

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R14-2100176

FCC SAR REPORT

Applicant:	PORTMAN ELECTRONICS (DONGGUAN) CO., LTD.	
Address of Applicant:	NO#10 , Luyi 2 Road, Keyuancheng, Tangxia Town,DONGGUAN CITY ,GUANGDONG PROVINCE CHINA 523718	
Equipment Under Test (E	EUT)	
Product Name:	CAR ALARM	
Model No.:	18LCDSP-1	
FCC ID:	TBQT30-SS2W-1	
Applicable standards:	FCC 47 CFR Part 2.1093	
Date of Test:	19 Aug., 2021 ~ 19 Aug., 2021	
Test Result:	Maximum Reported 1-g SAR (W/kg) Body: 1.100	

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 Aug., 2021	Original

Tested by:

Carl Wei Test Engineer

Date:

31 Aug., 2021

31 Aug., 2021

Reviewed by:

Janet Wei Date:

Project Engineer

1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 SAR RESULTS SUMMARY	4
5 GENERAL INFORMATION	5
5.1 Client Information	5
5.2 GENERAL DESCRIPTION OF EUT	
5.3 MAXIMUM RF OUTPUT POWER 5.4 Environment of Test Site	
5.5 TEST SAMPLE PLAN	
5.6 Test Location	
6 INTRODUCTION	7
6.1 INTRODUCTION	
6.2 SAR DEFINITION	
7 RF EXPOSURE LIMITS	
 7.1 UNCONTROLLED ENVIRONMENT 7.2 CONTROLLED ENVIRONMENT 	
7.3 RF Exposure Limits	
8 SAR MEASUREMENT SYSTEM	9
8.1 E-Field Probe	
8.2 DATA ACQUISITION ELECTRONICS (DAE)	
8.3 ROBOT	
8.5 LIGHT BEAM UNIT	
8.6 PHANTOM	
8.7 Device Holder	
8.9 TEST EQUIPMENT LIST	
9 TISSUE SIMULATING LIQUIDS	17
10 SAR SYSTEM VERIFICATION	19
11 EUT TESTING POSITION	21
12 MEASUREMENT PROCEDURES	22
12.1 Spatial Peak SAR Evaluation	22
12.2 Power Reference Measurement	
 12.3 AREA & ZOOM SCAN PROCEDURES. 12.4 VOLUME SCAN PROCEDURES	
12.5 SAR Averaged Methods	
12.6 Power Drift Monitoring	24
13 CONDUCTED RF OUTPUT POWER	25
14 SAR TEST RESULTS SUMMARY	26
14.1 Standalone Body SAR Data	26
14.2 Repeated SAR measurement 14.3 Measurement Uncertainty	-
14.3 MEASUREMENT UNCERTAINTY	
15 REFERENCE	
APPENDIX A: PLOTS OF SAR SYSTEM CHECK	
APPENDIX B: PLOTS OF SAR TEST DATA	
APPENDIX C: SYSTEM CALIBRATION CERTIFICATE	

4 SAR Results Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

<Highest Reported standalone SAR Summary>

Exposure Position	Frequency Band	Reported 1-g SAR (W/kg)	Equipment Class	Highest Reported 1-g SAR (W/kg)
Body	SRD 915MHz	1.100	DSC	1.100

Note:

1. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

5 General Information

5.1 Client Information

Applicant:	PORTMAN ELECTRONICS (DONGGUAN) CO., LTD.	
Address:	NO#10, Luyi 2 Road, Keyuancheng, Tangxia Town, DONGGUAN CITY, GUANGDONG PROVINCE CHINA 523718	
Manufacturer:	DONGGUAN PORTMAN ELECTRONIC SCIENCE AND TECHNOLOGY CO.,LTD.	
Address:	NO.10,LUYI 2 ROAD,TANGXIA TOWN, DONGGUAN CITY GUANGDONG PROVINCE	

5.2 General Description of EUT

Product Name:	CAR ALARM
Model No.:	18LCDSP-1
Category of device	Portable device
Operation Frequency:	905 MHz ~ 925 MHz
Modulation type:	FSK
Modulation technology:	FHSS
Antenna Type:	Helix antenna
Power supply:	DC 3.0V(CR2450 Battery)

5.3 Maximum RF Output Power

SRD Average Power (dBm)		
Mode/Band FSK		
SRD 915 MHz	18.01	

5.4 Environment of Test Site

Temperature:	18°C ~25 °C
Humidity:	35%~75% RH
Atmospheric Pressure:	1010 mbar

5.5 Test Sample Plan

•	
Sample Number	Used for Test Items
3#	SAR
Remark: JianYan Testing Group Shenzhen Co. 1 td. is only responsible for the test project data of the	

Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.6 Test Location

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

6 Introduction

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 RF Exposure Limits

7.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

7.3 RF Exposure Limits

SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT		
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)		
SPATIAL PEAK SAR Brain	1.6	8.0		
SPATIAL AVERAGE SAR Whole Body	0.08	0.4		
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20		

Note:

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 SAR Measurement System

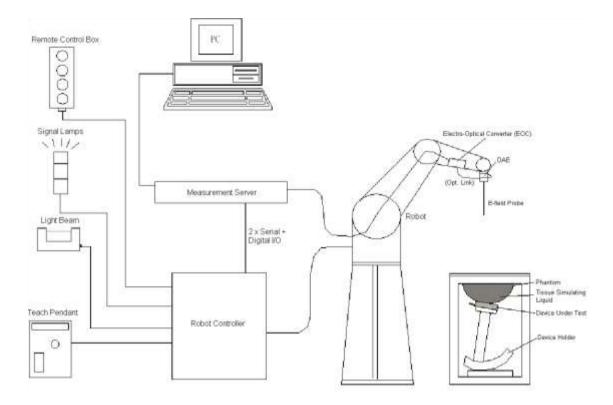


Fig. 8.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- > A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- > DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Component details are described in the following sub-sections.

8.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

> E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis)	
	± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB	CONTRACTOR OF
	(noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20mm)	
	Tip diameter: 2.5 mm (Body: 12mm)	
	Typical distance from probe tip to dipole	
	centers: 1 mm	
		Fig. 8.2 Photo of E-Field Probe

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (Norm X, Norm Y and Norm Z), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix E of this report.

8.2 Data Acquisition Electronics (DAE)

The Data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

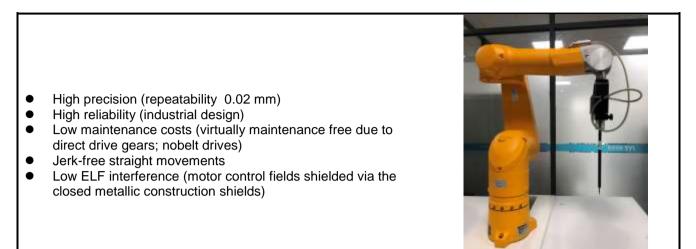
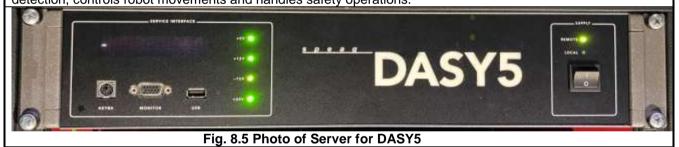
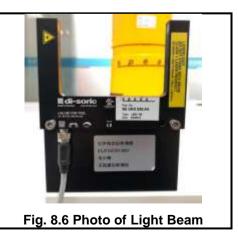


Fig. 8.4 Photo of Robot


8.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

8.4 Measurement Server


The measurement server is based on a PC/104 CPU board with CPU (DASY 5: 400MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

8.5 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

8.6 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm		
Filling Volume Dimensions	Approx. 25 liters Length: 1000mm; Width: 500mm; Height: adjustable feet		
Measurement Areas	Left Head, Right Head, Flat phantom	Fig. 8.7 Photo of SAM Twin Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom >

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

ELI4 has been optimized regarding its performance and can be integrated into a SPEAG standard phantom table. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points The phantom can be used with the following tissue simulating liquids:

- Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not in use; otherwise the parameters will change due to water evaporation.
- DGBE based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not in use (desirable at least once a week).
- Do not use other organic solvents without previously testing the phantom resistiveness

Fig.8.8 Photo of ELI4 Phantom

8.7 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-low POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

8.8 Data storage and Evaluation

> Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verifications of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameters:	- Sensitivity - Conversion	Norm _i , a_{i0} , a_{i1} , a_{i2} ConvF _i
Device Parameters:	 Diode compression point Frequency 	dcp _i f
Device i didilleters.	- Crest	cf
Media Parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With

 V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp['] = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E- Field Probes:
$$E_i = \sqrt{\frac{v_i}{Norm \cdot ConvF}}$$

H-Field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = senor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency (GHz)

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$\mathsf{SAR} = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

With

SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in (mho/m) or (Siemens/m)

 ρ = equipment tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

8.9 Test Equipment List

		Madal	Management	Cal. Info	ormation
Manufacturer	Equipment Description	Model	Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	WXJ023-1	06.11.2019	06.10.2022
SPEAG	Data Acquisition Electronics	DAE4	WXJ021-1	05.26.2021	05.25.2022
SPEAG	Dosimetric E-Field Probe	EX3DV4	WXJ022	09.23.2020	09.22.2021
SPEAG	DASY 52 Measurement Software	DASY 52	Version 52.10.4.1527	N.C.R	N.C.R
SPEAG	DASY 52 File Conversion Software	SEMCAD X	Version 14.6.14 (7483)	N.C.R	N.C.R
SPEAG	Phantom	Twin Phantom	WXG008-3	N.C.R	N.C.R
SPEAG	Phantom	ELI V5.0	WXG008-4	N.C.R	N.C.R
SPEAG	Phone Positioner	N/A	WXG008-5	N.C.R	N.C.R
Stäubli	Robot	TX60L	WXG008-2	N.C.R	N.C.R
HP	Network Analyzer	8753D	WXJ024	06.18.2020	06.17.2022
KEYSIGHT	EPM Series Power Meter	N1914A	WXJ075	11.12.2020	11.11.2021
KEYSIGHT	E-Series Power Sensor	E9300H	WXJ075-2	08.21.2020	08.20.2021
KEYSIGHT	Signal Generator	N5173B	WXJ006-7	03.25.2021	03.24.2022
Huber Suhner	RF Cable	SUCOFLEX	WXG008-13	See N	Note 3
Huber Suhner	RF Cable	SUCOFLEX	WXG008-14	See N	Note 3
Huber Suhner	RF Cable	SUCOFLEX	WXG008-15	See N	Note 3
Weinschel	Attenuator	23-3-34	WXG008-16	See N	Note 3
Anritsu	Directional Coupler	MP654A	WXG008-17	See N	Note 3
SPEAG	Dielectric Assessment Kit	3.5 Probe	WXG008-7	See N	Note 4
SPEAG	DAK Measurement Software	DAK	Version: DAK 3.5	N.(C.R
TXC	Broadband Amplifier	BBA018000	WXG008-11	See N	Note 5

Note:

1. The calibration certificate of DASY can be referred to appendix C of this report.

2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.

3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.

4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Speag.

5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1 W input power according to the ratio of 1 W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

6. Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check.

7. N.C.R means No Calibration Requirement.

9 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger than 15 cm, which is shown in Fig. 9.1.

Fig. 9.1 Photo of Liquid Height for Body SAR (700MHz~1000MHz)(depth>15cm)

The relative permittivity and conductivity of the tissue material should be within $\pm 5\%$ of the values given in the table below recommended by the FCC OET 65 supplement C.

Target Frequency (MHz)	٤r	σ(S/m)		
150	52.3	0.76		
300	45.3	0.87		
450	43.5	0.87		
835	41.5	0.90		
900	41.5	0.97		
915	41.5	0.98		
1450	40.5	1.20		
1610	40.3	1.29		
1800-2000	40.0	1.40		
2450	39.2	1.80		
3000	38.5	2.40		
5800	35.3	5.27		

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

The dielectric parameters of liquids were verified prior to the SAR evaluation using a Speag Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (εr)	Conductivity Target(σ)	Permittivity Target(εr)	Delta (σ)%	Delta (εr)%	Limit (%)	Date (mm/dd/yy)
835	23.0	0.91	41.03	0.90	41.5	1.11	-1.13	±5	08.19.2021

10 SAR System Verification

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

> System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

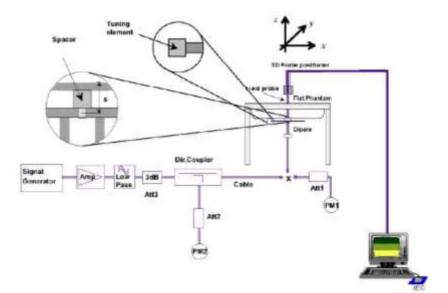


Fig.10.1 System Verification Setup Diagram

Fig.10.2 Photo of Dipole setup

> System Verification Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix C of this report.

Date (mm/dd/yy)	Frequency (MHz)			Normalized to 1W 1g SAR (W/kg)	1W Target 1g SAR (W/kg)	Deviation (%)
08.19.2021	835	80	0.774	9.68	9.49	2.00

11 EUT Testing Position

This EUT was tested in six different positions. They are Front Side /Back Side/Left Side/Right Side/Top Side/Bottom Side of the EUT with phantom 0 mm gap, as illustrated below, please refer to Appendix B for the test setup photos.

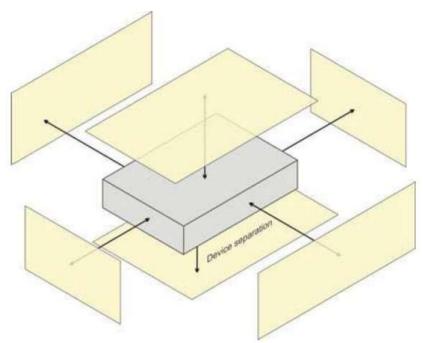


Fig.11 Test positions for a generic device

12 Measurement Procedures

The measurement procedures are as bellows:

<Conducted power measurement>

- For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power.

<Conducted power measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- Place the EUT in positions as Appendix B demonstrates.
- Set scan area, grid size and other setting on the DASY software.
- Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band.
- Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- Area scan
- Zoom scan
- Power drift measurement

12.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan.
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- ➢ Generation of a high-resolution mesh within the measured volume.
- > Interpolation of all measured values form the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g.

12.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

12.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r03 quoted below.

		sors) to phantom surface robe axis to phantom ment location solution: Δx_{Ana} , Δy_{Ana} esolution: Δx_{Zoom} , Δy_{Zoom} m grid: $\Delta z_{Zoom}(n)$ d d $\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface $\Delta z_{Zoom}(n>1)$; between subsequent points		
			≤3 GHz	> 3 GHz
Maximum distance fro (geometric center of pr			$5 \pm 1 \mathrm{mm}$	$\% \ \delta \ mm$
Maximum probe angle surface normal at the n			30° ± 1°	20°±1°
			$ \leq 2 \text{ GHz:} \leq 15 \text{ mm} \\ 2 - 3 \text{ GHz:} \leq 12 \text{ mm} $	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$
Maximum area scan sp	atial resol	ation: Δx _{Area} , Δy _{Area}	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test	on, is smaller than the above must be \leq the corresponding levice with at least one
Maximum zoom scan s	spatial reso	olution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: ∆z _{Zoon} (n)	≤ 5 mm	$\begin{array}{c} 3-4 \ \text{GHz:} \leq 4 \ \text{mm} \\ 4-5 \ \text{GHz:} \leq 3 \ \text{mm} \\ 5-6 \ \text{GHz:} \leq 2 \ \text{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	1 st two points closest	≤4 mm	$\begin{array}{l} 3-4 \ \text{GHz} \leq 3 \ \text{mm} \\ 4-5 \ \text{GHz} \leq 2.5 \ \text{mm} \\ 5-6 \ \text{GHz} \leq 2 \ \text{mm} \end{array}$
	grid	between subsequent	≤1.5·Δ2	Zoon(n-1)
Mininum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR.

12.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

12.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

13 Conducted RF Output Power

SRD Average Power (dBm)							
Channel	Frequency (MHz)	FSK					
CH 00	905.4	18.01					
CH 12	915.0	17.79					
CH 24	924.6	17.48					

Note:

1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Channel	Frequency (GHz)	Max. tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
CH 00	0.9054	18.5	70.79	5	13.45	3.0

2. The max. tune-up power was provided by manufacturer, base on the result of note 1, RF exposure evaluation is not required.

3. The output power of all data rate were pre-scan, just the worst case of all mode were shown in report.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.

14 SAR Test Results Summary

14.1 Standalone Body SAR Data

> SRD Body SAR

Plot No.	Band/Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Power Drift (dB)	Tune-Up Limit (dBm)	Meas. SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)
	SRD/FSK	Front Side	00	905.3	18.01	0.04	18.5	0.640	1.119	0.716
	SRD/FSK	Back Side	00	905.3	18.01	-0.10	18.5	0.661	1.119	0.740
	SRD/FSK	Left Side	00	905.3	18.01	-0.10	18.5	0.140	1.119	0.157
	SRD/FSK	Right Side	00	905.3	18.01	0.02	18.5	0.153	1.119	0.171
	SRD/FSK	Top Side	00	905.3	18.01	-0.13	18.5	0.821	1.119	0.919
1	SRD/FSK	Top Side	12	915.0	17.79	-0.05	18.5	0.934	1.178	1.100
	SRD/FSK	Top Side	12	915.0	17.79	-0.18	18.5	0.928	1.178	1.093
	SRD/FSK	Top Side	24	924.5	17.48	0.12	18.5	0.863	1.265	1.092
	SRD/FSK	Bottom Side	00	905.3	18.01	0.06	18.5	0.085	1.119	0.095
U	ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							g (mW/g) d over 1g		

Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measured SAR is ≥0.8W/kg.
- 2. According to KDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination.
- 3. Highlight part of test data means repeated test.

14.2 Repeated SAR measurement

			Frog	Measured SAR (W/kg)					
Band/ Mode	Test Position	CH.	Freq. (MHz)	Original	1 st Repeated		2 nd Repeated		
			(11112)	Onginai	Value	Ratio	Value	Ratio	
SRD/FSK	Right Side	0	915	0.934	0.928	1.01	/	/	
	EEE C95.1 – SAFETY Spatial Peak d Exposure/General F		on			W/kg (m) eraged ove	•		

Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg
- 2. Per KDB 865664 D01v01r04, if the ratio of *original* and *repeated* is ≤ 1.2and the measured SAR <1.45W/kg,only one repeated measurement is required.

14.3 Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A Type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in below Table.

Un	certainty Distributions	Normal	Rectangular	Triangular	U-Shape
	Multi-plying Factor	1/k(b)	1/√3	1/√6	1/√2

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Measurement Uncertainty Evaluation for SAR test									
Uncertainty Component	Section	Uncert. Value	Prob. Dist.	Div.	(C _i) (1 g)	(C _i) (10 g)	Std. Unc. (1 g)	Std. Unc. (10 g)	Vi
Measurement System									
Probe Calibration	E.2.1	±7.4%	N	1	1	1	±7.4%	±7.4%	8
Axial Isotropy	E.2.2	±1.2%	R	$\sqrt{3}$	0.7	0.7	±0.49%	±0.49%	8
Hemispherical Isotropy	E.2.2	±3.2%	R	$\sqrt{3}$	0.7	0.7	±1.29%	±1.29%	8
Boundary Effects	E.2.3	±1.0%	R	$\sqrt{3}$	1	1	±0.58%	±0.58%	∞
Linearity	E.2.4	±0.9%	R	√3	1	1	±0.52%	±0.52%	∞
System Detection Limits	E.2.5	±0.25%	R	√3	1	1	±0.14%	±0.14%	∞
Readout Electronics	E.2.6	±0.3%	Ν	1	1	1	±0.3%	±0.3%	8
Response Time	E.2.7	±0.8%	R	$\sqrt{3}$	1	1	±0.46%	±0.46%	8
Integration Time	E.2.8	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	E.6.1	±3.0%	R	√3	1	1	±1.73%	±1.73%	∞
RF Ambient Reflections	E.6.1	±3.0%	R	√3	1	1	±1.73%	±1.73%	∞
Probe positioner mechanical tolerances	E.6.2	±0.4%	R	√3	1	1	±0.23%	±0.23%	∞
Probe positioning tolerance with respect to the phantom shell surface	E.6.3	±2.9%	R	√3	1	1	±1.68%	±1.68%	∞
Interpolation, extrapolation, and integration algorithm For max. SAR Evaluation.	E.5	±1.0%	R	√3	1	1	±0.58%	±0.58%	∞
Test Sample Related									-
Device Positioning	E.4.2	±4.6%	Ν	1	1	1	±4.6%	±4.6%	M-1
Device Holder	E.4.1	±5.2%	Ν	1	1	1	±5.2%	±5.2%	M-1
Power Drift	E.2.9	±5.0%	R	$\sqrt{3}$	1	1	±2.89%	±2.89%	8
SAR Scaling	E.6.5	±2.0%	R	√3	1	1	±1.16%	±1.16%	∞
Phantom and Setup	-	-	-				-	-	-
Phantom shell uncertainty- shape, thickness, and permittivity	E.3.1	±4.0%	R	√3	1	1	±2.31%	±2.31%	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	±1.9%	N	1	1	0.84	±1.9%	±1.6%	∞
Liquid Conductivity(Meas.)	E.3.3	±2.97%	N	1	0.78	0.71	±2.32%	±2.11%	М
Liquid Permittivity(Meas.)	E.3.3	±3.08%	N	1	0.23	0.26	±0.71%	±0.8%	М
Liquid conductivity- temperature uncertainty	E.3.4	±1.3%	R	√3	0.78	0.71	±0.59%	±0.53%	∞
Liquid permittivity- temperature uncertainty	E.3.4	±1.1%	R	√3	0.23	0.26	±0.15%	±0.17%	8
Com	bined Stand	lard Uncerta	ainty (RS	S)			±11.77%	±11.64%	
Expanded U	ncertainty (9	95% Confid	ence Lev	vel, k = 2)			±23.53%	±23.28%	

Measurement Uncertainty Evaluation for System Validation									
Uncertainty Component	Section	Uncert. Value	Prob. Dist.	Div.	(C _i) (1 g)	(C _i) (10 g)	Std. Unc. (1 g)	Std. Unc. (10 g)	Vi
Measurement System									
Probe Calibration	E.2.1	±7.4%	Ν	1	1	1	±7.4%	±7.4%	8
Axial Isotropy	E.2.2	±1.2%	R	$\sqrt{3}$	0.7	0.7	±0.49%	±0.49%	8
Hemispherical Isotropy	E.2.2	±3.2%	R	√3	0.7	0.7	±1.29%	±1.29%	∞
Boundary Effects	E.2.3	±1.0%	R	√3	1	1	±0.58%	±0.58%	∞
Linearity	E.2.4	±0.9%	R	√3	1	1	±0.52%	±0.52%	∞
System Detection Limits	E.2.5	±0.25%	R	√3	1	1	±0.14%	±0.14%	∞
Readout Electronics	E.2.6	±0.3%	Ν	1	1	1	±0.3%	±0.3%	∞
Response Time	E.2.7	±0.8%	R	√3	1	1	±0.46%	±0.46%	∞
Integration Time	E.2.8	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	E.6.1	±3.0%	R	√3	1	1	±1.73%	±1.73%	∞
RF Ambient Reflections	E.6.1	±3.0%	R	√3	1	1	±1.73%	±1.73%	∞
Probe positioner mechanical tolerances	E.6.2	±0.4%	R	√3	1	1	±0.23%	±0.23%	∞
Probe positioning tolerance with respect to the phantom shell surface	E.6.3	±2.9%	R	√3	1	1	±1.68%	±1.68%	8
Interpolation, extrapolation, and integration algorithm For max. SAR Evaluation.	E.5	±1.0%	R	√3	1	1	±0.58%	±0.58%	8
System validation source(dipole)									
Deviation of experimental dipole from numerical dipole	E.6.4	±1.0%	N	1	1	1	±1.0%	±1.0%	8
Input power and SAR drift measurement	8,6.6.4	±5.0%	R	$\sqrt{3}$	1	1	±2.89%	±2.89%	∞
Dipole axis to liquid distance	8,E.6.6	±2.0%	R	√3	1	1	±1.16%	±1.16%	8
Phantom and Setup									
Phantom shell uncertainty- shape, thickness, and permittivity	E.3.1	±4.0%	R	$\sqrt{3}$	1	1	±2.31%	±2.31%	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	±1.9%	N	1	1	0.84	±1.9%	±1.6%	∞
Liquid Conductivity(Meas.)	E.3.3	±2.97%	N	1	0.78	0.71	±2.32%	±2.11%	М
Liquid Permittivity(Meas.)	E.3.3	±3.08%	Ν	1	0.23	0.26	±0.71%	±0.8%	М
Liquid conductivity- temperature uncertainty	E.3.4	±1.3%	R	√3	0.78	0.71	±0.59%	±0.53%	8
Liquid permittivity- temperature uncertainty	E.3.4	±1.1%	R	√3	0.23	0.26	±0.15%	±0.17%	∞
Combined Standard Uncertainty (RSS)							±9.55%	±9.40%	
Expanded Uncertainty (95% Confidence Level, $k = 2$)							±19.10%	±18.80%	

. V. P. L. C . .

Uncertainty Budget for frequency range 300 MHz to 3 GHz according to IEEE1528-2013

14.4 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

15 Reference

- [1]. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2]. ANSI/IEEE Std. C95.1-2005, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3]. IEEE Std. 1528-2013, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September2013
- [4]. SPEAG DASY52 System Handbook
- [5]. FCC KDB 447498 D01 v06, "RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE AND PORTABLE DEVICES", October 2015
- [6]. FCC KDB 865664 D01 v01r04, "SAR MEASUREMENT REQUIREMENTS FOR 100 MHz TO 6 GHz", August 2015

Appendix A: Plots of SAR System Check

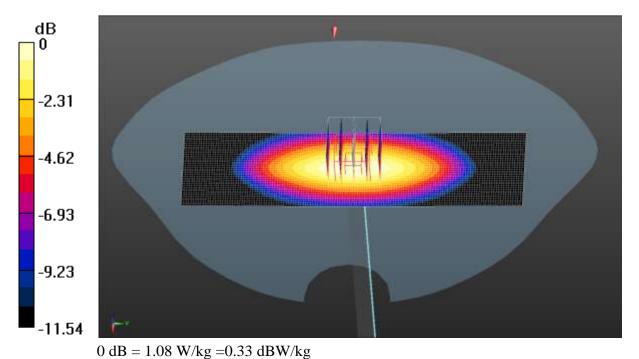
Test Laboratory: JYTSZ

Date: 08.19.2021

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN:4d154

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.908$ S/m; $\epsilon_r = 41.029$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3924; ConvF(9.71, 9.71, 9.71) @ 835 MHz; Calibrated: 09.23.2020;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1452; Calibrated: 05.26.2021
- Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check at Frequency 835 MHz Head Tissue/d=15mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Area Scan (41x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.01 W/kg

System Performance Check at Frequency 835 MHz Head Tissue/d=15mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 34.82 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.24 W/kg **SAR(1 g) = 0.774 W/kg; SAR(10 g) = 0.499 W/kg** Smallest distance from peaks to all points 3 dB below = 9.4 mm Ratio of SAR at M2 to SAR at M1 = 39.6% Maximum value of SAR (measured) = 1.08 W/kg

Appendix B: Plots of SAR Test Data

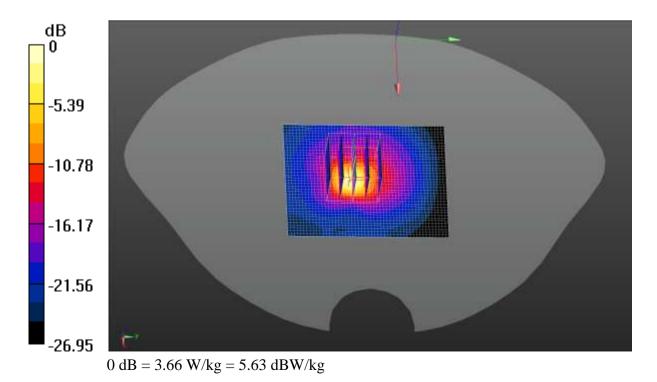
Test Laboratory: JYTSZ

Date: 08.19.2021

DUT: CAR ALARM; Type: 18LCDSP-1; Serial:

Communication System: UID 0, SRD (0); Frequency: 915 MHz;Duty Cycle: 1:1 Medium parameters used: f = 915 MHz; $\sigma = 0.979$ S/m; $\epsilon_r = 42.354$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3924; ConvF(9.67, 9.67, 9.67) @ 915 MHz; Calibrated: 09.23.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1452; Calibrated: 05.26.2021
- Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

SRD Body Top/Middle Channel/Area Scan (41x51x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.12 W/kg

SRD Body Top/Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 42.86 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 6.53 W/kg**SAR(1 g) = 0.934 W/kg; SAR(10 g) = 0.248 W/kg** Smallest distance from peaks to all points 3 dB below = 3.2 mmRatio of SAR at M2 to SAR at M1 = 12.6%Maximum value of SAR (measured) = 3.66 W/kg

Appendix C: System Calibration Certificate

	In Collaboration v S D CALIBRATION L	a g lac-MRA	中国认可 国际互认 校准 CALIBRATIO
Tel: +86-10-623046		62304633-2504	CNAS L057
E-mail: cttl@chinat Client CCIS	tl.com <u>Http://www.s</u>	A second second	Z20-60314
CALIBRATION CI	ERTIFICATE		
Dbject	EX3DV4 - S	N : 3924	
Calibration Procedure(s)			
2/3	FF-Z11-004-	02 Procedures for Dosimetric E-field Probes	
	Galbration	Tobedules for Dosimetric E-field Probes	
Calibration date:	September 2	23, 2020	
numidity<70%.		closed laboratory facility: environment to	emperature(22±3)°C and
Calibration Equinment used	M&TE critical for ca	(ibration)	
			Scheduled Calibration
rimary Standards	I (M&TE critical for ca ID # 101919	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
rimary Standards Power Meter NRP2	ID#	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344)	
rimary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919	Cal Date(Calibrated by, Certificate No.)	Jun-21
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ID # 101919 101547 101548	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344)	Jun-21 Jun-21
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547 101548 tor 18N50W-10dB	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344)	Jun-21 Jun-21 Jun-21
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525)	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3D\	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526)	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3D\ DAE4	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB /4 SN 7307	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May2	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3D\ DAE4 Secondary Standards	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB /4 SN 7307 SN 1556 ID #	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 Cal Date(Calibrated by, Certificate No.)	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3D\ DAE4 Secondary Standards SignalGenerator MG370	ID # 101919 101547 101548 tor 18N50W-10dB 18N50W-20dB /4 SN 7307 SN 1556 ID # 104 6201052605	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 4-Feb-20(SPEAG, No.DAE4-1556_Feb2	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21 Scheduled Calibration
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3D\ DAE4 Secondary Standards SignalGenerator MG370	ID # 101919 101547 101548 tor 18N50W-10dB 18N50W-20dB /4 SN 7307 SN 1556 ID # 104 6201052605	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343)	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21 Scheduled Calibration Jun-21
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB /4 SN 7307 SN 1556 ID # 10A 6201052605 IC MY46110673	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May2 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 10-Feb-20(CTTL, No.J20X00515)	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21 Scheduled Calibration Jun-21 Feb-21
Reference 20dBAttenual	ID # 101919 101547 101548 tor 18N50W-10dB 18N50W-20dB /4 SN 7307 SN 1556 ID # 10A 6201052605 IC MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 10-Feb-20(CTTL, No.J20X00515) Function	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21 Scheduled Calibration Jun-21 Feb-21
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071 Calibrated by:	ID # 101919 101547 101548 tor 18N50W-10dB 18N50W-20dB X4 SN 7307 SN 1556 ID # 10A 6201052605 IC MY46110673 Name Yu Zongying	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 10-Feb-20(CTTL, No.J20X00515) Function SAR Test Engineer	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21 Scheduled Calibration Jun-21 Feb-21
rimary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenual Reference 20dBAttenual Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071 Calibrated by: Reviewed by:	ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB XN 7307 SN 1556 ID # 10A 6201052605 MY46110673 Name Yu Zongying Lin Hao	Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May2 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 10-Feb-20(CTTL, No.J20X00515) Function SAR Test Engineer SAR Test Engineer	Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 20) Feb-21 Scheduled Calibration Jun-21 Feb-21 Signature

Calibration information for E-field probes

Certificate No: Z20-60314

Page 1 of 10

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

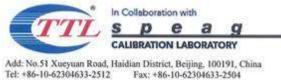
Glossary:

TSL	ti
NORMx,y,z	S
ConvF	S
DCP	d
CF	C
A,B,C,D	m
Polarization Φ	¢
Polarization 0	θ

ssue simulating liquid ensitivity in free space ensitivity in TSL / NORMx,y,z iode compression point rest factor (1/duty_cycle) of the RF signal nodulation dependent linearization parameters

rotation around probe axis

rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis


Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)". July 2016
- c) IEC 62209-2; "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- Methods Applied and Interpretation of Parameters:
- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This . linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60314

Page 2 of 10

E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3924

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.50	0.42	0.67	±10.0%
DCP(mV) ⁸	101.3	100.1	99.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	172.6	±1.9%	
		Y	0.0	0.0	1.0		149.2	
		Z	0.0	0.0	1.0		200.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4 and Page 5).
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60314

Page 3 of 10

Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3924

f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.11	10.11	10.11	0.40	0.75	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.18	1.20	±12.1%
900	41.5	0.97	9.67	9.67	9.67	0.21	1.15	±12.1%
1750	40.1	1.37	8.43	8.43	8.43	0.20	1.11	±12.1%
1900	40.0	1.40	8.14	8.14	8.14	0.22	1.14	±12.1%
2300	39.5	1.67	7.83	7.83	7.83	0.48	0.72	±12.1%
2450	39.2	1.80	7.58	7.58	7.58	0.50	0.75	±12.1%
2600	39.0	1.96	7.35	7.35	7.35	0.60	0.69	±12.1%
5250	35.9	4.71	5.42	5.42	5.42	0.45	1.32	±13.3%
5600	35.5	5.07	4.85	4.85	4.85	0.50	1.20	±13.3%
5750	35.4	5.22	4.96	4.96	4.96	0.55	1.20	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is. restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60314

Page 4 of 10

Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3924

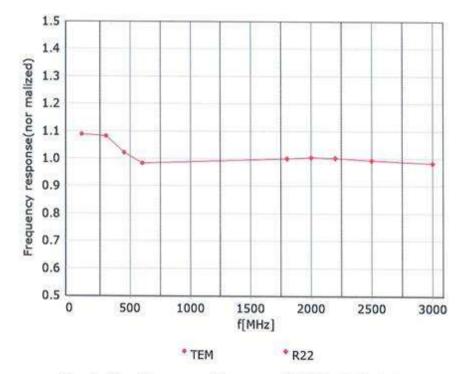
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	55.5	0.96	10.06	10.06	10.06	0.40	0.82	±12.1%
835	55.2	0.97	9.70	9.70	9.70	0.18	1.36	±12.1%
900	55.0	1.05	9.72	9.72	9.72	0.28	1.04	±12.1%
1750	53.4	1.49	8.16	8.16	8.16	0.20	1.28	±12.1%
1900	53.3	1.52	7.78	7.78	7.78	0.21	1.34	±12.1%
2300	52.9	1.81	7.65	7.65	7.65	0.47	0.85	±12.1%
2450	52.7	1.95	7.50	7.50	7.50	0.55	0.78	±12.1%
2600	52.5	2.16	7.29	7.29	7.29	0.66	0.69	±12.1%
5250	48.9	5.36	4.86	4.86	4.86	0.50	1.40	±13.3%
5600	48.5	5.77	4.24	4.24	4.24	0.60	1.30	±13.3%
5750	48.3	5.94	4.35	4.35	4.35	0.55	1.45	±13.3%

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128. 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

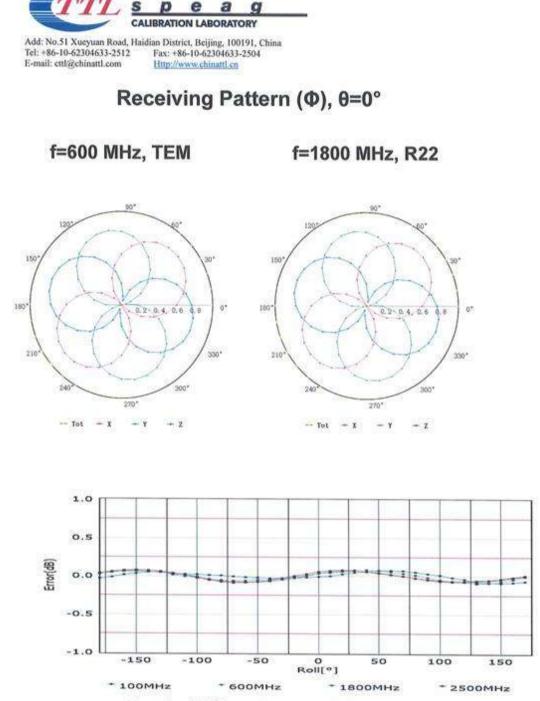
F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60314


Page 5 of 10

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

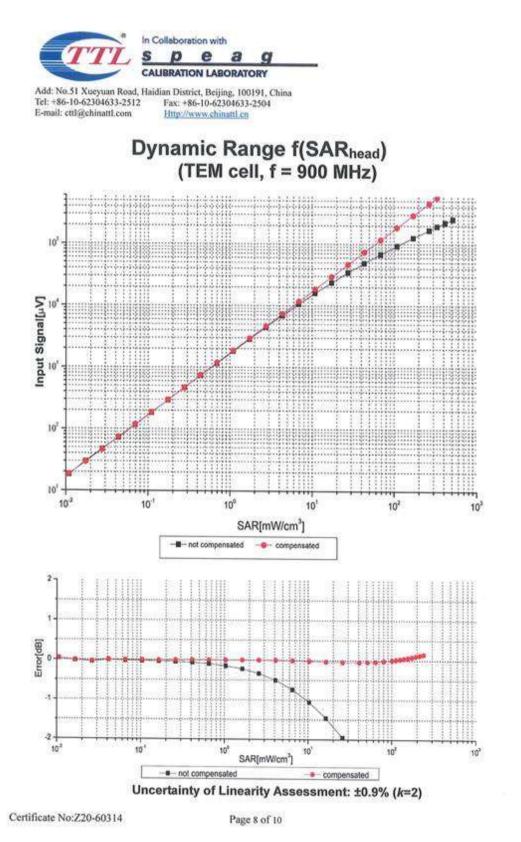
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z20-60314

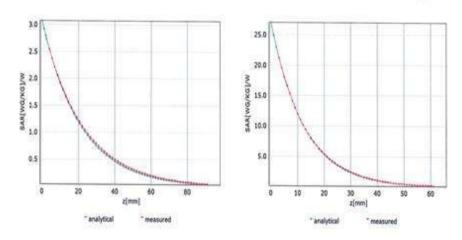
Page 6 of 10


In Collaboration with

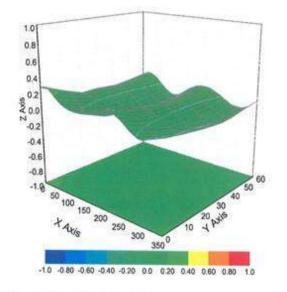
Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:Z20-60314

Page 7 of 10



Http://www.chinattl.cn


Conversion Factor Assessment

f=750 MHz, WGLS R9(H convF)

f=1750 MHz,WGLS R22(H convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z20-60314

Page 9 of 10

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3924

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	159
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60314

Page 10 of 10

Calibration information for Dipole

Object Calibration Procedure(s) Calibration date: This calibration Certificate d measurements(SI). The measurements(SI).	RTIFICAT D835V FF-Z11 Calibra June 1	2 - SN: 4d154 -003-01 tion Procedures for dipole validation ki 1, 2019 traceability to national standards, wh	its	
Calibration Procedure(s) Calibration date: This calibration Certificate d measurements(SI). The measurements(SI).	D835V FF-Z11 Calibra June 1 ocuments the	2 - SN: 4d154 -003-01 tion Procedures for dipole validation ki 1, 2019 traceability to national standards, wh		
Object Calibration Procedure(s) Calibration date: This calibration Certificate d measurements(SI). The meas pages and are part of the cer	FF-Z11 Calibra June 1 ocuments the	-003-01 tion Procedures for dipole validation k 1, 2019 traceability to national standards, wh		
Calibration Procedure(s) Calibration date: This calibration Certificate d measurements(SI). The measurements(SI).	FF-Z11 Calibra June 1 ocuments the	-003-01 tion Procedures for dipole validation k 1, 2019 traceability to national standards, wh		
Calibration date: This calibration Certificate d measurements(SI). The measurements	Calibra June 1 ocuments the	tion Procedures for dipole validation ki 1, 2019 traceability to national standards, wh		
This calibration Certificate d measurements(SI). The measurements	Calibra June 1 ocuments the	tion Procedures for dipole validation ki 1, 2019 traceability to national standards, wh		
This calibration Certificate d measurements(SI). The measurements	ocuments the	traceability to national standards, wh		
This calibration Certificate d measurements(SI). The measurements	ocuments the	traceability to national standards, wh		
measurements(SI). The measurements	ocuments the surements and	traceability to national standards, wh		
humidity<70%. Calibration Equipment used (Primary Standards		the closed laboratory facility: enviro or calibration) Cal Date(Calibrated by, Certificate M 20-Aug-18 (CTTL, No.J18X06862)	No.) Scheduled C Aug-	alibration
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	104291 SN 7514 SN 1556	20-Aug-18 (CTTL, No.J18X06862) 27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_		19
Power sensor NRP8S Reference Probe EX3DV4 DAE4	SN 7514 SN 1556	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_	ug18) Aug- Aug18) Aug-	19 19
Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	SN 7514 SN 1556 ID#	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_ Cal Date(Calibrated by, Certificate N	ug18) Aug- Aug18) Aug- lo.) Scheduled C	19 19 alibration
Power sensor NRP8S Reference Probe EX3DV4 DAE4	SN 7514 SN 1556	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_	ug18) Aug- Aug18) Aug-	19 19 Calibration 20
Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	SN 7514 SN 1556 ID # MY49071430 MY46110673	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_/ Cal Date(Calibrated by, Certificate N 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547)	ug18) Aug- Aug18) Aug- lo.) Scheduled C Jan-: Jan-:	19 19 alibration 20 20
Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	SN 7514 SN 1556 ID # MY49071430 MY46110673 Name	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_) Cal Date(Calibrated by, Certificate N 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547) Function	ug18) Aug- Aug18) Aug- lo.) Scheduled C Jan-2	19 19 alibration 20 20
Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	SN 7514 SN 1556 ID # MY49071430 MY46110673	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_/ Cal Date(Calibrated by, Certificate N 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547)	ug18) Aug- Aug18) Aug- lo.) Scheduled C Jan- Jan-	19 19 alibration 20 20
Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	SN 7514 SN 1556 ID # MY49071430 MY46110673 Name	27-Aug-18(SPEAG,No.EX3-7514_Au 20-Aug-18(SPEAG,No.DAE4-1556_) Cal Date(Calibrated by, Certificate N 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547) Function	ug18) Aug- Aug18) Aug- lo.) Scheduled C Jan- Jan-	19 19 alibration 20 20

Certificate No: Z19-60175

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60175

Page 2 of 8

In Collaboration with p e а CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1504
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	- TSL 15 mm w	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.49 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.33 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.57 W /kg ± 18.8 % (k=2)
SAR averaged over 10 cm3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.31 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60175

Page 3 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9Ω- 3.09jΩ	
Return Loss	- 29.0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3Ω- 4.87jΩ	
Return Loss	- 24.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.277 ns
----------------------------------	----------

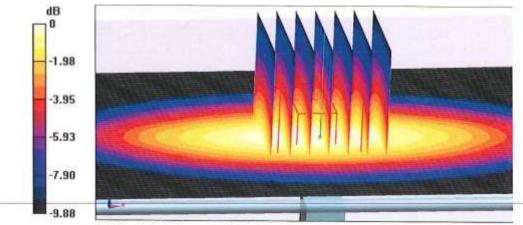
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Page 4 of 8



In Collaboration with p e CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn **DASY5 Validation Report for Head TSL** Date: 06.11.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.886$ S/m; $\epsilon_r = 41.12$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: . 8/27/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 8/20/2018

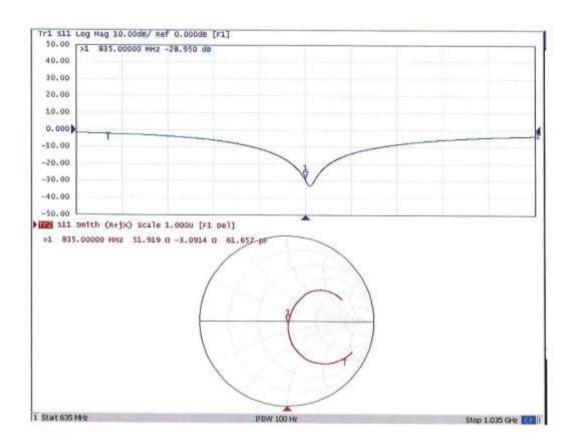
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.27 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.09 W/kg

0 dB = 3.09 W/kg = 4.90 dBW/kg

Certificate No: Z19-60175


Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60175

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com

DASY5 Validation Report for Body TSL

Date: 06.11.2019

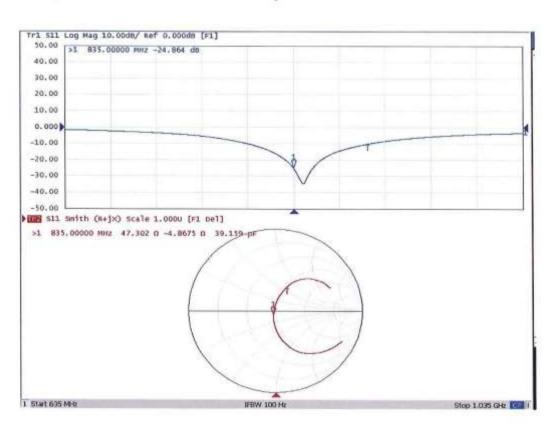
Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.973$ S/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.23 W/kg

Certificate No: Z19-60175

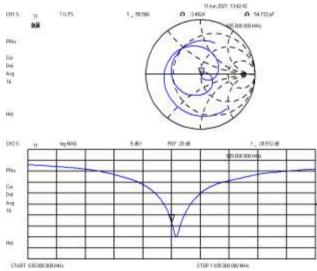

Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60175

Page 8 of 8


Dipole Impedance and Return Loss calibration Report

Object:	D835V2 - SN: 4d154
Calibration Date:	June 11, 2021
Calibration reference:	IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 D01
Calibrated By:	Janet Wei (Janet Wei, SAR project engineer)
Reviewed By:	Winner Zhang, Technical manager)

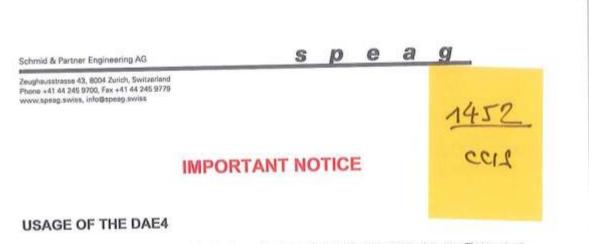
Environment of Test Site

Temperature:	21 ~ 23°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2021

Comparison with Original report


Items	Calibrated By CTTL	Calibrated By JYT In 2021	Deviation	Limit
Impendence for Head TSL	51.9Ω –3.09jΩ	55.57Ω –3.48jΩ	3.67Ω –0.39jΩ	±5Ω
Return Loss for Head TSL	-29.0	-28.51	-1.69%	±20%(No less than 20 dB)

Result

Compliance

Calibration information for DAE

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

TN_EH190306AE DAE4.docx

07.03.2019

Report No: JYTSZB-R14-2100176

libration Laboratory hmid & Partner Engineering AG ghausstrasse 43, 8004 Zurich,	() () statistical () ()		Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
credited by the Swiss Accreditation e Swiss Accreditation Service	is one of the signatories to	the EA	No.: SCS 0108
int CCIS (Auden)	cognition of calibration cer	Certificate No:	DAE4-1452_May21
ALIBRATION C	ERTIFICATE		
bject	DAE4 - SD 000 D0	4 BM - SN: 1452	
Calibration procedure(s)	QA CAL-06.v30 Calibration procedu	ure for the data acquisition elect	ronics (DAE)
This calibration certificate docum The measurements and the unce	rtainties with confidence pro	al standards, which realize the physical unit bability are given on the following pages an facility: environment temperature (22 ± 3)°C	d are part of the contricate.
This calibration certificate docum The measurements and the unce All calibrations have been conduc	ents the traceability to nation rtainties with confidence pro cted in the closed laboratory	bability are given on the following pages an facility: environment temperature (22 ± 3)°C	d and humidity < 70%.
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	ents the traceability to nation rtainties with confidence pro cted in the closed laboratory TE critical for calibration) ID #	facility are given on the following pages an facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	d are part of the conincate.
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	ents the traceability to nation rtainties with confidence pro cted in the closed laboratory TE critical for calibration)	bability are given on the following pages an facility: environment temperature (22 ± 3)°C	3 and humidity < 70%. Scheduled Calibration Sep-21
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keäthley Multimeter Type 2001 Secondary Standards	ents the traceability to nation stainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages an facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 07-Sep-20 (No:28647) Check Date (in house)	3 and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001	ents the traceability to nation stainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 07-Sep-20 (No:28647)	3 and humidity < 70%. Scheduled Calibration Sep-21 Scheduled Check
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ents the traceability to nation stainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 07-Sep-20 (No:28647) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	3 and humidity < 70%. Scheduled Calibration Sep-21 Scheduled Check In house check: Jan-22 In house check: Jan-22
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithtey Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ents the traceability to nation rtainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002	Cal Date (Certificate No.) 07-Sep-20 (No:28647) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) Function	3 and humidity < 70%. Scheduled Calibration Sep-21 Scheduled Check In house check: Jan-22
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ents the traceability to nation rtainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002	Cal Date (Certificate No.) 07-Sep-20 (No:28647) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	3 and humidity < 70%. Scheduled Calibration Sep-21 Scheduled Check In house check: Jan-22 In house check: Jan-22
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1	ents the traceability to nation rtainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002	Cal Date (Certificate No.) 07-Sep-20 (No:28647) Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) Function	3 and humidity < 70%. Scheduled Calibration Sep-21 Scheduled Check In house check: Jan-22 In house check: Jan-22

Certificate No: DAE4-1452_May21

Page 1 of 5

Report No: JYTSZB-R14-2100176

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by . comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of . the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an ÷ input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1452 May21

Page 2 of 5

- Schweizerischer Kalibrierdienst S
- Service suisse d'étalonnage C
- Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

DC Voltage Measurement

A/D - Converter Reso High Range:	1LSB ==	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range = sec; Measuring	-1+3mV

Calibration Factors	x	Y	Z
High Range	404.348 ± 0.02% (k=2)	404.687 ± 0.02% (k=2)	405.256 ± 0.02% (k=2)
	3.99425 ± 1.50% (k=2)	3.99683 ± 1.50% (k=2)	4.01673 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	51.0 ° ± 1 °
---	--------------

Certificate No: DAE4-1452_May21

Page 3 of 5

High Bange	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200035.36	0.42	0.00
Channel X + Input	20006.81	0.84	0.00
Channel X - Input	-20003.88	1.82	-0.01
Channel Y + Input	200037.10	2.34	0.00
Channel Y + Input	20004.84	-0.89	-0.00
Channel Y - Input	+20007.39	-1.50	0.01
Channel Z + Input	200033.27	-1.83	-0.00
Channel Z + Input	20003.78	-1.97	-0.01
Channel Z - Input	-20006.83	-0.82	0.00

Appendix (Additional assessments outside the scope of SCS0108)

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.37	0.05	0.00
Channel X + Input	200.96	-0.33	-0.16
Channel X - Input	-199.17	-0.61	0.31
Channel Y + Input	2000.80	-0.39	-0.02
Channel Y + Input	200.07	-1.12	-0.56
Channel Y - Input	-200.08	-1.28	0.65
Channel Z + Input	2001.07	-0.11	-0.01
Channel Z + Input	200.38	-0.77	-0.38
Channel Z - Input	-199.93	-1.12	0.57

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	1.67	-0.11
	- 200	0.56	-1.39
Channel Y	200	-2.77	-3.79
	- 200	1.75	1.13
Channel Z	200	-22.37	-22.78
and the second	- 200	21.31	21.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.56	-3.85
Channel Y	200	6.97		3.25
Channel Z	200	8.35	4.50	÷).

Certificate No: DAE4-1452_May21

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16028	16039
Channel Y	15789	16121
Channel Z	15769	16454

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.79	-0.02	2.36	0.41
Channel Y	-0.13	-1.32	1.53	0.52
Channel Z	-0.36	-1.38	0.84	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1452_May21

Page 5 of 5

-----End of Report-----

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZE2108021 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info-JYTee@lets.com