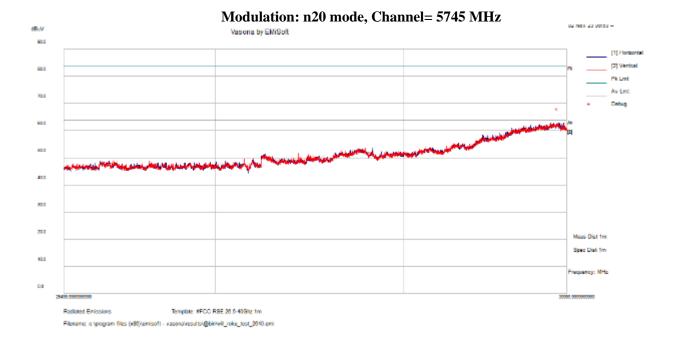



#### S.A. Reading Turntable Corrected Ant. Detector Ant. Frequency Limit Margin Amplitude Factor **Polarity** Azimuth Height (Peak (MHz) (dBuV) $(dB\mu V/m)$ (**dB**) (dB/m) $(dB\mu V/m)$ (H/V) (**cm**) (degrees) /Ave.) Peak compared 0 39675.16 49.29 13.91 63.2 Η 150 63.54 -0.34 to Average Limit



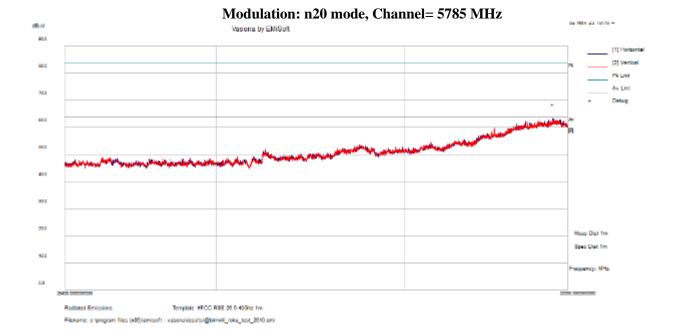


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39523.28           | 49.12                  | 13.82                          | 62.94                              | Н | 150 | 0                                 | 63.54             | -0.6           | Peak<br>compared<br>to<br>Average<br>Limit |

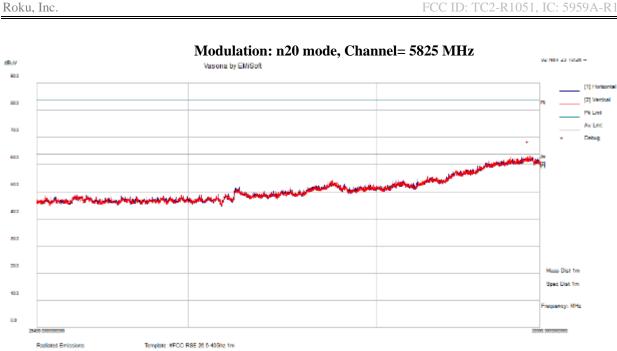





Modulation: a mode, Channel= 5720 MHz


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Ant.<br>Polarity<br>(H/V) |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---------------------------|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39683.59           | 48.88                  | 14.04                          | 62.92                              | Н                         | 150 | 0                                 | 63.54             | -0.62          | Peak<br>compared<br>to<br>Average<br>Limit |






| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39510.63           | 49.64                  | 13.65                          | 63.29                              | Н | 150 | 0                                 | 63.54             | -0.25          | Peak<br>compared<br>to<br>Average<br>Limit |





S.A. Reading Corrected Turntable Ant. Ant. Detector Margin Frequency Limit Amplitude Polarity Height Azimuth (Peak  $(dB\mu V/m)$ (MHz) (dBuV) (**dB**) (dB/m)  $(dB\mu V/m)$ (H/V) (cm) (degrees) /Ave.) Peak compared 39611.88 49.68 13.67 63.35 Η 150 0 63.54 -0.19 to Average Limit

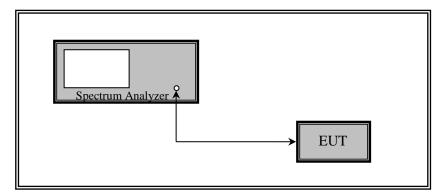


| Frequency<br>(MHz) | S.A. Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) |   |     | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector<br>(Peak<br>/Ave.)                |
|--------------------|------------------------|--------------------------------|------------------------------------|---|-----|-----------------------------------|-------------------|----------------|--------------------------------------------|
| 39611.88           | 49.68                  | 13.64                          | 63.32                              | Н | 150 | 0                                 | 63.54             | -0.22          | Peak<br>compared<br>to<br>Average<br>Limit |

Filename: o iprogram files (x80)/emisoft - vasona/vesu/tsi@biriwil\_roku\_test\_2010.emi

#### Roku, Inc.

# 7 FCC §15.407(e) & ISEDC RSS-247 §6.2 - 6 dB, 26 dB, & 99% - Occupied Bandwidth


#### 7.1 Applicable Standards

As per FCC §15.407(e) and ISEDC RSS-247 6.2.4(1): for equipment operating in the band 5725 – 5850 MHz, the minimum 6 dB bandwidth of U-NII devices shall be 500 kHz.

#### 7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 or 26 dB from the reference level. Record the frequency difference as the minimum emission or emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

#### 7.3 Test Setup Block Diagram



#### 7.4 Test Equipment List and Details

| BACL<br>No | Manufacturer | Description       | Model No. | Serial<br>No.  | Calibration<br>Date | Calibration<br>Interval |
|------------|--------------|-------------------|-----------|----------------|---------------------|-------------------------|
| 00424      | Agilent      | Spectrum Analyzer | E4440A    | US45303<br>156 | 2022-12-19          | 12 Months               |
| 00624      | Agilent      | Spectrum Analyzer | E4446A    | MY48250<br>238 | 2022-05-12          | 12 Months               |

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

#### 7.5 Test Environmental Conditions

| Temperature:              | 20.8°C    |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 34%       |
| ATM Pressure:             | 102.9 kPa |

The testing was performed by Michael Papa from 2023-10-31 to 2023-11-15 at RF test site.

#### 7.6 Test Results

Please refer to the following tables and plots.

#### 5150-5250 MHz

| Channel   | Frequency<br>(MHz) | 99% OBW<br>(MHz) | 26 dB OBW<br>(MHz) |  |  |  |  |
|-----------|--------------------|------------------|--------------------|--|--|--|--|
| 802.11a   |                    |                  |                    |  |  |  |  |
| 36        | 5180               | 17.85            | 33.07              |  |  |  |  |
| 40        | 5200               | 29.47            | 52.71              |  |  |  |  |
| 48        | 5240               | 18.97            | 36.11              |  |  |  |  |
|           | 802.1              | 1n20             |                    |  |  |  |  |
| 36        | 5180               | 18.45            | 34.31              |  |  |  |  |
| 40        | 5200               | 31.64            | 52.88              |  |  |  |  |
| 48        | 5240               | 19.30            | 39.354             |  |  |  |  |
| 802.11n40 |                    |                  |                    |  |  |  |  |
| 38        | 5190               | 36.09            | 39.36              |  |  |  |  |
| 46        | 5230               | 38.76            | 69.46              |  |  |  |  |

| Channel | Frequency<br>(MHz) | 99% OBW<br>(MHz) | 26 dB OBW<br>(MHz) |  |  |  |  |  |  |
|---------|--------------------|------------------|--------------------|--|--|--|--|--|--|
|         | 802.11a            |                  |                    |  |  |  |  |  |  |
| 52      | 5260               | 31.28            | 52.25              |  |  |  |  |  |  |
| 60      | 5300               | 30.77            | 51.30              |  |  |  |  |  |  |
| 64      | 5320               | 18.22            | 32.60              |  |  |  |  |  |  |
|         | 802.1              | 1n20             |                    |  |  |  |  |  |  |
| 52      | 5260               | 33.68            | 55.23              |  |  |  |  |  |  |
| 60      | 5300               | 33.91            | 55.17              |  |  |  |  |  |  |
| 64      | 5320               | 18.50            | 30.09              |  |  |  |  |  |  |
|         | 802.11n40          |                  |                    |  |  |  |  |  |  |
| 54      | 5270               | 54.81            | 103.31             |  |  |  |  |  |  |
| 62      | 5310               | 36.06            | 39.42              |  |  |  |  |  |  |

#### 5250-5350 MHz

#### 5470-5725 MHz

| Channel | Frequency<br>(MHz) | 99% OBW<br>(MHz) | 26 dB OBW<br>(MHz) |
|---------|--------------------|------------------|--------------------|
|         | 802                | .11a             |                    |
| 100     | 5500               | 22.30            | 38.04              |
| 120     | 5600               | 26.64            | 42.31              |
| 140     | 5700               | 17.48            | 26.45              |
| 144     | 5720               | 17.94            | 30.68              |
|         | 802.1              | 1n20             | ·                  |
| 100     | 5500               | 21.77            | 41.44              |
| 120     | 5600               | 29.18            | 46.18              |
| 140     | 5700               | 18.34            | 26.12              |
| 144     | 5720               | 18.34            | 26.57              |
|         | 802.1              | 1n40             | ·                  |
| 102     | 5510               | 36.22            | 44.01              |
| 118     | 5590               | 51.71            | 81.16              |
| 134     | 5670               | 37.12            | 65.08              |
| 142     | 5710               | 36.10            | 43.98              |

| Channel | Frequency<br>(MHz) | 99% OBW<br>(MHz) | 6 dB OBW<br>(MHz) | 6 dB<br>OBW<br>Limit<br>(kHz) | Result |  |  |
|---------|--------------------|------------------|-------------------|-------------------------------|--------|--|--|
|         |                    | 802              | .11a              |                               |        |  |  |
| 149     | 5745               | 28.87            | 16.54             | >500                          | Pass   |  |  |
| 157     | 5785               | 28.70            | 16.53             | >500                          | Pass   |  |  |
| 165     | 5825               | 28.98            | 16.51             | >500                          | Pass   |  |  |
|         |                    | 802.1            | 1n20              |                               |        |  |  |
| 149     | 5745               | 30.71            | 23.98             | >500                          | Pass   |  |  |
| 157     | 5785               | 30.71            | 23.92             | >500                          | Pass   |  |  |
| 165     | 5825               | 30.69            | 24.02             | >500                          | Pass   |  |  |
|         | 802.11n40          |                  |                   |                               |        |  |  |
| 151     | 5755               | 56.08            | 48.32             | >500                          | Pass   |  |  |
| 159     | 5795               | 55.29            | 48.34             | >500                          | Pass   |  |  |

#### 5725-5850 MHz

Note: See Annex A for 6dB, 26dB OBW, and 99OBW test results

## 8 FCC §407(a) & ISEDC RSS-247 §6.2 - Output Power

#### 8.1 Applicable Standards

#### According to FCC §15.407(a):

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz: the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to ISEDC RSS-247 §6.2.1 for frequency band 5150-5250 MHz:

The maximum e.i.r.p. shall not exceed 200 mW or  $10 + 10 \log_{10}$ B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

According to ISEDC RSS-247 §6.2.2 for frequency band 5250-5350 MHz:

The maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log_{10}$ B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or  $17 + 10 \log_{10}B$ , dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.3 for frequency band 5470-5600 MHz and 5650-5725 MHz:

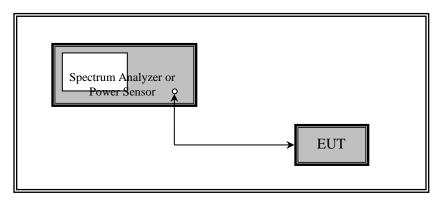
The maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log_{10}$ B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or  $17 + 10 \log_{10}B$ , dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Roku, Inc.

According to ISEDC RSS-247 §6.2.4 for frequency band 5725-5850 MHz:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.


#### 8.2 Measurement Procedure

The measurements are based on ANSI C63.10-2013,

12.3.3.1 Method PM Method PM is Measurement using an RF average power meter. The procedure for this method is as follows: a) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied: 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle. 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level. 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. b) If the transmitter does not transmit continuously, measure the duty cycle D of the transmitter output signal as described in 12.2. c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter. d) Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25% }.

12.3.2.2 Method SA-1 Method SA-1 uses trace averaging with the EUT transmitting at full power throughout each sweep. The procedure for this method is as follows: a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW  $\geq$  3 MHz. d) Number of points in sweep  $\geq$  [2 × span / RBW]. (This gives bin-to-bin spacing  $\leq$  RBW / 2, so that narrowband signals are not lost between frequency bins.) e) Sweep time = auto. f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle  $\geq$  98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run." h) Trace average at least 100 traces in power averaging (rms) mode. i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the signal using the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the signal using the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the signal using the spectrum levels extending across the 26 dB EBW or 99% OBW of the spectrum

#### 8.3 Test Setup Block Diagram



#### 8.4 Test Equipment List and Details

| BACL<br>No | Manufacturer    | Description     | Model No. | Serial<br>No.                      | Calibration<br>Date | Calibration<br>Interval |
|------------|-----------------|-----------------|-----------|------------------------------------|---------------------|-------------------------|
| 697        | ETS-LINDGREN    | Power Sensor    | 7002-006  | 160097                             | 2023-02-20          | 12 Months               |
| 00912      | Rhode & Schwarz | Signal Analyzer | FSV40     | 1321.300<br>8k39-<br>101203-<br>UW | 2023-06-02          | 12 Months               |

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

#### 8.5 Test Environmental Conditions

| Temperature:              | 20.8°C    |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 34%       |
| ATM Pressure:             | 102.9 kPa |

The testing was performed by Michael Papa from 2023-10-31 to 2023-12-06 at RF test site.

#### 8.6 Test Results

5150-5250 MHz

#### **FCC/IC Results**

| Channel | Frequency<br>(MHz) | Antenna<br>Gain (dBi) | Conducted<br>Output<br>Power (dBm) | FCC/IC<br>Limit<br>(dBm) | EIRP<br>(dBm) | EIRP<br>Limit<br>(dBm) | Result |  |
|---------|--------------------|-----------------------|------------------------------------|--------------------------|---------------|------------------------|--------|--|
|         |                    |                       | 802.11a                            |                          |               |                        |        |  |
| 36      | 5180               | 3                     | 10.49                              | <24                      | 13.49         | <22.30                 | Pass   |  |
| 40      | 5200               | 3                     | 14.08                              | <24                      | 17.08         | <23                    | Pass   |  |
| 48      | 5240               | 3                     | 14.21                              | <24                      | 17.21         | <23                    | Pass   |  |
|         |                    |                       | 802.11n20                          |                          |               |                        |        |  |
| 36      | 5180               | 3                     | 10.22                              | <24                      | 13.22         | <22.55                 | Pass   |  |
| 40      | 5200               | 3                     | 14.18                              | <24                      | 17.18         | <23                    | Pass   |  |
| 48      | 5240               | 3                     | 13.98                              | <24                      | 16.98         | <23                    | Pass   |  |
|         | 802.11n40          |                       |                                    |                          |               |                        |        |  |
| 38      | 5190               | 3                     | 9.07                               | <24                      | 12.07         | <23                    | Pass   |  |
| 46      | 5230               | 3                     | 13.88                              | <24                      | 16.88         | <23                    | Pass   |  |

*Note: EIRP*(*dBm*) = *Corrected Output Power*(*dBm*) + *Antenna Gain*(*dBi*)

*Note: For 5150MHz-5250MHz for FCC: the maximum conducted output power shall not exceed 250 mW. Here B is the 26dB bandwidth in megahertz. In this instance B was chosen to be the lowest measured BW rounded down to represent the worst case limit.* 

Note: For 5150MHz-5250MHz for IC: the maximum e.i.r.p shall not exceed 200 mW or  $10 + 10 \log 10B$ , dBm, whichever is less. Here B is the 99% emission bandwidth in megahertz. In this instance B was chosen to be the lowest measured BW rounded down to represent the worst case limit.

| Channel | Frequency<br>(MHz) | Antenna<br>Gain (dBi) | Conducted<br>Output<br>Power (dBm) | FCC/IC<br>Limit<br>(dBm) | EIRP<br>(dBm) | EIRP<br>Limit<br>(dBm) | Result |  |
|---------|--------------------|-----------------------|------------------------------------|--------------------------|---------------|------------------------|--------|--|
|         |                    |                       | 802.11a                            |                          |               |                        |        |  |
| 52      | 5260               | 3                     | 14.19                              | <24                      | 17.19         | <30                    | Pass   |  |
| 60      | 5300               | 3                     | 13.78                              | <24                      | 16.78         | <30                    | Pass   |  |
| 64      | 5320               | 3                     | 11.21                              | <23.55                   | 14.21         | <29.55                 | Pass   |  |
|         |                    |                       | 802.11n20                          |                          |               |                        |        |  |
| 52      | 5260               | 3                     | 13.89                              | <24                      | 16.89         | <30                    | Pass   |  |
| 60      | 5300               | 3                     | 14.29                              | <24                      | 17.29         | <30                    | Pass   |  |
| 64      | 5320               | 3                     | 10.39                              | <23.3                    | 13.39         | <29.3                  | Pass   |  |
|         | 802.11n40          |                       |                                    |                          |               |                        |        |  |
| 54      | 5270               | 3                     | 14.28                              | <24                      | 17.28         | <30                    | Pass   |  |
| 62      | 5310               | 3                     | 9.38                               | <24                      | 12.38         | <30                    | Pass   |  |

#### 5250-5350 MHz

*Note: EIRP*(*dBm*) = *Corrected Output Power*(*dBm*) + *Antenna Gain*(*dBi*)

Note: For 5250MHz-5350MHz for FCC: the maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log 10B$ , dBm, whichever is less. Here B is the 26dB bandwidth in megahertz. In this instance B was chosen to be the lowest measured BW rounded down to represent the worst case limit.

Note: For 5250MHz-5350MHz for IC: the maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log 10B$ , dBm, whichever is less. Here B is the 99% emission bandwidth in megahertz. In this instance B was chosen to be the lowest measured BW rounded down to represent the worst case limit.

| Channel | Frequency<br>(MHz) | Antenna<br>Gain (dBi) | Conducted<br>Output<br>Power (dBm) | FCC/IC<br>Limit<br>(dBm) | EIRP<br>(dBm) | EIRP<br>Limit<br>(dBm) | Result |
|---------|--------------------|-----------------------|------------------------------------|--------------------------|---------------|------------------------|--------|
|         |                    | •                     | 802.11a                            |                          |               |                        |        |
| 100     | 5500               | 3                     | 12.88                              | <24                      | 15.88         | <30                    | Pass   |
| 120     | 5600               | 3                     | 11.95                              | <24                      | 14.95         | <30                    | Pass   |
| 140     | 5700               | 3                     | 10.96                              | <23.3                    | 13.96         | <29.3                  | Pass   |
| 144     | 5710-5725          | 3                     | 9.12                               | <24                      | 12.12         | <30                    | Pass   |
| 144     | 5725-5730          | 3                     | 2.68                               | <30                      | 5.68          | <30                    | Pass   |
|         |                    |                       | 802.11n20                          |                          |               |                        |        |
| 100     | 5500               | 3                     | 11.81                              | <24                      | 14.81         | <30                    | Pass   |
| 120     | 5600               | 3                     | 12.02                              | <24                      | 15.02         | <30                    | Pass   |
| 140     | 5700               | 3                     | 9.9                                | <23.55                   | 12.9          | <29.55                 | Pass   |
| 144     | 5710-5725          | 3                     | 7.93                               | <24                      | 10.93         | <30                    | Pass   |
| 144     | 5725-5730          | 3                     | 2.06                               | <30                      | 5.06          | <30                    | Pass   |
|         |                    | -                     | 802.11n40                          |                          |               |                        |        |
| 102     | 5510               | 3                     | 8.64                               | <24                      | 11.64         | <30                    | Pass   |
| 110     | 5550               | 3                     | 12.24                              | <24                      | 15.24         | <30                    | Pass   |
| 118     | 5590               | 3                     | 13.21                              | <24                      | 16.21         | <30                    | Pass   |
| 134     | 5670               | 3                     | 8.02                               | <24                      | 11.02         | <30                    | Pass   |
| 142     | 5690-5725          | 3                     | 5.75                               | <24                      | 8.75          | <30                    | Pass   |
| 142     | 5725-5730          | 3                     | -6.43                              | <30                      | -3.43         | <30                    | Pass   |

#### 5470-5725 MHz

Note: This table also includes straddle channel power measurements. These are shown in below screenshots Note: EIRP(dBm) = Corrected Output Power(dBm) + Antenna Gain(dBi)

Note: For 5470-5725 MHzfor FCC: the maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log 10B$ , dBm, whichever is less. Here B is the 26dB bandwidth in megahertz. In this instance B was chosen to be the lowest measured BW rounded down to represent the worst case limit.

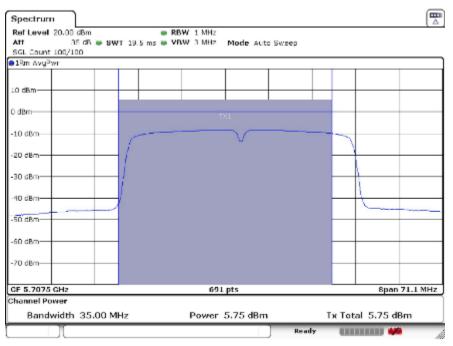
Note: For 5470-5725 MHzfor IC: the maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log 10B$ , dBm, whichever is less. Here B is the 99% emission bandwidth in megahertz. In this instance B was chosen to be the lowest measured BW rounded down to represent the worst case limit.

| Channel | Frequency<br>(MHz) | Antenna<br>Gain (dBi) | Conducted<br>Output<br>Power (dBm) | FCC/IC<br>Limit<br>(dBm) | Result |  |  |
|---------|--------------------|-----------------------|------------------------------------|--------------------------|--------|--|--|
|         |                    |                       | 802.11a                            |                          |        |  |  |
| 149     | 5745               | 3                     | 12.28                              | <30                      |        |  |  |
| 157     | 5785               | 3                     | 12.36                              | <30                      | Pass   |  |  |
| 165     | 5825               | 3                     | 12.44                              | <30                      |        |  |  |
|         |                    | -                     | 802.11n20                          |                          |        |  |  |
| 149     | 5745               | 3                     | 12.21                              | <30                      |        |  |  |
| 157     | 5785               | 3                     | 12.33                              | <30                      | Pass   |  |  |
| 165     | 5825               | 3                     | 12.4                               | <30                      |        |  |  |
|         | 802.11n40          |                       |                                    |                          |        |  |  |
| 151     | 5755               | 3                     | 12.96                              | <30                      | Pass   |  |  |
| 159     | 5795               | 3                     | 12.61                              | <30                      | r ass  |  |  |

#### 5725-5850 MHz

| A mode       |
|--------------|
| 5710-5725MHz |




Date: 6.DEC.2023 11:20:07

#### N20 mode 5710-5725MHz




Date: 6.DEC.2023 11:19:17

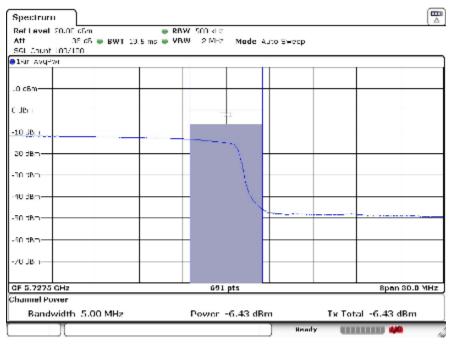
N40 mode 5690-5725MHz



Date: 6.DEC.2023 13:28:01

# A mode 5725-5730




Date: 6.DEC.2023 11:24:09





Date: 6.DEC.2023 11:25:48

## N40 mode 5725-5730



Date: 6 DEC 2023 13:34:48

#### FCC §15.407(a) & ISEDC RSS-247 §6.2 - Power Spectral Density 9

## 9.1 Applicable Standards

#### According to FCC §15.407(a):

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to ISEDC RSS-247 §6.2.1 for frequency band 5150-5250 MHz:

The maximum e.i.r.p. shall not exceed 200 mW or  $10 + 10 \log 10B$ , dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

According to ISEDC RSS-247 §6.2.2 for frequency band 5250-5350 MHz:

The maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log_{10}$ B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or  $17 + 10 \log_{10} B$ , dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.3 for frequency band 5470-5600 MHz and 5650-5725 MHz:

The maximum conducted output power shall not exceed 250 mW or  $11 + 10 \log_{10}$ B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

Roku, Inc.

The maximum e.i.r.p. shall not exceed 1.0 W or  $17 + 10 \log_{10}B$ , dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.4 for frequency band 5725-5850 MHz:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

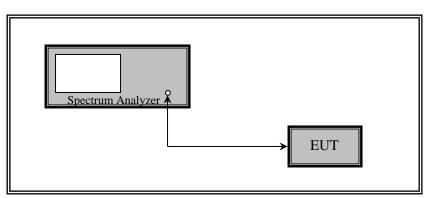
## 9.2 Measurement Procedure

(i) Set span to encompass the entire emission bandwidth (EBW) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW  $\geq$  3 MHz.

(iv) Number of points in sweep  $\geq 2$  Span / RBW. (This ensures that bin-to-bin spacing is  $\leq$  RBW/2, so that narrowband signals are not lost between frequency bins.)


(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle  $\ge$  98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run". (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the 26 dB EBW of the signal using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges. If the spectrum analyzer does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW of the spectrum.

## 9.3 Test Setup Block Diagram



#### 9.4 Test Equipment List and Details

| BACL<br>No | Manufacturer    | Description       | Model No. | Serial<br>No.                      | Calibration<br>Date | Calibration<br>Interval |
|------------|-----------------|-------------------|-----------|------------------------------------|---------------------|-------------------------|
| 00424      | Agilent         | Spectrum Analyzer | E4440A    | US45303<br>156                     | 2022-12-19          | 12 Months               |
| 00912      | Rhode & Schwarz | Signal Analyzer   | FSV40     | 1321.300<br>8k39-<br>101203-<br>UW | 2023-06-02          | 12 Months               |

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

#### 9.5 Test Environmental Conditions

| Temperature:              | 20.8°C    |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 34%       |
| ATM Pressure:             | 102.9 kPa |

The testing was performed by Michael Papa from 2023-10-31 to 2023-12-06 at RF test site.

Roku, Inc.

#### 9.6 Test Results

| Channel   | Frequency<br>(MHz) | PSD<br>(dBm/MHz) | PSD<br>(dBm/MHz) | E.I.R.P.<br>PSD<br>(dBm/MHz) | E.I.R.P.<br>PSD Limit<br>(dBm/MHz) | Result |  |
|-----------|--------------------|------------------|------------------|------------------------------|------------------------------------|--------|--|
|           |                    |                  | 802.11a          |                              |                                    |        |  |
| 36        | 5180               | -0.17            |                  | 2.83                         | <10                                | Pass   |  |
| 40        | 5200               | 3.61             | <11              | 6.61                         | <10                                | Pass   |  |
| 48        | 5240               | 3.17             |                  | 6.17                         | <10                                | Pass   |  |
|           | 802.11n20          |                  |                  |                              |                                    |        |  |
| 36        | 5180               | -0.82            |                  | 2.18                         | <10                                | Pass   |  |
| 40        | 5200               | 3.28             | <11              | 6.28                         | <10                                | Pass   |  |
| 48        | 5240               | 3.30             |                  | 6.30                         | <10                                | Pass   |  |
| 802.11n40 |                    |                  |                  |                              |                                    |        |  |
| 38        | 5190               | -4.77            | <11              | -1.77                        | <10                                | Pass   |  |
| 46        | 5230               | 0.57             | <11              | 3.57                         | <10                                | Pass   |  |

#### 5150-5250 MHz

*Note: EIRP PSD*(*dBm/MHz*) = *PSD* (*dBm/MHz*) + *Antenna Gain*(*dBi*) *Note: The antenna gain provided by the customer was 3.0 dBi* 

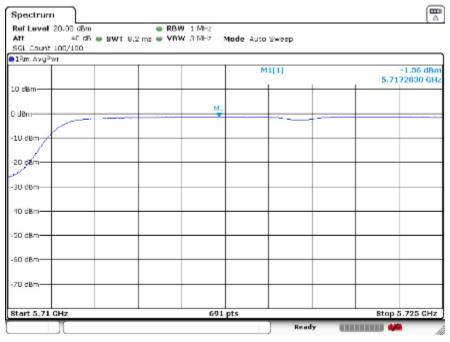
#### 5250-5350 MHz

| Channel   | Frequency<br>(MHz) | PSD (dBm/MHz) | FCC/IC Limit<br>(dBm/MHz) | Result |  |  |  |  |
|-----------|--------------------|---------------|---------------------------|--------|--|--|--|--|
| 802.11a   |                    |               |                           |        |  |  |  |  |
| 52        | 5260               | 3.59          |                           | Pass   |  |  |  |  |
| 60        | 5300               | 3.577         | <11                       | Pass   |  |  |  |  |
| 64        | 5320               | -0.42         |                           | Pass   |  |  |  |  |
|           | 802.11n20          |               |                           |        |  |  |  |  |
| 52        | 5260               | 3.55          |                           | Pass   |  |  |  |  |
| 60        | 5300               | 3.34          | <11                       | Pass   |  |  |  |  |
| 64        | 5320               | -1.54         |                           | Pass   |  |  |  |  |
| 802.11n40 |                    |               |                           |        |  |  |  |  |
| 54        | 5270               | -0.02         | <11                       | Pass   |  |  |  |  |
| 62        | 5310               | -5.34         | <11<br><                  | Pass   |  |  |  |  |

| Channel | Frequency<br>(MHz) | PSD (dBm/MHz)     | FCC/IC Limit<br>(dBm/MHz) | Result |  |  |  |
|---------|--------------------|-------------------|---------------------------|--------|--|--|--|
| 802.11a |                    |                   |                           |        |  |  |  |
| 100     | 5500               | 1.63              |                           | Pass   |  |  |  |
| 120     | 5600               | 3.30              |                           | Pass   |  |  |  |
| 140     | 5670               | -1.62             | <11                       | Pass   |  |  |  |
| 144     | 5720               | -0.23             |                           | Pass   |  |  |  |
| 144     | 5710-5725          | -1.36             | -                         | Pass   |  |  |  |
| 144*    | 5725-5730          | -4.76 dBm/500kHz  | <30 dBm/500kHz            | Pass   |  |  |  |
|         | I                  | 802.11n20         |                           |        |  |  |  |
| 100     | 5500               | 0.44              |                           | Pass   |  |  |  |
| 120     | 5600               | 3.26              |                           | Pass   |  |  |  |
| 140     | 5670               | -1.29             | <11                       | Pass   |  |  |  |
| 144     | 5720               | -1.79             |                           | Pass   |  |  |  |
| 144     | 5710-5725          | -2.68             |                           | Pass   |  |  |  |
| 144*    | 5725-5730          | -6.15 dBm/500kHz  | <30 dBm/500kHz            | Pass   |  |  |  |
|         |                    | 802.11n40         |                           |        |  |  |  |
| 102     | 5510               | -5.74             |                           | Pass   |  |  |  |
| 118     | 5590               | 0.23              |                           | Pass   |  |  |  |
| 134     | 5670               | -2.21             | <11                       | Pass   |  |  |  |
| 142     | 5710               | -7.35             |                           | Pass   |  |  |  |
| 1332    | 5690-5725          | -8.23             |                           | Pass   |  |  |  |
| 132*    | 5725-5730          | -13.60 dBm/500kHz | <30 dBm/500kHz            | Pass   |  |  |  |

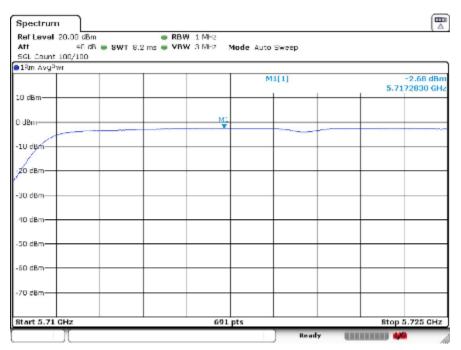
#### 5470-5725 MHz

Note\*: Due to channel being in U-NII-3 band, PSD and Limit is dBm/500kHz.


| Channel | Frequency<br>(MHz) | PSD<br>(dBm/510kHz) | FCC/IC Limit<br>(dBm/500kHz) | Result |  |  |
|---------|--------------------|---------------------|------------------------------|--------|--|--|
|         |                    | 802.11a             |                              |        |  |  |
| 149     | 5745               | 1.34                |                              | Pass   |  |  |
| 157     | 5785               | 1.86                | <30                          | Pass   |  |  |
| 165     | 5825               | 1.48                |                              | Pass   |  |  |
|         | 802.11n20          |                     |                              |        |  |  |
| 149     | 5745               | 1.17                |                              | Pass   |  |  |
| 157     | 5785               | 1.38                | <30                          | Pass   |  |  |
| 165     | 5825               | 1.08                |                              | Pass   |  |  |
|         |                    | 802.11n40           |                              |        |  |  |
| 151     | 5755               | -1.71               | <30                          | Pass   |  |  |
| 159     | 5795               | -1.56               | <30                          | Pass   |  |  |

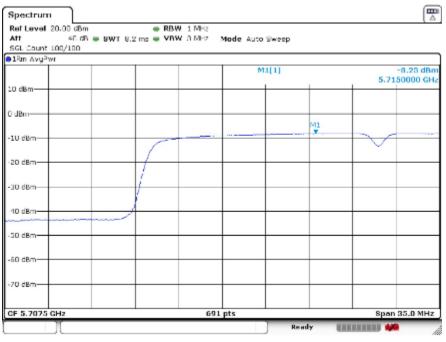
#### 5725-5850 MHz

Note: See Annex B for Power Spectrum Density test results Note: 510kHz was used for measurements to demonstrate worst-case compliance


Note: Straddle channles shown below.

A mode 5710-5725MHz Ant A




Date: 6.DEC.2023 14:10:43

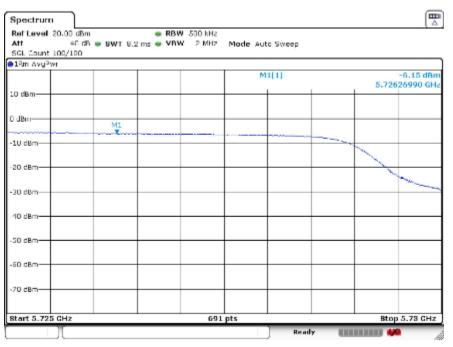
#### N20 mode 5710-5725MHz




Date: 6.DEC.2023 14:11:26

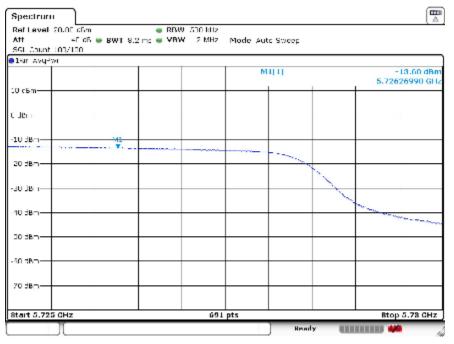
| N40 mode     |
|--------------|
| 5690-5725MHz |




Date: 6.DEC.2023 14:30:15

# A mode 5725-5730




Date: 6.DEC.2023 14:08:53





Date: 6.DEC.2023 14:08:16

# N40 mode 5725-5730



Date: 6 DEC 2020 14:07:03

Report Number: R2310133-407

# 10 FCC §15.407(h) & ISEDC RSS-247 §6.3 – Dynamic Frequency Selection

### **10.1 Applicable Standards**

FCC CFR47 §15.407 (h), RSS-247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

|                                 | <b>Operational Mode</b> |                                     |                               |  |  |
|---------------------------------|-------------------------|-------------------------------------|-------------------------------|--|--|
| Requirement                     | Master                  | Client (Without radar<br>detection) | Client (With radar detection) |  |  |
| Non-Occupancy Period            | Yes                     | Not Required                        | Yes                           |  |  |
| DFS Detection Threshold         | Yes                     | Not Required                        | Yes                           |  |  |
| Channel Availability Check Time | Yes                     | Not Required                        | Not Required                  |  |  |
| U-NII Detection Bandwidth       | Yes                     | Not Required                        | Yes                           |  |  |

#### Table 2: Applicability of DFS requirements during normal operation

|                                   | Operational Mode                                |                                   |  |  |
|-----------------------------------|-------------------------------------------------|-----------------------------------|--|--|
| Requirement                       | Master Device or Client<br>with Radar Detection | Client Without<br>Radar Detection |  |  |
| DFS Detection Threshold           | Yes                                             | Not Required                      |  |  |
| Channel Closing Transmission Time | Yes                                             | Yes                               |  |  |
| Channel Move Time                 | Yes                                             | Yes                               |  |  |
| U-NII Detection Bandwidth         | Yes                                             | Not Required                      |  |  |

| Additional requirements for devices<br>with multiple bandwidth modes                                                                                               | Master Device or Client<br>with Radar Detection | Client Without<br>Radar Detection                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| U-NII Detection Bandwidth and<br>Statistical Performance Check                                                                                                     | All BW modes must be tested                     | Not required                                               |  |  |  |  |
| Channel Move Time and Channel<br>Closing Transmission Time                                                                                                         | Test using widest BW mode<br>available          | Test using the widest<br>BW mode available<br>for the link |  |  |  |  |
| All other tests                                                                                                                                                    | Any single BW mode                              | Not required                                               |  |  |  |  |
| <b>Note:</b> Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the media data string handwidth. Ear |                                                 |                                                            |  |  |  |  |

within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Report Number: R2310133-407

| Maximum Transmit Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Value (See Notes 1, 2 and 3) |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| EIRP≥ 200 milliwatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -64 dBm                      |  |  |  |
| EIRP< 200 milliwatt and<br>power spectral density < 10dBm/MHz                                                                                                                                                                                                                                                                                                                                                                                                                                           | -62 dBm                      |  |  |  |
| EIRP< 200 milliwatt that do not meet the<br>power spectral density requirement                                                                                                                                                                                                                                                                                                                                                                                                                          | -64 dBm                      |  |  |  |
| Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.<br>Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.<br>Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. |                              |  |  |  |

## Table 3: Interference Threshold for Master and Client with Radar Detection

# Table 4: DFS Response Requirement Values

| Parameter                         | Value                                                                                                          |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Non-occupancy period              | Minimum 30 minutes                                                                                             |  |  |
| Channel Availability Check Time   | 60 seconds                                                                                                     |  |  |
| Channel Move Time                 | 10 seconds See Note 1.                                                                                         |  |  |
| Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. <i>See Notes 1 and 2</i> . |  |  |
| U-NII Detection Bandwidth         | Minimum 100% of the UNII 99% transmission power<br>bandwidth. <i>See Note 3</i> .                              |  |  |

**Note 1**: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

**Note 2**: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

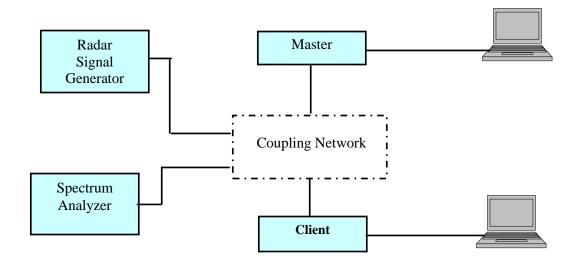
**Note 3**: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

| Table 5: Short Pulse Radar Test Waveform |
|------------------------------------------|
|------------------------------------------|

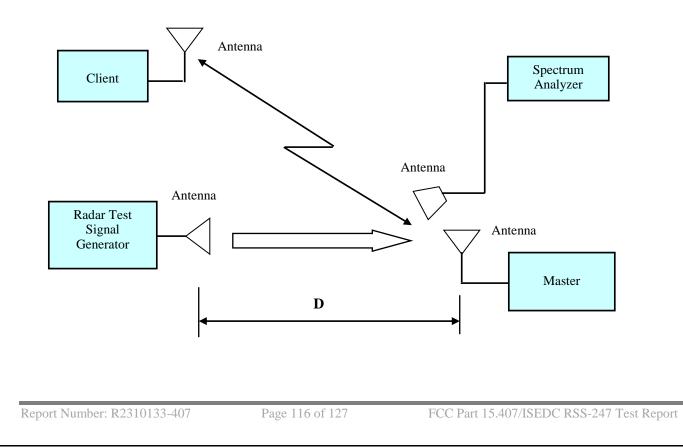
| Radar Type                                                                                                                                   | Pulse Width<br>(Microseconds)     | PRI<br>(Microseconds)                                                                                                                                                                                                                                                                                | Pulses                                                                                                                                                               | Minimum<br>Percentage<br>of<br>Successful<br>Detection | Minimum<br>Number of<br>Trials |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|--|--|--|
| 0                                                                                                                                            | 1                                 | 1428                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                   | See Note 1                                             | See Note 1                     |  |  |  |
| 1                                                                                                                                            | 1                                 | Test A: 15 unique<br>PRI values<br>randomly selected<br>from the list of 23<br>PRI values in<br>Table 5a<br>Test B: 15 unique<br>PRI values<br>randomly selected<br>within the range<br>of 518-3066 µsec,<br>with a minimum<br>increment of 1<br>µsec, excluding<br>PRI values<br>selected in Test A | $\operatorname{Roundup} \left\{ \begin{array}{l} \left( \frac{1}{360} \right) \\ \left( \frac{19 \cdot 10^6}{\operatorname{PRI}_{exc}} \right) \end{array} \right\}$ | 60%                                                    | 30                             |  |  |  |
| 2                                                                                                                                            | 1-5                               | 150-230                                                                                                                                                                                                                                                                                              | 23-29                                                                                                                                                                | 60%                                                    | 30                             |  |  |  |
| 3                                                                                                                                            | 6-10                              | 200-500                                                                                                                                                                                                                                                                                              | 16-18                                                                                                                                                                | 60%                                                    | 30                             |  |  |  |
| 4                                                                                                                                            | 11-20                             | 200-500                                                                                                                                                                                                                                                                                              | 12-16                                                                                                                                                                | 60%                                                    | 30                             |  |  |  |
|                                                                                                                                              | Aggregate (Radar Types 1-4)80%120 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                        |                                |  |  |  |
| <b>Note 1</b> : Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. |                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                        |                                |  |  |  |

Table 6: Long Pulse Radar Test Signal

| Radar<br>Type | Bursts | Chirp<br>Width<br>(MHz) | PRI<br>(usec) | Number<br>of Pulses<br>per Burst | Number<br>of Bursts | Minimum<br>Percentage<br>of<br>Successful<br>Detection | Minimum<br>Number<br>of<br>Trials |
|---------------|--------|-------------------------|---------------|----------------------------------|---------------------|--------------------------------------------------------|-----------------------------------|
| 5             | 50-100 | 5-20                    | 1000-2000     | 1-3                              | 8-20                | 80%                                                    | 30                                |


 Table 7: Frequency Hopping Radar Test Signal

| Radar<br>Type | Pulse<br>Width<br>(usec) | PRI<br>(usec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Minimum<br>Percentage<br>of<br>Successful<br>Detection | Minimum<br>Number<br>of<br>Trials |
|---------------|--------------------------|---------------|----------------------|--------------------------|-----------------------------------------|--------------------------------------------------------|-----------------------------------|
| 6             | 1                        | 333           | 9                    | 0.333                    | 300                                     | 70%                                                    | 30                                |


# 10.2 DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.

# 10.3 System Block Diagram



# **10.4 Radiated Method**



# **10.5 Test Procedure**

The EUT was connected to a certified master device (FCC ID: S9GH350, IC: 5912A-H350). A spectrum analyzer was used as a monitor that verifies the EUT's status, which includes the Channel Closing Transmission Time and the Channel Move Time.

BACL use type 0 radar signal to test the channel move time and channel closing transmission time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N \* Dwell Time

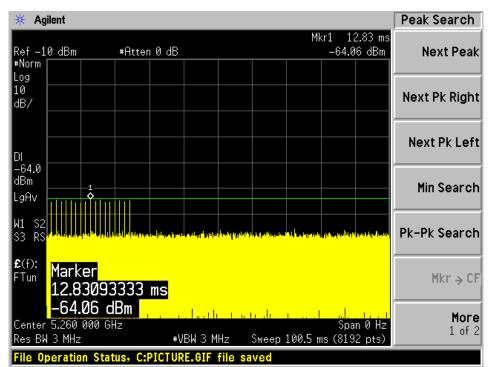
N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

| Bacl<br>No. | Manufacturer             | Equipment<br>Description   | Model   | S/N        | Calibration<br>Date | Calibration<br>Interval |
|-------------|--------------------------|----------------------------|---------|------------|---------------------|-------------------------|
| -           | -                        | RF Coaxial Cable 5m        | -       | -          | -                   | -                       |
| 1128        | Agilent                  | EXA Signal Analyzer        | N9010A  | MY48030852 | 2023-04-25          | 1 year                  |
| 624         | Agilent                  | Analyzer, Spectrum         | E4446A  | MY48250238 | 2023-05-12          | 1 year                  |
| 188         | Sunol Sciences           | Horn Antenna               | DRH-118 | 1132       | 2022-03-17          | 2 years                 |
| 473         | EMCO                     | Horn Antenna               | 3115    | 9511-4627  | 2022-11-22          | 2 years                 |
| 688         | Keysight<br>Technologies | Vector Signal<br>Generator | N5182B  | MY51350070 | 2023-10-09          | 1 year                  |

#### 10.6 Test Equipment List and Details

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

#### **10.7** Test Environmental Conditions


| Temperature:              | 22° C     |  |
|---------------------------|-----------|--|
| <b>Relative Humidity:</b> | 43 %      |  |
| ATM Pressure:             | 101.9 kPa |  |

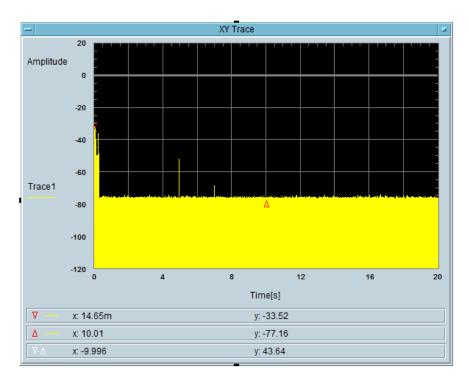
Testing was performed by Kevin Chau and Alexandrae Duran on 2023-12-14 at the DFS testing site.

# 10.8 Test Results

#### **Plots of Radar Waveforms**

#### Radar Type 0




#### 5260 MHz

# 5500 MHz

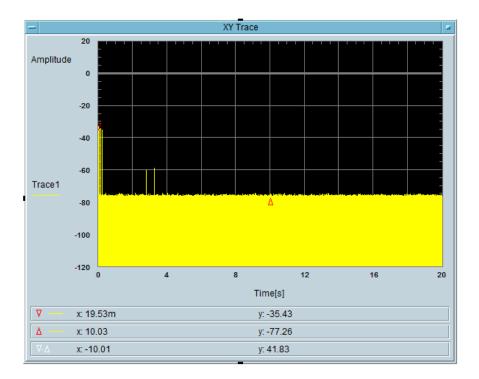
| 🔆 Agilent                                |                 |                               |                                 |                    | Peak Search           |
|------------------------------------------|-----------------|-------------------------------|---------------------------------|--------------------|-----------------------|
| Ref — 10 dBm<br>#Norm                    | #Atten 0 dB     |                               |                                 | 14.25 ms<br>05 dBm | Next Peak             |
| Log<br>10<br>dB/                         |                 |                               |                                 |                    | Next Pk Right         |
| DI                                       |                 |                               |                                 |                    | Next Pk Left          |
| -64.0<br>dBm<br>LgAv →                   |                 |                               |                                 |                    | Min Search            |
| W1 S2<br>S3 RS <sup>1</sup> Professional |                 | ducetto de subelto en casedat | desire of set from only the set |                    | Pk-Pk Search          |
| £(f):<br>FTun Marker<br>14.2538          | 6667 ms         |                               |                                 |                    | Mkr → CF              |
| Center 5.500 000 G<br>Res BW 3 MHz       |                 |                               | <mark>.11</mark>                |                    | <b>More</b><br>1 of 2 |
| Copyright 2000-2                         | 012 Agilent Tec | hnologies                     |                                 |                    |                       |

| Frequency<br>(MHz) | Bandwidth<br>(MHz) | Radar Type | Results   |
|--------------------|--------------------|------------|-----------|
| 5260               | 20                 | Type 0     | Compliant |

Type 0 radar channel move time less than 10s result:



#### Type 0 radar channel closing transmission time result:


| Channel closing transmitting<br>time (ms) | Limit<br>(ms) | Result |
|-------------------------------------------|---------------|--------|
| 43.95                                     | 200           | Pass   |

43.95m — Total On Time After Delay [s] = 14.65m

Total On Time [s] 📮

| Frequency<br>(MHz) | Bandwidth<br>(MHz) | Radar Type | Results   |
|--------------------|--------------------|------------|-----------|
| 5500               | 20                 | Type 0     | Compliant |

# Type 0 radar channel move time less than 10s result:



# Type 0 radar channel closing transmission time result:

| Channel closing transmitting<br>time (ms) | Limit<br>(ms) | Result |
|-------------------------------------------|---------------|--------|
| 26.86                                     | 200           | Pass   |

- Total On Time [s] = 26.86m

- Total On Time After Delay [s] = 7.324m

# Non-occupancy Time

| RF 50 Ω AC<br>Arker 1 Δ 1.82000 ks   |                                                                                                                 | SENSE:INT                                            | ALIGNAUTO<br>Avg Type: Log-Pwr | TRACE 123456                  | Marker       |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|-------------------------------|--------------|
|                                      | PNO: Fast 🔸<br>IFGain:Low                                                                                       | <ul> <li>Trig: Free Run<br/>#Atten: 10 dB</li> </ul> |                                | DET N N N N N                 | Select Marke |
| dB/div Ref 0.00 dBm                  |                                                                                                                 |                                                      | ΔN                             | lkr1 1.820 ks<br>-55.11 dB    |              |
|                                      |                                                                                                                 |                                                      |                                |                               | Norm         |
|                                      |                                                                                                                 |                                                      |                                |                               |              |
| .0                                   |                                                                                                                 |                                                      |                                |                               | De           |
| .0                                   |                                                                                                                 |                                                      |                                |                               | Fixe         |
|                                      |                                                                                                                 |                                                      |                                |                               | FIXe         |
| .0                                   | detilitation de la competition de la co |                                                      |                                |                               | (            |
| 0                                    |                                                                                                                 |                                                      |                                |                               | _            |
| .0                                   |                                                                                                                 |                                                      |                                |                               | Propertie    |
| 0                                    |                                                                                                                 |                                                      |                                |                               | Ma           |
| nter 5.260000000 GHz<br>s BW 3.0 MHz | VBW                                                                                                             | 3.0 MHz                                              | Sween 20                       | Span 0 Hz<br>00 ks (8192 pts) | 1 c          |

# 5260 MHz for 20 MHz channel bandwidth

# Non-occupancy Time

|              | RF 50 Ω AC                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT                                 | ALIGNAUTO                                |                                             | Mandana .               |
|--------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------|
| arker 1      | Δ 1.82000 ks                             | PNO: Fast 🔸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trig: Free Run<br>#Atten: 10 dB           | Avg Type: Log-Pwr                        | TRACE 123456<br>TYPE WWWWWWWW<br>DET NNNNNN | Marker<br>Select Marker |
| ) dB/div     | Ref 0.00 dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Δ                                        | /lkr1 1.820 ks<br>-58.25 dB                 | Select Marker           |
|              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                                             | Norm                    |
| 0.0 <u> </u> |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                                             | Del                     |
| ).0<br>).0   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                                             | Fixed                   |
| 0.0 when     | sectore to the betty describe and before | a, , and the grant of the state | na teoreanaistillean e sa te kan a dana t | ya tu da tay ka gan tu da tay na sana sa |                                             | c                       |
| .0           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                                             | Properties              |
|              | 500000000 GHz<br>3.0 MHz                 | VBW/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0 MHz                                   | <b>0</b>                                 | Span 0 Hz<br>00 ks (8192 pts)               | <b>Мо</b><br>1 о        |

# 5500 MHz for 20 MHz channel bandwidth

# **11** Appendix A – EUT Test Setup Photographs

Please refer to the attachment.

# **12** Appendix B – External Photographs

Please refer to the attachment.

# **13** Appendix C –Internal Photographs

Please refer to the attachment.

# 14 Appendix D (Normative) - A2LA Electrical Testing Certificate



Please follow the web link below for a full ISO 17025 scope

https://www.a2la.org/scopepdf/3297-02.pdf

# --- END OF REPORT ---