

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
3 rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 wavequide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MH_Z
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3710_Mar12

Page 2 of 11

March 12, 2012

Probe EX3DV4

SN:3710

Manufactured: July 21, 2009 Repaired: Calibrated:

February 21, 2012 March 12, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710_Mar12

Page 3 of 11

March 12, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.51	0.56	0.44	± 10.1 %
DCP (mV) ^B	101.3	98.9	100.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	0000 CW	0.00	X	0.00	0.00	1.00	114.4	±2.2 %
			Y	0.00	0.00	1.00	94.4	
			Z	0.00	0.00	1.00	114.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the distribution. field value.

Certificate No: EX3-3710_Mar12

Page 4 of 11

March 12, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	9.61	9.61	9.61	0.12	1.00	± 13.4 %
750	41.9	0.89	9.51	9.51	9.51	0.24	1.16	± 12.0 %
835	41.5	0.90	9.18	9.18	9.18	0.22	1.15	± 12.0 %
900	41.5	0.97	8.97	8.97	8.97	0.19	1.35	± 12.0 %
1810	40.0	1.40	8.32	8.32	8.32	0.79	0.60	± 12.0 %
1900	40.0	1.40	8.16	8.16	8.16	0.72	0.66	± 12.0 %
2450	39.2	1.80	7.25	7.25	7.25	0.36	0.91	± 12.0 %
2600	39.0	1.96	6.96	6.96	6.96	0.39	0.95	± 12.0 %
3500	37.9	2.91	6.80	6.80	6.80	0.33	1.09	± 13.1 %
5200	36.0	4.66	5.21	5.21	5.21	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.9.5	4.9.5	4.9.5	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.56	4.56	4.56	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MI tz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for the indicated frequency (c and σ) is restricted to ± 5%. the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3710_Mar12

Page 5 of 11

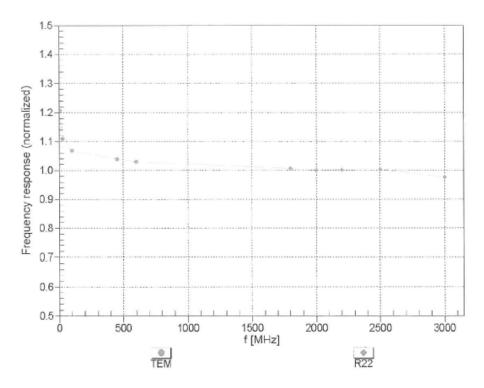
March 12, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

alibration	ibration Parameter Determined in Body Tissue Simulating Media								
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
450	56.7	0.94	10.69	10.69	10.69	0.06	1.00	± 13.4 %	
750	55.5	0.96	9.33	9.33	9.33	0.43	0.86	± 12.0 %	
835	55.2	0.97	9.13	9.13	9.13	0.63	0.70	± 12.0 %	
900	55.0	1.05	9.04	9.04	9.04	0.39	0.88	± 12.0 %	
1810	53.3	1.52	7.73	7.73	7.73	0.33	1.10	± 12.0 %	
1900	53.3	1.52	7.43	7.43	7.43	0.42	0.90	± 12.0 %	
2450	52.7	1.95	6.98	6.98	6.98	0.79	0.59	± 12.0 %	
2600	52.5	2.16	6.68	6.68	6.68	0.79	0.52	± 12.0 %	
3500	51.3	3.31	6.23	6.23	6.23	0.36	1.13	± 13.1 %	
5200	49.0	5.30	4.20	4.20	4.20	0.50	1.90	± 13.1 %	
5500	48.6	5.65	3.82	3.82	3.82	0.50	1.90	± 13.1 %	
5800	48.2	6.00	3.89	3.89	3.89	0.60	1.90	± 13.1 %	

Calibration Parameter Determined in Body Tissue Simulating Media

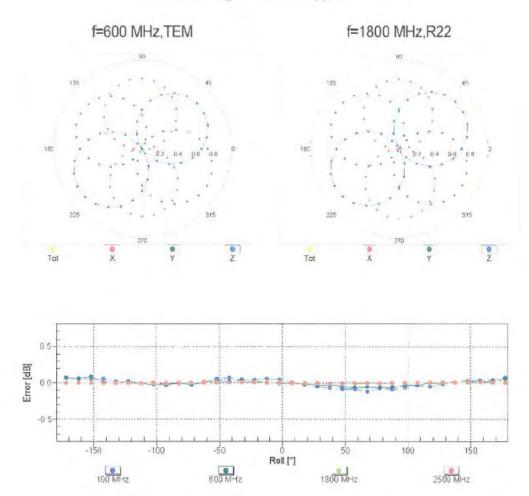
ⁿ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Certificate No: EX3-3710_Mar12

Page 6 of 11

March 12, 2012

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

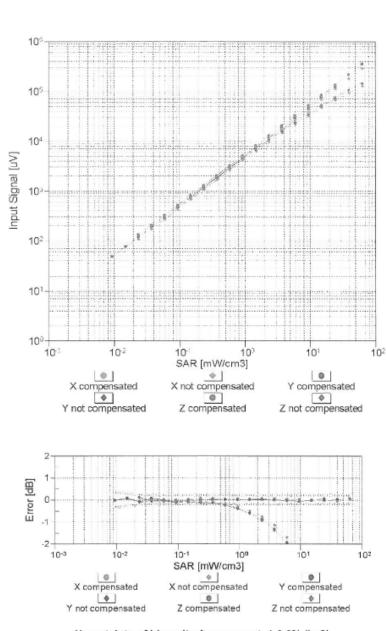

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3710_Mar12

Page 7 of 11

March 12, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

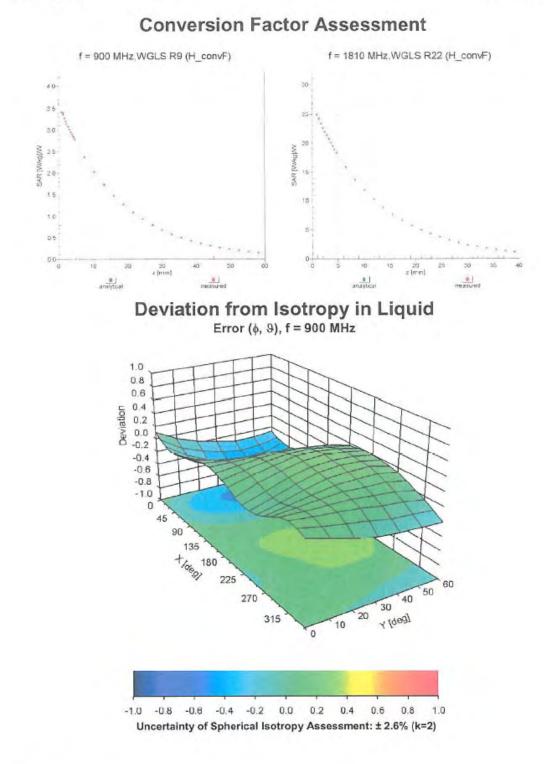

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3710_Mar12

Page 8 of 11

March 12, 2012

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Certificate No: EX3-3710_Mar12

Page 9 of 11

March 12, 2012

Certificate No: EX3-3710_Mar12

Page 10 of 11

March 12, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3710_Mar12

Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory Schmid & Partner Engineering AG Reughausstrasse 43, 8004 Zurich		BIC MRA	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the re	a is one of the signatories	to the EA	No.: SCS 108
Client Quietek-CN (Au			: D2450V2-839_Feb12
CALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN: 8	39	
Calibration procedure(s)	QA CAL-05.v8 Calibration proces	dure for dipole validation kits abo	ive 700 MHz
Calibration date:	February 23, 201	2	
Calibration Equipment used (M&	TE critical for calibration)	y facility: environment temperature (22 ± 3)°(
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451)	Oct-12 Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	OOLIE
Type N mismatch combination	SN: 5017.2 / 06327		Apr-12
Reference Probe ES3DV3	SN: 3205	29-Mar-11 (No. 217-01371)	Apr-12 Apr-12
DAE4		29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11)	Apr-12 Apr-12 Dec-12
DALA	SN: 601		Apr-12
	SN: 601	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Apr-12 Dec-12 Jul-12 Scheduled Check
Secondary Standards Power sensor HP 8481A	ID # MY41092317	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13
Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID #	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Apr-12 Dec-12 Jul-12 Scheduled Check
Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # MY41092317 100005	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # MY41092317 100005 US37390585 S4206	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 Signature
Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # MY41092317 100005 US37390585 S4206 Name	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function	Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # MY41092317 100005 US37390585 S4206 Name Israe El-Naouq	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician	Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 Signature

Certificate No: D2450V2-839_Feb12

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

NIS

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Feb12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.9 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.09 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	48.7 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.76 mW / g

Certificate No: D2450V2-839_Feb12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω - 1.0 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 1.0 jΩ
Return Loss	- 32.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

Certificate No: D2450V2-839_Feb12

Page 4 of 8

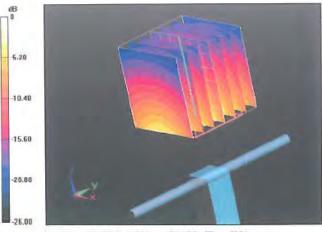
QuieTek

DASY5 Validation Report for Head TSL

Date: 23.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

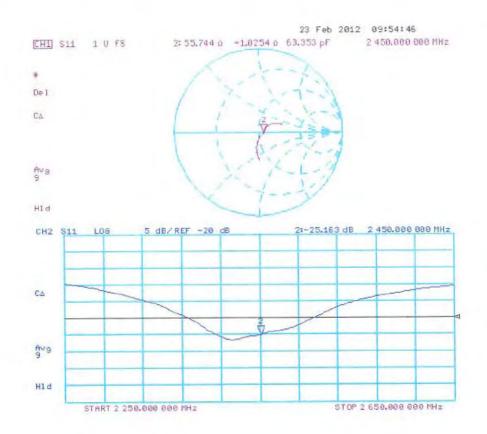

Communication System: CW: Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.155 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.8700 SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/g Maximum value of SAR (measured) = 16.839 mW/g


0 dB = 16.840 mW/g = 24.53 dB mW/g

Certificate No: D2450V2-839_Feb12

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-839_Feb12

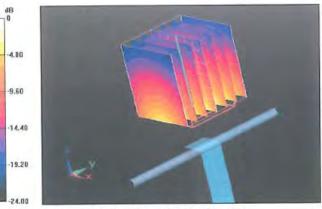
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 23.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

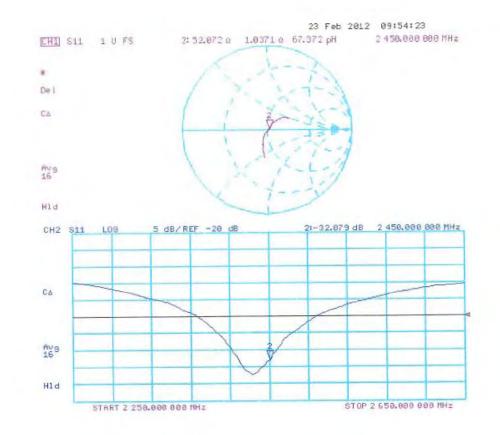

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.056 V/m; Power Drift = 0.0053 dB Peak SAR (extrapolated) = 25.2250 SAR(1 g) = 12.4 mW/g; SAR(10 g) = 5.76 mW/g Maximum value of SAR (measured) – 16.258 mW/g


0 dB = 16.260 mW/g = 24.22 dB mW/g

Certificate No: D2450V2-839_Feb12

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-839_Feb12

Page 8 of 8

Engineering AG eughausstrasse 43, 8004 Zuric	Y Of	AC MRA	Service suisse d'étalonnage Servizio svizzero di taratura
ccredited by the Swiss Accredite he Swiss Accreditation Service Iultilateral Agreement for the re	e is one of the signatorie	s to the EA	n No.: SCS 108
lient Quietek-CN (A			io: D5GHzV2-1078_Feb12
CALIBRATION C	CERTIFICATE		
Object	D5GHzV2 - SN:	1078	
Calibration procedure(s)	QA CAL-22.v1 Calibration proce	dure for dipole validation kits be	tween 3-6 GHz
Calibration date:	February 21, 201	2	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical u robability are given on the following pages a	nd are part of the certificate.
The measurements and the unce NI calibrations have been conduct Calibration Equipment used (M&T	rtainties with confidence p cted in the closed laborator TE critical for calibration)	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	nd are part of the certificate.
he measurements and the unce Il calibrations have been conduc alibration Equipment used (M&T rimary Standards	Internation with confidence p cted in the closed laborator re critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	nd are part of the certificate.
he measurements and the unce Il calibrations have been conduct alibration Equipment used (M&T himary Standards ower meter EPM-442A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-12
he measurements and the unce all calibrations have been conduct alibration Equipment used (M&T himary Standards ower meter EPM-442A ower sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12
The measurements and the unce of calibrations have been conduct calibration Equipment used (M&T Primary Standards Prover meter EPM-442A Prover sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368)	C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12
he measurements and the unce all calibrations have been conduct calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Sype-N mismatch combination	tertainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar 11 (No. 217 01371)	The certificate. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Oct-12 Apr-12 Apr-12
The measurements and the unce will calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar 11 (No. 217 01371) 30-Dec-11 (No. EX3-3503_Dec11)	C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12
The measurements and the unce will calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 503 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01368) 29 Mar-11 (No. 217 01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01368) 29 Mar-11 (No. 217 01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	The certificate, C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar 11 (No. 217 01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13
The measurements and the unce NI calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 503 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar 11 (No. 217 01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar 11 (No. 217 01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	Artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01371) 30-Dec-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	Antainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01378) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	Artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01371) 30-Dec-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Vetwork Analyzer HP 8753E Calibrated by:	Antainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01368) 29 Mar-11 (No. 217-01378) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12

Certificate No: D5GHzV2-1078_Feb12

Page 1 of 13

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1078_Feb12

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.6 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	a a a diti a a	
SAN averaged over 10 cm (10 g) of flead 15L	condition	
SAR measured	100 mW input power	2.32 mW / g

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	85.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1078_Feb12

Page 3 of 13

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1078_Feb12

Page 4 of 13

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.32 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.1 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.05 mW / g

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.79 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm^{3} (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1078_Feb12

Page 5 of 13

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.28 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.34 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.5 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.03 mW / g

Certificate No: D5GHzV2-1078_Feb12

Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.5 Ω - 8.0 jΩ
Return Loss	- 22.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.7 Ω - 4.0 jΩ	
Return Loss	- 26.6 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.7 Ω - 0.5 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.0 Ω - 8.4 jΩ	
Return Loss	- 21.5 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.7 Ω - 4.9 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.1 Ω - 2.0 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2008

Certificate No: D5GHzV2-1078_Feb12

Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 21.02.2012

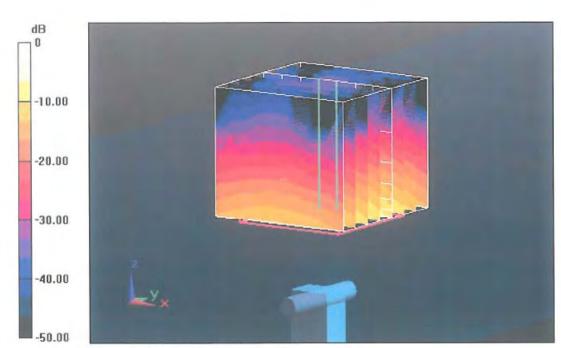
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.6 mho/m; ε_r = 35.3; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.89 mho/m; ε_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.19 mho/m; ε_r = 34.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.753 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.0660 SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.32 mW/g Maximum value of SAR (measured) = 18.532 mW/g

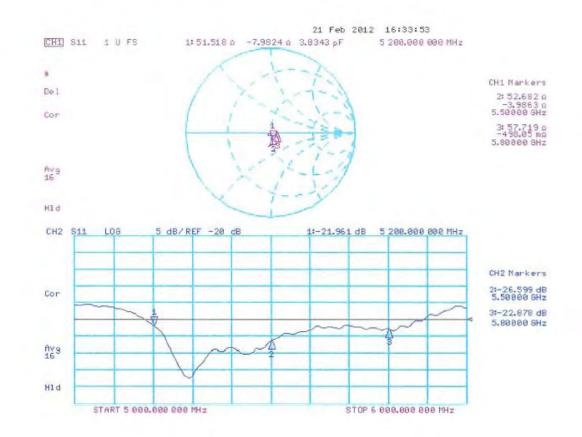
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.079 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.9620 SAR(1 g) = 8.54 mW/g; SAR(10 g) = 2.44 mW/g Maximum value of SAR (measured) = 19.991 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.472 V/m; Power Drift = 0.0053 dB Peak SAR (extrapolated) = 33.1950 SAR(1 g) = 7.94 mW/g; SAR(10 g) = 2.27 mW/g Maximum value of SAR (measured) = 19.013 mW/g

Certificate No: D5GHzV2-1078_Feb12

Page 8 of 13

0 dB = 19.010 mW/g = 25.58 dB mW/g


Certificate No: D5GHzV2-1078_Feb12

QuieTek

Page 9 of 13

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1078_Feb12

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 20.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

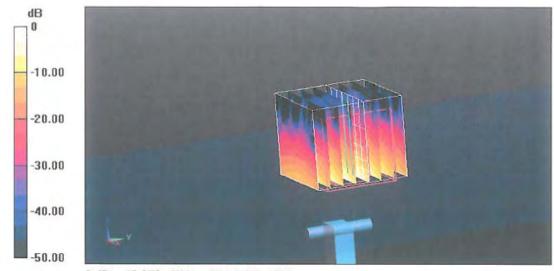
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.48 mho/m; ε_r = 48.6; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.87 mho/m; ε_r = 48.1; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.28 mho/m; ε_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.301 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.7930 SAR(1 g) = 7.32 mW/g; SAR(10 g) = 2.05 mW/g Maximum value of SAR (measured) = 17.024 mW/g


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.671 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 33.4840 SAR(1 g) = 7.79 mW/g; SAR(10 g) = 2.16 mW/g Maximum value of SAR (measured) = 18.648 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.184 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 34.4800 SAR(1 g) = 7.34 mW/g; SAR(10 g) = 2.03 mW/g Maximum value of SAR (measured) = 18.069 mW/g

Certificate No: D5GHzV2-1078_Feb12

Page 11 of 13

0 dB = 18.070 mW/g = 25.14 dB mW/g

Certificate No: D5GHzV2-1078_Feb12

Page 12 of 13

Certificate No: D5GHzV2-1078_Feb12

•

Page 13 of 13

Appendix F. DAE Calibration Data

secolited by the Outer Association	line Consider (CAC)		itation No.: SCS 108
credited by the Swiss Accreditate e Swiss Accreditation Servic			Itation No.: 303 100
ultilateral Agreement for the r	ecognition of calibration c	ertificates	
ent Quietek-CN (A	uden)	Certific	ate No: DAE4-1220_Jan12
ALIBRATION	EDTIFICATE		
ALIDHATION	CHINICAL		
bject	DAE4 - SD 000 D	04 BJ - SN: 1220	
alibration procedure(s)	QA CAL-06.v24		
	Calibration procee	dure for the data acquisition	electronics (DAE)
alibration date:	January 23, 2012		
his calibration cartificate docum	ents the traceability to natio	nal standards, which realize the phys	ical units of massuraments (SI)
		nal standards, which realize the phys obability are given on the following pa	
		nal standards, which realize the phys obability are given on the following pa	
he measurements and the unce	ertainties with confidence pro		ges and are part of the certificate.
he measurements and the unce Il calibrations have been condu	ertainties with confidence pro	obability are given on the following pa	ges and are part of the certificate.
he measurements and the unce Il calibrations have been condu	ertainties with confidence pro	obability are given on the following pa	ges and are part of the certificate.
he measurements and the unce	ertainties with confidence pro	obability are given on the following pa	ges and are part of the certificate.
he measurements and the unce Il calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro cted in the closed laboratory TE critical for calibration)	obability are given on the following pa / facility: environment temperature (22	ges and are part of the certificate. 2 ± 3)°C and humidity < 70%.
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rrimary Standards ceithley Multimeter Type 2001	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278	obability are given on the following pa / facility: environment temperature (22 Cal Date (Certificate No.) 28-Sep-11 (No:11450)	rges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& trimary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa / facility: environment temperature (22 Cal Date (Certificate No.) 28-Sep-11 (No:11450)	rges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rrimary Standards ceithley Multimeter Type 2001 secondary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rrimary Standards ceithley Multimeter Type 2001 secondary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) Check Date (in house)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards alibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check)	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13
he measurements and the unce Il calibrations have been condu alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards alibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check) Function	Iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13 Signature
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 Name Dominique Steffen	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check) Function Technician	Iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13 Signature
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check) Function	Iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13 Signature
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 Name Dominique Steffen	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check) Function Technician	iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13
he measurements and the unce Il calibrations have been condu calibration Equipment used (M& rrimary Standards ceithley Multimeter Type 2001 secondary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 Name Dominique Steffen	obability are given on the following pa (facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-11 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check) Function Technician	Iges and are part of the certificate. 2 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13 Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220_Jan12

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 $6.1\mu V$,
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV,
 full range =
 -10...+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec;
 Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	405.267 ± 0.1% (k=2)	404.990 ± 0.1% (k=2)	404.221 ± 0.1% (k=2)
Low Range	3.97762 ± 0.7% (k=2)	3.99629 ± 0.7% (k=2)	3.98707 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	176.5 ° ± 1 °
Connector Angle to be used in DASY system	176

Certificate No: DAE4-1220_Jan12

Page 3 of 5

QuieTek

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199991.77	-2.52	-0.00
Channel X + Input	20001.19	1.01	0.01
Channel X - Input	-19996.52	3.93	-0.02
Channel Y + Input	199992.70	-2.15	-0.00
Channel Y + Input	19999.00	-1.14	-0.01
Channel Y - Input	-19999.75	0.71	-0.00
Channel Z + Input	199991.55	-3.11	-0.00
Channel Z + Input	19999.33	-0.76	-0.00
Channel Z - Input	-20001.23	-0.67	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.14	-1.60	-0.08
Channel X + Input	201.79	0.59	0.29
Channel X - Input	-198.19	0.48	-0.24
Channel Y + Input	1999.56	-0.99	-0.05
Channel Y + Input	200.20	-0.96	-0.48
Channel Y - Input	-199.38	-0.54	0.27
Channel Z + Input	2000.07	-0.52	-0.03
Channel Z + Input	200.32	-0.83	-0.41
Channel Z - Input	-199.60	-0.78	0.39

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	10.22	8.65
	- 200	-6.99	-8.91
Channel Y	200	-10.43	-11.02
	- 200	7.95	9.22
Channel Z	200	14.25	13.66
	- 200	-15.77	-14.99

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-1.62	-2.79
Channel Y	200	8.07	· · · · · ·	-2.95
Channel Z	200	7.90	6.93	-

Certificate No: DAE4-1220_Jan12

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15896	16218
Channel Y	16012	15924
Channel Z	15702	15710

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.67	-0.77	1.84	0.43
Channel Y	-1.44	-2.35	-0.02	0.39
Channel Z	-0.81	-1.60	0.01	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1220_Jan12

Page 5 of 5