

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Roku, Inc.
Applicant Address	150 Winchester Circle, Los Gatos, CA 95032
FCC ID	TC2-N1002
Manufacturer's company (1)	Lite-On Network Communication (Dongguan) Limited
Manufacturer Address	30#Keji Rd., Yin Hu Industrial Area, Qingxi Town, DongGuan City, Guangdong, China
Manufacturer's company (2)	LITE-ON TECHNOLOGY (Changzhou) CO., LTD
Manufacturer Address	A9 Building,No.88 Yanghu Road, Wujin Hi-Tech Industrial Development Zone ,Changzhou City, Jiangsu Province 213100 China

Product Name	2 x 2 Wi-Fi Module	
Brand Name	Roku	
Model No.	WM03, WM04	
Test Rule Part(s)	7 CFR FCC Part 15 Subpart E § 15.407	
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz	
Received Date	Jan. 20, 2014	
Final Test Date	Jun. 06, 2016	
Submission Type	Class II Change	

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E,

KDB789033 D02 v01r02, KDB662911 D01 v02r01, ET Docket No. 13–49; FCC 16–24.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	VERIF		1
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	3
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	6
	3.6.	Table for Testing Locations	7
	3.7.	Table for Multiple Listing	8
	3.8.	Table for Class II Change	9
	3.9.	Table for Supporting Units	10
	3.10.	Table for Parameters of Test Software Setting	10
	3.11.	EUT Operation during Test	10
	3.12.	Duty Cycle	10
	3.13.	Test Configurations	11
4.	TEST F	RESULT	13
	4.1.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	13
	4.2.	6dB Spectrum Bandwidth Measurement	18
	4.3.	Maximum Conducted Output Power Measurement	22
	4.4.	Power Spectral Density Measurement	25
	4.5.	Radiated Emissions Measurement	29
	4.6.	Band Edge Emissions Measurement	41
	4.7.	Frequency Stability Measurement	45
	4.8.	Antenna Requirements	47
5.	LIST C	OF MEASURING EQUIPMENTS	48
6.	MEAS	UREMENT UNCERTAINTY	49
AF	PEND	IX A. TEST PHOTOS A1 \sim .	A5

History of This Test Report

ev. 01	Initial issue of report	Jul. 14, 2016

Report No.: FR412906-02AB

Project No: CB10506006

1. VERIFICATION OF COMPLIANCE

Product Name	135	2 x 2 Wi-Fi Module
Brand Name	*	Roku
Model No.	:	WM03, WM04
Applicant		Roku, Inc.
Test Rule Part(s)		47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 20, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

am

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Part Rule Section Description of Test						
4.1	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies				
4.2	15.407(e)	6dB Spectrum Bandwidth	Complies				
4.3	15.407(a)	Maximum Conducted Output Power	Complies				
4.4	15.407(a)	Power Spectral Density	Complies				
4.5	15.407(b)	Radiated Emissions	Complies				
4.6	15.407(b)	Band Edge Emissions	Complies				
4.7	15.407(g)	Frequency Stability	Complies				
4.8	15.203	Antenna Requirements	Complies				

3. GENERAL INFORMATION

3.1. Product Details

Items	Description			
Product Type	IEEE 802.11a: WLAN (1TX, 2RX)			
	IEEE 802.11n: WLAN (2TX, 2RX)			
Radio Type	Intentional Transceiver			
Power Type	From host system			
Modulation	IEEE 802.11a: OFDM			
	IEEE 802.11n: see the below table			
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)			
	IEEE 802.11n: see the below table			
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz			
Channel Number	9 for 20MHz bandwidth			
Channel Band Width (99%)	IEEE 802.11a: 17.28 MHz			
	IEEE 802.11n MCS0 (HT20): 18.06 MHz			
Maximum Conducted Output	IEEE 802.11a: 18.88 dBm			
Power	IEEE 802.11n MCS0 (HT20): 21.18 dBm			
Carrier Frequencies	Please refer to section 3.4			
Antenna	Please refer to section 3.3			

Items	Description			
Communication Mode	IP Based (Load Based)	Frame Based		
Beamforming Function	With beamforming	☑ Without beamforming		
Operate Condition	🛛 Indoor			

Antenna and Band width

Antenna	Single (TX)	Two (TX)	
Band width Mode	20 MHz	20 MHz	
IEEE 802.11a	V	x	
IEEE 802.11n	Х	V	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS				
802.11n (HT20)	2	MC\$0-15				
Note 1: IEEE Std. 802.11n modulation consists of HT20 (HT: High Throughput).						
Then EUT supports HT20.						
Note 2: Modulation modes consist of below configuration: HT20: IEEE 802.11n						

3.2. Accessories

N/A

3.3. Table for Filed Antenna

Ant.	Brand	Model Name		Connector	Gain (dBi)		Cable length
An.	ыапа		Antenna Type	Connector	2.4GHz	5GHz	(mm)
1	LiteOn	3010000502XD	PIFA Antenna	I-PEX	3.53	3.43	300
2	LiteOn	30100005046D	PIFA Antenna	N/A	3.29	4.26	N/A
3	LiteOn	30100007416D	PIFA Antenna	I-PEX	1.93	3.42	300
4	LiteOn	3010000844HD	PIFA Antenna	I-PEX	3.50	3.10	300
5	LiteOn	30100007826D	PIFA Antenna	I-PEX	1.93	3.41	400
6	LiteOn	3010000845HD	PIFA Antenna	I-PEX	3.23	2.06	550

Note: The EUT has six antennas.

Because Ant.1 and Ant. 3 \sim Ant.6 are the same type antennas, only the higher gain antenna "Ant.1" was tested.

For 2.4GHz function:

For IEEE 802.11b/g mode (1TX/2RX)

Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 could receive simultaneously.

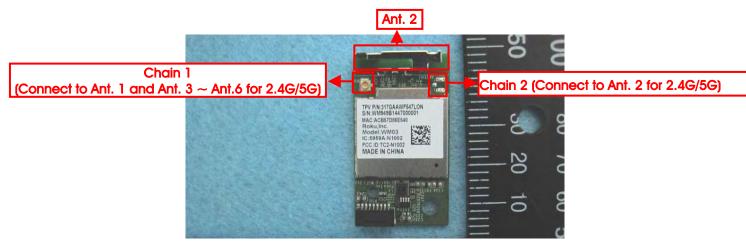
For IEEE 802.11n mode (2TX/2RX)

Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

Chain 1 and Chain 2 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11a mode (1TX/2RX)


Only Chain 1 can be used as transmitting antenna.

Chain 1 and Chain 2 could receive simultaneously.

For IEEE 802.11n mode (2TX/2RX)

Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

Chain 1 and Chain 2 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

The EUT has one bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz	36	5180 MHz	44	5220 MHz
Band 1	40	5200 MHz	48	5240 MHz
5725 5850 MU-	149	5745 MHz	161	5805 MHz
5725~5850 MHz Band 4 -	153	5765 MHz	165	5825 MHz
	157	5785 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mo	de	Data Rate	Channel	Chain
Max. Conducted Output Power	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11n HT20	Band 4	MCS0	149/157/165	1+2
Power Spectral Density	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11n HT20	Band 4	MCS0	149/157/165	1+2
26dB Spectrum Bandwidth &	11a/BPSK	Band 4	6Mbps	149/157/165	1
99% Occupied Bandwidth	11n HT20	Band 4	MCS0	149/157/165	1+2
Measurement					
6dB Spectrum Bandwidth	11a/BPSK	Band 4	6Mbps	149/157/165	1
Measurement	11n HT20	Band 4	MCS0	149/157/165	1+2
Radiated Emission Below 1GHz	Normal Link		-	-	-
Radiated Emission Above 1GHz	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11n HT20	Band 4	MCS0	149/157/165	1+2
Band Edge Emission	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11n HT20	Band 4	MCS0	149/157/165	1+2
Frequency Stability	20 MHz	Band 4	-	40/157	1

The following test modes were performed for all tests:

For Radiated Emission test<Below 1GHz>:

Test Mode 1. EUT 2 in Y axis - Normal Link- 2.4G

Test Mode 2. EUT 2 in Z axis - Normal Link- 2.4G

Mode 2 has been evaluated to be the worst case between Mode $1 \sim 2$, thus measurement for Mode 3 will follow this same test mode.

Test Mode 3. EUT 2 in Z axis - Normal Link- 5G

Mode 3 has been evaluated to be the worst case among Mode $1 \sim 3$, thus measurement for Mode 4 will follow this same test mode.

Test Mode 4. EUT 3 in Z axis - Normal Link- 2.4G

Mode 2 generated the worst test result, so it was recorded in this report.

For Radiated Emission test<Above 1GHz>:

The EUT was performed at Y axis and Z axis position for Radiated emission above 1GHz test, and the worst case was found at Z axis. So the measurement will follow this same test configuration.

Test Mode: CTX - Place EUT 2 in Z axis

3.6. Table for Testing Locations

	Test Site Location					
Address:	No.	8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.C	<u>.</u>
TEL:	886-3-656-9065					
FAX:	FAX: 886-3-656-9085					
Test Site N	st Site No. Site Category Location FCC Designation No. IC File No. VCCI Reg. No					
03CH01-0	CB	SAC	Hsin Chu	TW0006	IC 4086D	-
TH01-CE	3	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Multiple Listing

The model names in the following table are all refer to the identical product.

Brand Name	EUT	Model Name	SKU	Metal Ring	Photo
	EUT 1	144.402	6Pin connector	V	SN: WM946B 3470082
Roku	EUT 2	8Pin connector	V		
	EUT 3	WM04	6Pin connector	Х	

From the above EUT 2 and EUT 3 was selected as representative model for the test and its data was recorded in this report.

3.8. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR412906AA and FR412906AB

Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
Updating Manufacturer Name and Address.	
Adding four same type antennas with lower gain	
(model: 30100007416D, 3010000844HD,	
30100007826D and 3010000845HD).	Do not effect the test results.
Removing Chain 2 connector.	
Adding a latch connector for model: WM03 (8pin)	
/WM04.	
Adding P10 second source for	
\$1015-08RVB-SB3-KH for model: WM03/WM04.	
Adding the components R195, TP32 for model:	
WM03.	Radiated Emission Below 1GHz
Removing the components from R209, R200 for	
model: WM03.	
Adding 8Pin connector for model: WM03.	
Updating 5GHz Band 1 to "New Rules" from "Old	After evaluating, it's not necessary to re-test all test
Rules".	items for 5GHz Band 1 updating to "New Rules"
	due to the same power as original filing.
	26dB Spectrum Bandwidth and 99% Occupied
	Bandwidth.
Updating test rule of 5GHz band 4 to "15.407	6dB Spectrum Bandwidth.
(b)(4)(i) of New Rules (ET Docket No. 13–49; FCC	Maximum Conducted Output Power.
16-24)" from "Old Rules".	Power Spectral Density.
	Radiated Emissions Above 1GHz.
	Band Edge Emissions.
	Frequency Stability.

3.9. Table for Supporting Units

For Test Site No: 03CH01-CB <Below 1GHz>

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC
Fixture	Liteon	TB006	N/A
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A
WLAN AP	D-LINK	DIR860L	KA2IR860LA1

For Test Site No: TH01-CB and 03CH01-CB < Above 1GHz>

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC
Fixture	Liteon	TBOO6_USB_3.3V	N/A

3.10. Table for Parameters of Test Software Setting

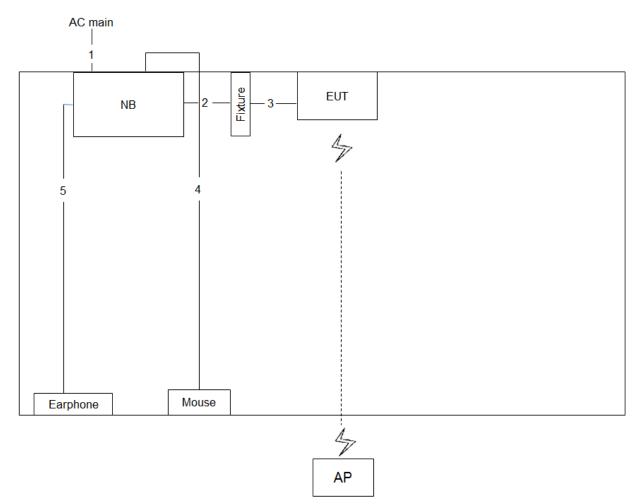
During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	Mtool_2.0.0.3			
		Test Frequency (MHz)		
Mode	NCB: 20MHz			
	5745 MHz	5785 MHz	5825 MHz	
802.11a	74	74	74	
802.11n MCS0 HT20	74	74	74	

3.11. EUT Operation during Test

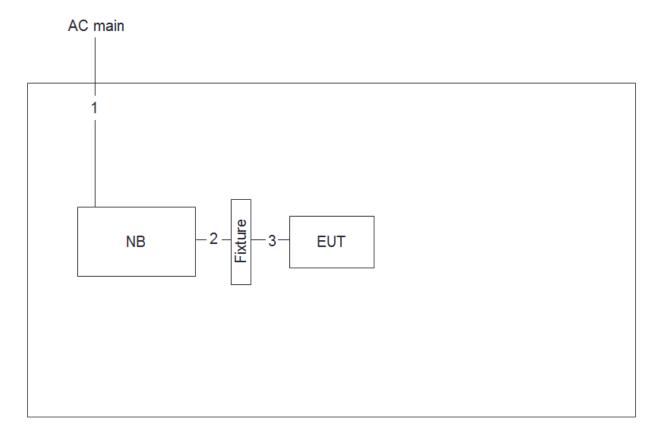
The EUT was programmed to be in continuously transmitting mode.

3.12. Duty Cycle


Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
WOUC	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.070	2.090	99.04%	0.04	0.01
802.11n MCS0 HT20	1.910	1.930	98.96%	0.05	0.01

3.13. Test Configurations

3.13.1. Radiation Emissions Test Configuration


Test Configuration: 30MHz \sim 1GHz

Item	Connection	Shielded	Length
1	AC Power cable	No	2.6m
2	USB cable	Yes	0.2m
3	8Pin cable	No	0.13m
4	USB cable	Yes	1.8m
5	Audio cable	No	1.1m

Test Configuration: above 1GHz

ltem	Connection	Shielded	Length
1	AC Power cable	No	2.6m
2	USB cable	Yes	0.2m
3	8Pin cable	No	0.13m

4. TEST RESULT

4.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.1.1. Limit

No restriction limits.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 26dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW > RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		
99% Occ	cupied Bandwidth		
Spectrum Parameters	Setting		
Span	1.5 times to 5.0 times the OBW		
RBW	1 % to 5 % of the OBW		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

4.1.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.1.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

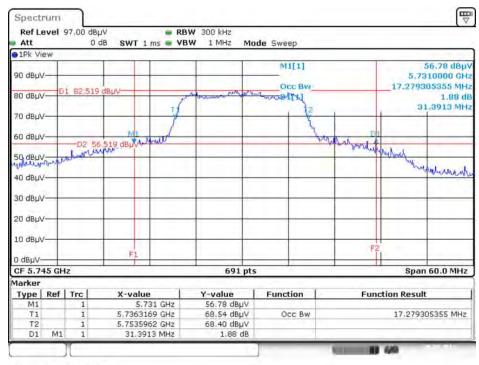
This test setup layout is the same as that shown in section 4.5.4.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

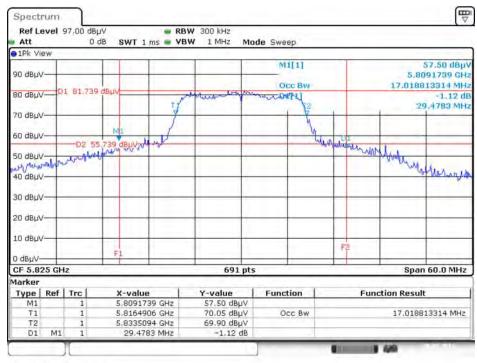


4.1.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	24 °C	Humidity	60%
Test Engineer	Clemens Fang		

Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5745 MHz	31.39	17.28
802.11a	5785 MHz	24.52	16.93
	5825 MHz	29.48	17.02
800 11= MCC0	5745 MHz	33.13	18.06
802.11n MCS0	5785 MHz	30.26	17.63
HT20	5825 MHz	28.43	18.06

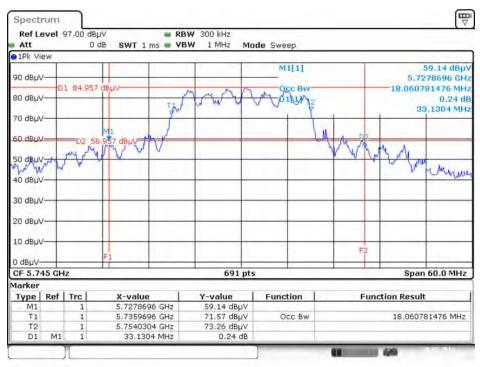
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5745 MHz


Date: 28.MAY.2016 09:13.13

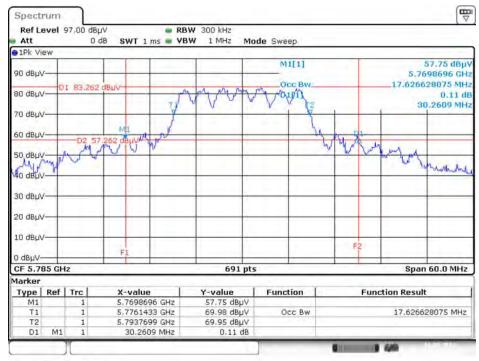
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

Ref Li	avel	97,00 dBj 0 (RBW 3		de Sweep			
1Pk Vi	ew			1941		and survey			
90 dBh/		1 84.460	-			M1[-		58,90 dBµ 5.7724783 GH -16.931982634 MH
80 dBhV		1 54,400	0DUV	TEM	and the second		Chr2		0.03 d 24.5217 MH
70 dBµ\		_		7				1	
60 dBu	-	-D2 58	460 dBuy AL				- LAp		
50 dBu	whe	Invally	460 dBUV	-			_	a manage	wether wither
40 dBµ\									when when he
30 dBµ\				-				-	
20 dBµA		_							
10 dBµ\	-	_						F2	
0 dBµV-	_		F1			_	_	14	
CF 5.7	35 GH	z			691 pt	5			Span 60.0 MHz
Marker				-					
Туре	Ref		X-value		r-value	Functio	n	Function Result	
M1		1	5,7724783 GH		58.90 dBµV			14 00100000	
T1 T2	-	1	5.7764906 GH	575°	72.66 dBµV	Occ	BW		16.931982634 MHz
D1	M1	1	5.7934226 GH 24.5217 MH		73.43 dBµV 0.03 dB				

Date: 16.MAY.2016 17:08:38

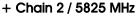


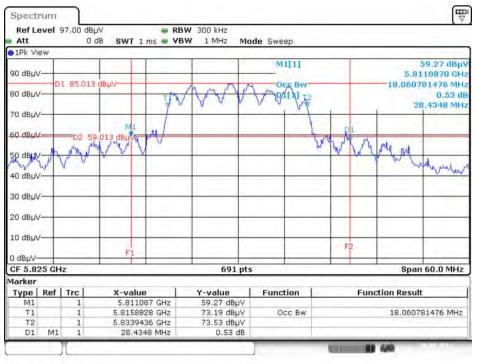
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5825 MHz


Date: 28.MAY.2016 09:13:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5745 MHz

Date: 28.MAY.2016 09:17:08





26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5785 MHz

Date: 16.MAY.2016 17:12:50

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

Date: 28.MAY.2016 09:16:40

4.2. 6dB Spectrum Bandwidth Measurement

4.2.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

6dB Spectrum Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 6dB Bandwidth		
RBW	100kHz		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

4.2.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (C) Emission Bandwidth.
- 3. Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.2.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

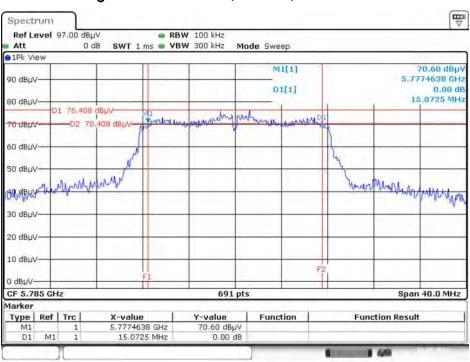
4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

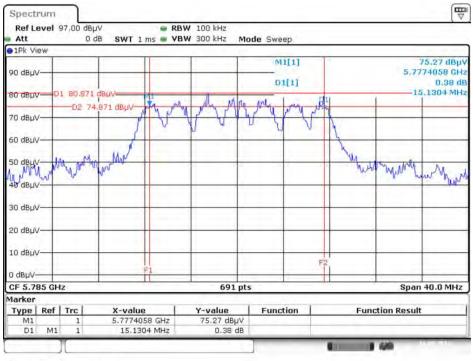
4.2.7. Test Result of 6dB Spectrum Bandwidth


Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Mode	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	5745 MHz	16.29	500	Complies
802.11a	5785 MHz	15.07	500	Complies
	5825 MHz	15.07	500	Complies
802 11a MCS0	5745 MHz	16.35	500	Complies
802.11n MCS0 HT20	5785 MHz	15.13	500	Complies
ni20	5825 MHz	16.00	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.



6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

Date: 16.MAY.2016 17:19:48

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5785 MHz

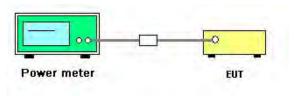
Date: 16.MAY.2016 17:22:08

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

Frequency Band	Limit
∑ 5.725~5.85 GHz	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang	Test Date	May 16, 2016 ~ May 28, 2016

Mode	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
	5745 MHz	18.42	18.42	Complies
802.11a	5785 MHz	18.88	18.88	Complies
	5825 MHz	18.26	18.26	Complies

Mada	Frequency	Conducted Power (dBm)			Max. Limit	Desuit
Mode	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
802.11n MCS0 HT20	5745 MHz	17.69	16.46	20.13	30.00	Complies
	5785 MHz	18.46	17.85	21.18	30.00	Complies
	5825 MHz	17.56	16.42	20.04	30.00	Complies

4.4. Power Spectral Density Measurement

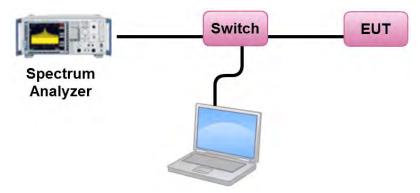
4.4.1. Limit

The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Band	Limit
S.725~5.85 GHz	30 dBm/500kHz

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal	
RBW	1000 kHz	
VBW	3000 kHz	
Detector	RMS	
Trace	AVERAGE	
Sweep Time	Auto	
Trace Average	100 times	
Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.		

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements and sum the spectra across the outputs.
- 4. For $5.725 \sim 5.85$ GHz, the measured result of PSD level must add $10\log(500 \text{kHz/RBW})$ and the final result should ≤ 30 dBm.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

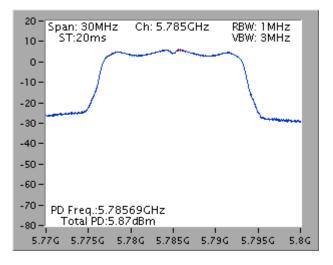
Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	5.29	-3.01	2.28	30.00	Complies
157	5785 MHz	5.87	-3.01	2.86	30.00	Complies
165	5825 MHz	5.15	-3.01	2.14	30.00	Complies

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

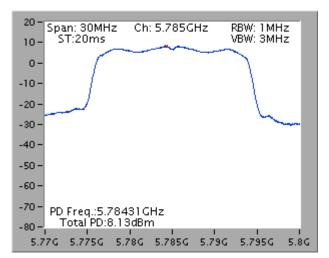
Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	6.91	-3.01	3.90	29.12	Complies
157	5785 MHz	8.13	-3.01	5.12	29.12	Complies
165	5825 MHz	6.92	-3.01	3.91	29.12	Complies

Note: $DirectionalGain = 10 \cdot \log \frac{1}{2}$


$$\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} =$$

6.88 dBi, so limit=30-(6.88-6)=29.12 dBm/500kHz.

Note: All the test values were listed in the report.


For plots, only the channel with worse result was shown.

Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5785 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

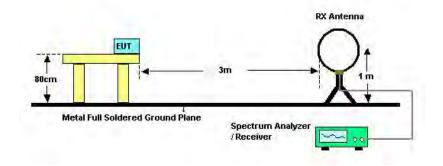
Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.5.2. Measuring Instruments and Setting

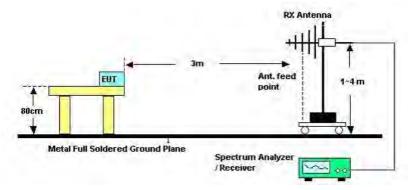
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

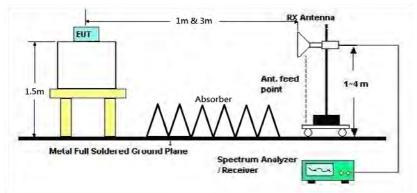
Receiver Parameter	Setting				
Attenuation	Auto				
Start \sim Stop Frequency	9kHz~150kHz / RBW 200Hz for QP				
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP				
Start \sim Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP				


4.5.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.5.4. Test Setup Layout


For Radiated Emissions: 9kHz \sim 30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

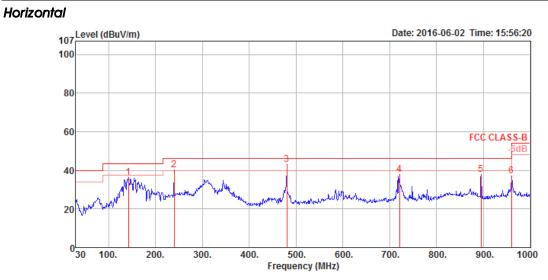
4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24 °C	Humidity	58%
Test Engineer	Peter Wu	Configurations	Normal Link
Test Date	Jun. 06, 2016		

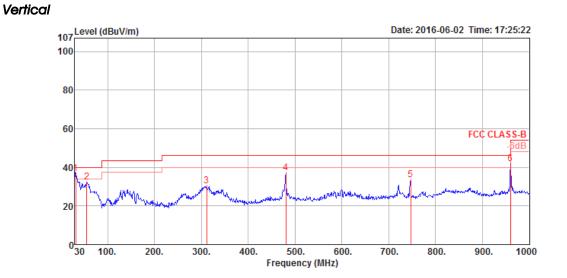
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	58%	
Test Engineer	Peter Wu	Configurations	Normal Link	

	Freq	Level	Limit Line	Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	142.52	36.16	43.50	-7.34	49.60	0.94	17.50	31.88	175	166	Peak	HORIZONTAL
2	239.52	40.45	46.00	-5.55	53.25	1.23	17.92	31.95	150	49	Peak	HORIZONTAL
3	480.08	42.95	46.00	-3.05	50.10	1.72	23.41	32.28	100	359	Peak	HORIZONTAL
4	720.64	37.84	46.00	-8.16	42.52	2.13	25.73	32.54	100	134	Peak	HORIZONTAL
5	895.24	37.99	46.00	-8.01	40.80	2.39	27.26	32.46	175	35	Peak	HORIZONTAL
6	960.23	37.16	54.00	-16.84	39.47	2.44	27.72	32.47	100	327	Peak	HORIZONTAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	32.06	36.75	40.00	-3.25	43.45	0.53	24.30	31.53	100	221	QP	VERTICAL
2	55.22	32.22	40.00	-7.78	49.76	0.61	13.62	31.77	100	217	Peak	VERTICAL
3	311.30	30.57	46.00	-15.43	41.26	1.39	19.94	32.02	200	299	Peak	VERTICAL
4	480.08	37.17	46.00	-8.83	44.32	1.72	23.41	32.28	300	141	Peak	VERTICAL
5	746.83	33.69	46.00	-12.31	38.11	2.18	25.98	32.58	300	113	Peak	VERTICAL
6	960.23	41.97	54.00	-12.03	44.28	2.44	27.72	32.47	100	0	Peak	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.9. Results for Radiated Emissions (1GHz~40GHz)

Tem	perature	2	4°C		Hu	midity		58%					
Test	Engineer	P	eter Wu		Co	nfigura	tions	IEEE 8	802.11c	a CH 14	9 / Chain	1	
Test	Date	Ν	/lay 17, 2	2016 ~ M	ay 18	2016							
Horiz	ontal												
	Freq	Leve	Limit L Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBuV/r	n dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg			
1 2	11489.56 11489.60	50.1 65.2			36.39 51.49	10.51 10.51			105 105		Average Peak	HORIZONTAL HORIZONTAL	

Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
11489.08 11490.76										Average Peak	VERTICAL VERTICAL

Tem	perature	:	24°C		Hum	idity		58%				
Test	Engineer	I	Peter Wu		Cont	figuratio	ons	IEEE 80)2.11a (CH 157	/ Chain 1	
Test	Date	Ι	May 17, 2	2016 ~ N	May 18	, 2016						
Horiz	ontal											
	Freq	Leve	Limit l Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/	m dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	11567.16 11568.68	65.8 50.9		-8.17 -3.01	52.09 37.25	10.51 10.51			100 100		Peak Average	HORIZONTAL HORIZONTAL

Freq	Level	Limit Line					Preamp Factor		T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
11569.40 11569.60									175 175	Average Peak	VERTICAL VERTICAL

Ten	nperature	24	4°C		н	lumidity	/	58%	,			
Tes	t Engineer	Pe	eter Wu		C	Configu	rations	IEEE	802.110	a CH 1	65 / Chain	1
Tes	t Date	М	ay 17, 2	016 ~ 1	May 18	, 2016						
Horiz	zontal											
	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	11649.16 11649.44	65.08 50.47		-8.92 -3.53	51.39 36.78	10.51 10.51	39.09 39.09	35.91 35.91	100 100		Peak Average	HORIZONTAL HORIZONTAL

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
11648.52 11649.88								110 110	175 175	Peak Average	VERTICAL VERTICAL

Tem	nperature	2	4°C		Hum	nidity		58%					
Tort	Engineer		eter Wu		Con	figurati	ions	IEEE 80	2.11n N	ICSO HT	20 CH 14	9 /	
1031	Engineer	F			COL	ingulai		Chain	l + Cho	ain 2			
Test Date May 17, 2016 ~ May 18, 2016													
Horiz	ontal												
	Freq	Leve:	Limit L Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBuV/r	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg			
1	11489.56	50.49	54.00	-3.51	36.71	10.51	39.20	35.93	100	87	0	HORIZONTAL	
2	11489.56	66.0	3 74.00	-7.92	52.30	10.51	39.20	35.93	100	87	Peak	HORIZONTAL	

Vertical

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11489.36	68.15	74.00	-5.85	54.37	10.51	39.20	35.93	100	339	Peak	VERTICAL
2	11489.44	51.82	54.00	-2.18	38.04	10.51	39.20	35.93	100	339	Average	VERTICAL

٦

Tem	nperature	24	4°C		Hum	nidity		58%				
Toot	Engineer	D	eter Wu		Con	ficurati		IEEE 802	.11n M	CSO HT2	20 CH 157	/
iesi	Engineer		elei wu		Con	figurati		Chain 1	+ Chai	n 2		
Test	Date	Μ	ay 17, 2	2016 ~ N	May 18	, 2016						
Horiz	ontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	11569.48 11570.76	62.14 46.94		-11.86 -7.06	48.40 33.20	10.51 10.51	39.15 39.15		100 100	-	Peak Average	HORIZONTAL HORIZONTAL

Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
11569.52 11569.60										Average Peak	VERTICAL VERTICAL

Г

Tem	nperature	2	4°C		Hum	nidity		58%						
Tod	Engineer	D	eter Wu		Con	ficurati	0.000	IEEE 80	2.11n N	ICSO HI	20 CH 16	5/		
iesi	Engineer	P.	eler wu		Con	figurati	ons	Chain	I + Cho	ain 2				
Test	Date	Ν	lay 17, 2	2016 ~ 1	May 18	, 2016								
Horiz	ontal													
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg				
1 2	11646.96 11648.20	60.95 46.53		-13.05 -7.47	47.26 32.84	10.51 10.51	39.09 39.09		100 100		Peak Average	HORIZONTAL HORIZONTAL		
Verti	cal		Linit	0	Deed	Cable		Decem	A /Dec	T /Dag				

Т

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	11644.56 11648.20								100 100		Peak Average	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.6.3. Test Procedures

The test procedure is the same as section 4.5.3.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24°C	Humidity	58%						
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 149, 157, 165 /						
		Comgaranons	Chain 1						
Test Date	May 17, 2016 ~ May 1	May 17, 2016 ~ May 18, 2016							

Channel 149

	Freq	Level			Read Level					T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5572.00			-7.09					293		Peak	VERTICAL
2	5744.00	97.56			91.01	8.42	34.50	36.37	293	355	Average	VERTICAL
3	5746.00	106.92			100.36	8.42	34.50	36.36	293	355	Peak	VERTICAL
4	5961.00	60.78	68.20	-7.42	53.62	8.37	35.11	36.32	293	355	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2 3 4	5603.00 5784.08 5785.00 5957.00	96.41 106.22			89.76 99.57	8.41 8.41	34.59 34.59	36.35 36.35	294 294 294 294	358 358	Peak Average Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Item 2, 3 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level			Read Level					T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	5646.00 5824.00	97.83		-7.49	91.05	8.39	34.73	36.34	324 324	243	Peak Average	HORIZONTAL HORIZONTAL
3 4	5824.00 5962.00			-7.20	101.68 53.84			36.34 36.32	324 324		Peak Peak	HORIZONTAL HORIZONTAL

Item 2, 3 are the fundamental frequency at 5825 MHz.

Temperature	24°C	Humidity	58%
Test Engineer	Peter Wu	Configurations	IEEE 802.11n MCS0 HT20 CH 149, 157, 165 / Chain 1 + Chain 2
Test Date	May 17, 2016 ~ N	Nay 18, 2016	

Channel 149

	Freq	Level			Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2 3 4	5642.00 5744.00 5745.00 5934.00	100.03 109.58				8.42 8.42	34.50 34.50	36.37 36.37	284 284 284 284	246 246	Peak Average Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 2, 3 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level			Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	5599.00 5784.00	98.00		-7.46	91.35	8.41	34.59	36.35	280 280	248	Peak Average	HORIZONTAL HORIZONTAL
3 4	5784.00 5928.00			-7.50	101.05 53.65			36.35 36.33	280 280		Peak Peak	HORIZONTAL

Item 2, 3 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5618.00	61.13	68.20	-7.07	54.94	8.46	34.13	36.40	325	244	Peak	HORIZONTAL
2	5824.00	95.97			89.19	8.39	34.73	36.34	325	244	Average	HORIZONTAL
3	5826.00	106.55			99.77	8.39	34.73	36.34	325	244	Peak	HORIZONTAL
4	5929.00	61.01	68.20	-7.19	53.96	8.37	35.01	36.33	325	244	Peak	HORIZONTAL

Item 2, 3 are the fundamental frequency at 5825 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

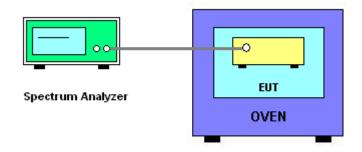
4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 8. Extreme temperature is $-30^{\circ}C \sim 50^{\circ}C$.

4.7.4. Test Setup Layout

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	24 °C	Humidity	60%
Test Engineer	Clemens Fang	Test Date	May 16, 2016 ~ May 28, 2016

Mode: 20 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)				
(V)	5785 MHz				
	0 Minute	2 Minute	5 Minute	10 Minute	
126.50	5784.9591	5784.9580	5784.9565	5784.9545	
110.00	5784.9579	5784.9566	5784.9550	5784.9531	
93.50	5784.9565	5784.9556	5784.9542	5784.9524	
Max. Deviation (MHz)	0.0435	0.0444	0.0458	0.0476	
Max. Deviation (ppm)	7.52	7.68	7.92	8.23	
Result	Complies				

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)				
" 	5785 MHz				
(°C)	0 Minute	2 Minute	5 Minute	10 Minute	
-30	5784.9651	5784.9635	5784.9620	5784.9596	
-20	5784.9633	5784.9620	5784.9603	5784.9582	
-10	5784.9618	5784.9606	5784.9590	5784.9571	
0	5784.9604	5784.9590	5784.9571	5784.9549	
10	5784.9591	5784.9578	5784.9563	5784.9545	
20	5784.9579	5784.9566	5784.9550	5784.9531	
30	5784.9565	5784.9554	5784.9540	5784.9524	
40	5784.9550	5784.9537	5784.9521	5784.9502	
50	5784.9533	5784.9521	5784.9506	5784.9483	
Max. Deviation (MHz)	0.0467	0.0479	0.0494	0.0517	
Max. Deviation (ppm)	8.07	8.28	8.54	8.94	
Result	Complies				

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
BILOG ANTENNA	TESEQ	CBL6112D	37880	20MHz ~ 2GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	$15 ext{GHz} \sim 40 ext{GHz}$	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	$0.1 \text{MHz} \sim 1.3 \text{GHz}$	Mar. 15, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 13, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 16, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%