

Contact person
Tomas Lennhager
Electronics
+46 10 516 54 09
tomas.lennhager@sp.se

Date Reference 2015-01-23 4P08235-F27

Page 1 (2)

Ericsson AB Niklas Warnström PDU HW Torshamnsgatan 21 164 83 Stockholm

Radio measurements on RD 2242 B17 with FCC ID: TA8BKRY901326-1 and IC: 287AB-AS9013261

(9 appendices)

Test object

Product name: RD 2242 B17

Product number: KRY 901 326/1, see appendix 1 for details.

Summary

Standard	Compliant	Appendix	
FCC CFR 47 part 2 an			
2.1046 / RSS-130 4.4	RF power output	Yes	2
2.1046 / RSS-130 4.4	RF power output, radiated	Yes	3
2.1049 / RSS-Gen 6.6	Occupied bandwidth	Yes	4
2.1051 / RSS-130 4.6	Band edge	Yes	5
2.1051 / RSS-130 4.6	Spurious emission at antenna terminals	Yes	6
2.1053 / RSS-130 4.6	Field strength of spurious radiation	Yes	7
2.1055 / RSS-130 4.3	Frequency stability	Yes	8

SP Technical Research Institute of Sweden Electronics - EMC

Performed by Examined by

Tomas Lennhager Jan Carlsson

Table of contents

Description of the test object	Appendix 1
Operation mode during measurements	Appendix 1
Test setups	Appendix 1
Purpose of test	Appendix 1
RF power output conducted	Appendix 2
RF power output radiated	Appendix 3
Occupied bandwidth	Appendix 4
Band edge	Appendix 5
Spurious emission at antenna terminals	Appendix 6
Field strength of spurious radiation	Appendix 7
Frequency stability	Appendix 8
External photos	Appendix 9

Description of the test object

Radio equipment: RD 2242 B17

Product number: KRY 901 326/1 FCC ID: TA8BKRY901326-1

IC 287AB-AS9013261

IC MODEL NO: AS9013261

Hardware revision state: R2B

Tested configuration: LTE single RAT

Frequency bands: TX: 734 – 745 MHz

RX: 704 – 715 MHz

Antenna ports: 2 TX/RX ports, (internally connected to integrated Omni

directional antenna elements)

RF configuration: Single carrier, multi carrier, TX-diversity and MIMO 2x2

RF power Tolerance: +2.0 dB, -2.7 dB

Nominal output power

per antenna port:

Single carrier: 1 x 17 dBm (1 x 50mW) Multi carrier: 2 x 14 dBm (2 x 25mW)

Antenna type: Omni directional antenna

Antenna gain: -2.6 dBi

Channel bandwidths: Singel carrier: 5 MHz, 10 MHz

Multi carrier: 5 MHz

Modulations: QPSK, 16QAM and 64QAM

Nominal supply voltage: -48 VDC (associated equipment)

Operation mode during measurements

Measurements were performed with the test object transmitting test models as defined in 3GPP TS 36.141. Test model E-TM1.1 represent QPSK modulation, test model E-TM3.2 represent 16QAM modulation and test model E-TM3.1 represent 64QAM modulation.

The settings below were deemed representative for all traffic scenarios when settings with different modulations, channel bandwidths, number of carriers and RF configurations has been tested to find the worst case setting. All measurements were performed with the test object configured for maximum transmit power. The settings below were used for all measurements if not otherwise noted.

MIMO mode, single carrier: E-TM1.1

MIMO mode, multi carrier: 2 carriers E-TM1.1

Cable configurations between RD and IRU

The cables, used during tests, correspond to minimum and maximum length, according to clause 2.9 in Exhibit 12 – Technical Circuit Description. The following cable configurations has been used:

RDI Cable 20m: total cabel length 20m patch cables included.

RDI Cable 92m: total cabel length 92m patch cables included.

RDI Cable 200m: total cabel length 200m patch cables included.

Patch cable	Cat 6a Schneider Electric Actassi CL-MNC6A
RDI cable	Cat 6a Schneider Electric Actassi CL-MXC6A

Conducted measurements

The conducted measurements were performed on RD 2242 B17 with product number KRY 901 326/1.

The test object was mounted in a fixture and powered by the RBS Main Unit via the RDI LAN cable.

All TX parameters were measured at port RF B with port RF A terminated into 50 ohm. Complete measurements were made on RF B with additional measurements on RF A to verify that the ports are identical.

Radiated measurements

The test object was mounted in a fixture and powered by the RDI LAN cable. In field strength of spurios radition both RF ports were terminated into 50 ohm. For RF power output measurement the internal antenna was used.

Purpose of test

The purpose of the tests is to verify compliance to the performance characteristics specified in applicable items of FCC CFR 47 and IC RSS-130 and IC RSS-Gen.

References

Measurements were done according to relevant parts of the following standards:

ANSI 63.4-2009 ANSI/TIA/-603-C-2004 3GPP TS 36.141, version 11.4.0 CFR 47 part 2, December 16th, 2013 CFR 47 part 27, December 16th, 2013 RSS-Gen Issue 4, November 2014 RSS-130 Issue 1, October 2013

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor k=2 (95% level of confidence).

Compliance evaluation is based on a shared risk principle with respect to the measurement uncertainty.

Reservation

The test results in this report apply only to the particular test object as declared in the report.

Delivery of test object

The test object was delivered 2014-12-11.

Manufacturer's representative

Lars Wallin, Ericsson AB.

Test engineers

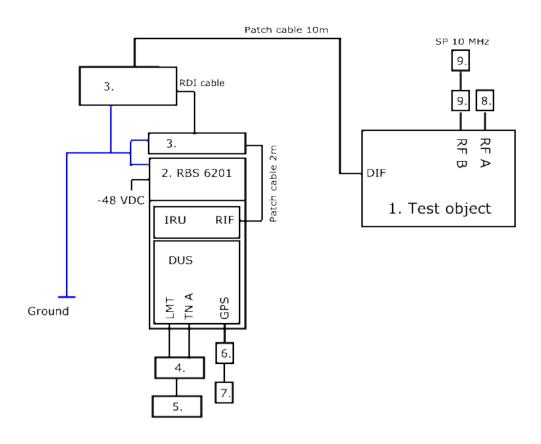
Andreas Johnson, Tomas Lennhager, Maulo Rivera, Tomas Isbring, Patrik Augustsson and Rolf Kühn, SP.

Test participants

None.

Measurement equipment

	Calibration Due	SP number
Test site Tesla	2017-01	503 881
R&S ESU 26	2015-05	901 553
R&S ESI 26	2015-07	503 292
R&S FSQ 40	2015-07	504 143
R&S FSW 43	2015-07	902 073
R&S FSIQ 40	2015-07	503 738
Control computer with	-	503 899
R&S software EMC32 version 8.52.0		
High pass filter	2015-01	BX40074
High pass filter	2015-07	901 501
High pass filter	2015-07	901 502
High pass filter	2015-07	504 199
High pass filter	2015-07	901 373
High pass filter	2016-07	503 739
High pass filter	2015-07	503 740
RF attenuator	2016-07	503 248
RF attenuator	2016-06	503 249
RF attenuator	2015-08	504 159
RF attenuator	2015-07	900 233
RF attenuator	2015-06	901 384
RF attenuator	2016-01	900 691
Chase Bilog Antenna CBL 6111A	2017-10	503 182
EMCO Horn Antenna 3115	2016-09	502 175
μComp Nordic, Low Noise Amplifier	2015-01	901 545
Schwarzbeck UHAP dipole antenna	-	500 592
Miteq, Low Noise Amplifier	2015-08	503 285
Schwarzbeck preamplifier BBV 9742	2015-01	504 085
Temperature and humidity meter, Testo 635	2015-03	504 203
Temperature and humidity meter, Testo 625	2015-06	504 188
Temperature Chamber		503 360
Multimeter Fluke 87	2015-08	502 190


Test frequencies during measurements

Test frequencies during measurements				
EARFCN	Frequency	BW	Symbolic	Comment
Downlink	[MHz]	[MHz]	name	
5755	736.5	5	B5	TX bottom frequency 5 MHz BW configuration
5780	739.0	10	B10	TX bottom frequency 10MHz BW configurations
5785	739.5	5	M5	TX mid frequency 5MHz BW configurations
5785	739.5	10	M10	TX mid frequency 10MHz BW configurations
5815	742.5	5	T5	TX top frequency 5 MHz BW configuration
5790	740.0	10	T10	TX top frequency 10MHz BW configurations
5755	736.5	5	2B5	2 carrier TX bottom frequency 5 MHz BW
5805	741.5	5		configuration.
5760	737.0	5	2M5	2 carrier TX mid frequency 5 MHz BW
5810	742.0	5		configuration.
5765	737.5	5	2T5	2 carrier TX top frequency 5 MHz BW
5815	742.5	5		configuration.

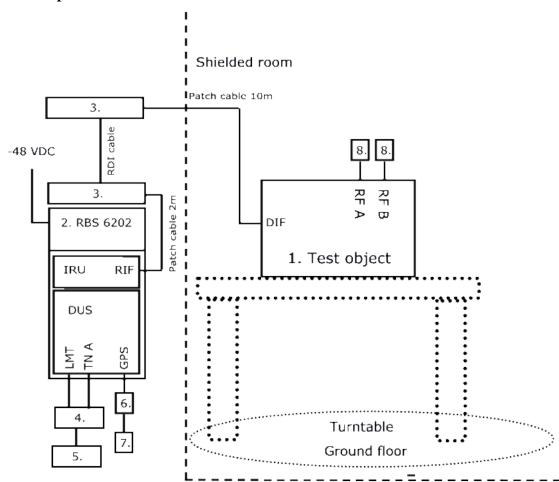
All RX frequencies were configured 30 MHz below the corresponding TX frequency according the applicable duplex offset for the operating band.

Test setup conducted measurements

Test object

1. RD 2242 B17, KRY 901 326/1, rev. R2B, s/n: C828844440 (FCC ID: TA8BKRY901326-1 and IC 287AB-AS9013261) with software CXP 901 3268/14, revision R59DM05

Associated equipment:


2.	RBS 6601 Main Unit: BFL 901 009/4, revision R1E, s/n: BR82173432
	DUS 41 01, KDU 137 624/1, revision R5A/A, s/n: D16G937758
	IRU 2242, KRC 161 444/1, revision R1C, s/n: C828523838
3.	Patch panel, BGK 901 55/1, revision R1A, s/n: -
6.	GPS 02 01, NCD 901 41/1, revision R1D, s/n: TU8K474887
7	GPS Active Antenna KRE 101 2082/1

Functional test equipment

T. (um	tional test equipment
4	•	Switch Netgear GS108E
5		Laptop EliteBook 8560w, BAMS – 1001236858
8		Attenuator/ Terminator 50 ohm
9	_	SP test instrument according measurement equipment list

Test setup radiated measurements

Test object:

1. RD 2242 B17, KRY 901 326/1, rev. R2B, s/n: C828844440 (FCC ID: TA8BKRY901326-1 and IC 287AB-AS9013261) with software CXP 901 3268/14, revision R59DM05

Ancillary equipment:

2.	RBS 6601 Main Unit:
	SUP 6601, 1/BFL 901 009/4, rev: R1E, s/n: BR88258668
	DUS 41 01, KDU 137 624/1, rev: R5A/A, s/n: D16H292128
	IRU 2242, KRC 161 444/1, rev: R1C, s/n: C828558510
3.	Patch panel, BGK 901 55/1, revision R1A, s/n: -
6.	GPS 02 01, NCD 901 41/1, rev. R1D, s/n: TU8KH75515
7.	GPS Active Antenna, KRE 101 2082/1

Functional test equipment:

4.	Switch Neatgear GS108E
5.	HP Elitebook 8540w, BAMS – 1001052044
8.	Attenuator/ Terminator

Date Reference 2015-01-23 4P08235-F27

Page 9 (9)

Interfaces:	Type of port:
Antenna port (A), hirose connector	Antenna
Antenna port (B), hirose connector	Antenna
DIF, Patch cable Cat 6a Schneider Electric Actassi CL-MNC6A	Signal
RDI, Cat 6a Schneider Electric Actassi CL-MXC6A	Signal

RBS software:

Product number	Revision
CXP 102 051/22	R44JF

RF power output measurements according to CFR 47 $\S 27.50$ and RSS-130 4.4, conducted

Date	Temperature	Humidity
2015-01-07	$22 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	$18 \% \pm 5 \%$
2015-01-08	$22 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	24 % ± 5 %
2015-01-13	$22 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	19 % ± 5 %

Test set-up and procedure

The test object was connected to a signal analyser measuring peak and RMS output power in CDF mode. A resolution bandwidth of 80 MHz was used.

Measurement equipment	SP number
R&S FSW	902 073
RF attenuator	900 691
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 1.1 dB

Results

Configuration: RDI Cable 20m

MIMO mode, single carrier

Rated output power level at RF connector 1x 17 dBm.

tated output power to ver at the connector in it abin					
	Output power CCDF				
Carrier BW	Symbolic	[RMS dBm/ PAR dB]			
[MHz]	name	Port RF A	Port RF B	Total power ¹⁾	
5	B5	17.40/ 7.44	17.70/ 7.46	20.64	
5	M5	17.66/ 7.46	17.95/7.46	20.89	
10	M10	17.54/ 7.42	17.55/ 7.38	20.63	
5	T5	17.67/ 7.46	17.58/ 7.46	20.71	

^{1):} Summed output power according to FCC KDB662911 Multiple transmitter output v02r01. Note: The PAR value is the 0.1 % Peak to Average Ratio.

MIMO mode, multi Carrier

Rated output power 2 x 14.0 dBm per RF port.

	Output power CCDF					
Carrier BW	Symbolic	mbolic [RMS dBm]		Total power ¹⁾		
[MHz]	name	Port RF A	Port RF B	[RMS dBm]		
5	2B5	17.58	18.15	20.95		
5	2T5	17.44	17.91	20.77		

^{1):} Summed output power according to FCC KDB662911 Multiple transmitter output v02r01.

Single carrier, MIMO

	Output power per 1 MHz				
Carrier BW Symbolic		[RMS dBm]		Total power ¹⁾	
[MHz]	name	Port RF A	Port RF B	[RMS dBm]	
5	B5	11.65	12.18	15.18	
5	M5	11.98	12.56	15.56	
10	M10	9.33	9.93	12.93	
5	T5	11.83	12.43	15.43	

^{1):} Measured according to FCC KDB662911 D01 Multiple Transmitter Output v02r01. Method E), 2), c). "Measure and add 10 log(N_{Ant})".

Configuration: RDI Cable 92m

MIMO mode, single carrier

Rated output power level at RF connector 1x 17 dBm.

tation output power reversition connector in it asim					
	Output power CCDF				
Carrier BW	Symbolic	[RMS dBm/ PAR dB]		dB]	
[MHz]	name	Port RF A	Port RF B	Total power ¹⁾	
5	B5	15.88/ 7.38	16.22/ 7.38	19.17	
5	M5	16.32/ 7.38	16.97/ 7.40	19.76	
10	M10	16.48/ 7.34	16.89/ 7.36	19.79	
5	T5	16.17/ 7.38	16.55/ 7.38	19.47	

^{1):} Summed output power according to FCC KDB662911 Multiple transmitter output v02r01. Note: The PAR value is the 0.1 % Peak to Average Ratio.

MIMO mode, multi Carrier

Rated output power 2 x 14.0 dBm per RF port.

	Output power CCDF					
Carrier BW	Symbolic [RMS dBm]		Total power ¹⁾			
[MHz]	name	Port RF A	Port RF B	[RMS dBm]		
5	2B5	16.09	16.50	19.41		
5	2T5	16.16	16.59	19.49		

^{1):} Summed output power according to FCC KDB662911 Multiple transmitter output v02r01.

Single carrier, MIMO

Output power per 1 MHz					
Carrier BW	Symbolic	[RMS dBm]		Total power ¹⁾	
[MHz]	name	Port RF A	Port RF B	[RMS dBm]	
5	B5	10.21	10.29	13.29	
5	M5	10.53	10.61	13.61	
10	M10	7.69	7.72	10.72	
5	T5	10.57	10.54	13.57	

^{1):} Measured according to FCC KDB662911 D01 Multiple Transmitter Output v02r01. Method E), 2), c). "Measure and add 10 log(N_{Ant})".

Configuration: RDI Cable 200m

MIMO mode, single carrier

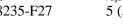
Rated output power level at RF connector 1x 17 dBm.

Output power CCDF				
Carrier BW	Symbolic	[RMS dBm/ PAR dB]		dB]
[MHz]	name	Port RF A	Port RF B	Total power ¹⁾
5	B5	14.78/ 7.38	14.90/ 7.36	17.99
5	M5	15.25/ 7.38	15.61/7.36	18.57
10	M10	15.23/ 7.34	15.60/ 7.32	18.54
5	T5	15.41/ 7.36	15.76/ 7.34	18.72

^{1):} Summed output power according to FCC KDB662911 Multiple transmitter output v02r01. Note: The PAR value is the 0.1 % Peak to Average Ratio.

MIMO mode, multi Carrier

Rated output power 2 x 14.0 dBm per RF port.


	Output power CCDF					
Carrier BW	Symbolic	[RMS o	dBm]	Total power ¹⁾		
[MHz]	name	Port RF A	Port RF B	[RMS dBm]		
5	2B5	14.48	15.09	17.95		
5	2T5	14.36	14.98	17.84		

^{1):} Summed output power according to FCC KDB662911 Multiple transmitter output v02r01.

Single carrier, MIMO

	Output power per 1 MHz				
Carrier BW Symbolic		[RMS dBm]		Total power ¹⁾	
[MHz]	name	Port RF A	Port RF B	[RMS dBm]	
5	B5	8.08	8.32	11.32	
5	M5	8.51	8.96	11.96	
10	M10	5.83	6.33	9.33	
5	T5	8.74	9.15	12.15	

^{1):} Measured according to FCC KDB662911 D01 Multiple Transmitter Output v02r01. Method E), 2), c). "Measure and add 10 log(N_{Ant})"

Limits

§ 27.50 (c) (3): Base stations transmitting in the 698 –746 MHz band with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000

watts/MHz.

RSS-130 4.4: The transmitter output power shall be measured in terms of average power.

For base and fixed equipment, refer to SRSP-518 for power limits The maximum output power may not exceed 3280 W (EIRP)/ MHz

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

Complies?	Yes

RF power output measurements according to CFR 47 §27.50 and RSS-130 4.4, radiated

Date		Temperature	Humidity
	2015-01-12	$22 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	33 % ± 5 %

Test set-up and procedure

The measurements were performed according to ANSI/TIA-603-C-2004.

The test was performed with continuous transmission.

The RDI cable configuration was 20m. Total cabel length 20m patch cables included.

The test of radiated emission was performed in a semi anechoic chamber. The measurements were performed with both horizontal and vertical polarizations of the antenna. The antenna distance was 3.0 m.

The fundamental was scanned with PEAK-detector with the antenna height was varied between 1-4 m and the turntable was rotated between 0-360 degrees for maximum response. The carrier power was measured with RMS- detector activated with a RBW of 1 MHz. The output power was verified with the substitution method according ANSI/TIA-603-C-2004. The antenna distance during the measurements was 3.0 m.

Measurement equipment

Measurement equipment	SP number
Semi anechoic chamber	503 881
R&S ESU 26	901 553
EMC 32 ver. 8.52.0	503 899
Schwarzbeck dipol	500 593
R&S SMB 100A	900 120
Attenuator	BX41643
Testo 635 temperature and humidity meter	504 188

Measurement uncertainty:

3.2 dB

The test set-up during the effective radiated output power measurements is shown in the picture below, side mounted.

The test set-up during the effective radiated output power measurements is shown in the picture below, upright mounted.

Results

Upright mounted

Bandwidth configuration [MHz]	Tested frequency B		D. M.		Tested fi	requency Γ
	Vertical/H RMS pow		Vertical/H RMS pow			Horizontal ver (ERP)
	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz
5	0.6/ 3.7	1.1/ 2.3	0.3/ 3.6	1.1/ 2.3	1.2/ 4.5	1.3/ 2.8
10	-	-	-2.9/ 1.1	0.5/ 1.3	-	-

Side mounted

Bandwidth configuration [MHz]	Tested frequency B		Tested frequency M		Tested frequency T	
	Vertical/H RMS pow		Vertical/H RMS pow		Vertical/F RMS pov	Horizontal ver (ERP)
	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz
5	4.7/ 3.2	3.0/ 2.1	4.3/ 3.6	2.7/ 2.3	4.1/ 3.8	2.6/ 2.4
10	-	-	0.7/ 1.0	1.2/ 1.3	-	-

Upright mounted

Bandwidth configuration [MHz]	Tested fr B		Tested from M		Tested fr	requency Γ
	Vertical/H RMS pow		Vertical/H RMS pow			Horizontal ver (EIRP)
	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz
5	2.7/ 5.8	1.9/ 3.8	2.4/ 5.7	1.7/ 3.7	3.3/ 6.6	2.1/ 4.6
10	-	-	-0.8/ 3.2	0.8/ 2.1	-	-

Side mounted

Bandwidth configuration [MHz]	Tested fr B	equency	Tested fro	_ *	Tested fr	requency Γ
	Vertical/H RMS pow		Vertical/H RMS powe			Horizontal ver (EIRP)
	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz	dBm/ MHz	mW/ MHz
5	6.8/ 5.3	4.8/ 3.4	6.4/ 5.7	4.4/ 3.7	6.2/ 5.9	4.2/ 3.9
10	-	-	2.8/ 3.1	1.9/ 2.0	-	-

Limits

§ 27.50 (c) (3):

Base stations transmitting in the 698 –746 MHz band with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz.

RSS-130 4.4:

The transmitter output power shall be measured in terms of average power. For base and fixed equipment, refer to SRSP-518 for power limits. The maximum output power may not exceed 3280 W (EIRP)/ MHz.

Complies? Yes

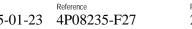
Occupied bandwidth measurements according to CFR 47 2.1049 and RSS-Gen 6.6

Date	Temperature	Humidity
2014-01-13	$22 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	19 % ± 5%

Test set-up and procedure

The measurements were made per definition in FCC: KDB: 971168 D01 Power Meas Licens, v02r02 and IC: RSS-Gen section 6.6. The output was connected to a signal analyzer with the Peak detector activated and max hold. The signal analyser was connected to an external 10 MHz reference standard during the measurements.

Measurement equipment	SP number
R&S FSW 43	902 073
RF attenuator	900 691
Testo 635, temperature and humidity meter	504 203


Measurement uncertainty: 3.7 dB

Results

Configuration: RDI Cable 20m

MIMO mode, Single carrier

Diagram	BW configuration [MHz]	Tested frequency	Tested Port	Occupied BW (99%) [MHz]
1	5	B5	RF B	4.49
2	10	B10	RF B	8.97
3	5	M5	RF B	4.49
4	5	M5	RF A	4.48
5	10	M10	RF B	8.96
6	5	T5	RF B	4.49
7	10	T10	RF B	8.96

Configuration: RDI Cable 200m

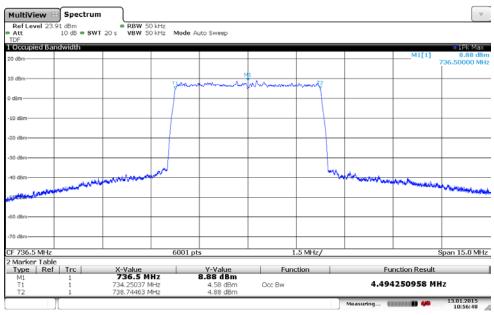

MIMO mode, Single carrier

Diagram	BW configuration [MHz]	Tested frequency	Tested Port	Occupied BW (99%) [MHz]
8	5	B5	RF B	4.50
9	10	B10	RF B	8.97
10	5	M5	RF B	4.50
11	5	M5	RF A	4.48
12	10	M10	RF B	8.96
13	5	T5	RF B	4.49
14	10	T10	RF B	8.96

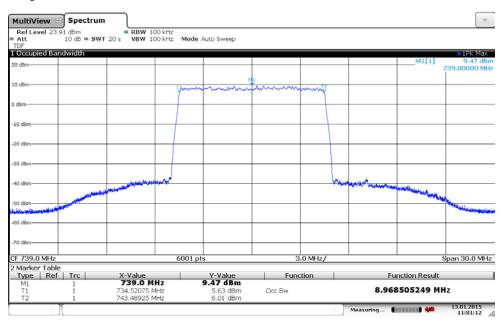
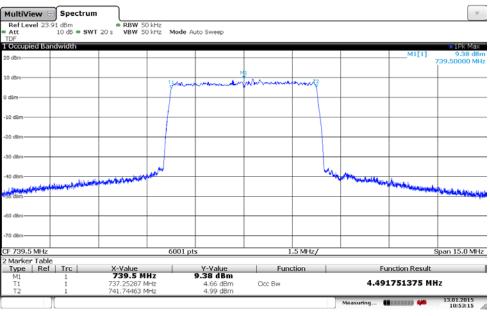


Diagram 1:

Date: 13.JAN.2015 10:56:48


Diagram 2:

Date: 13.JAN.2015 11:01:12

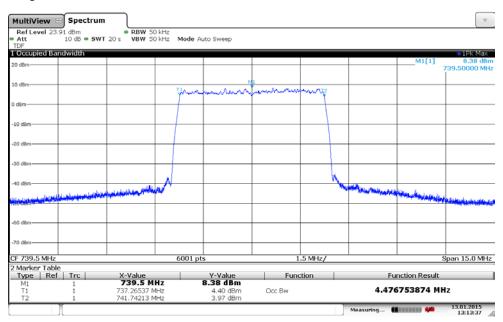
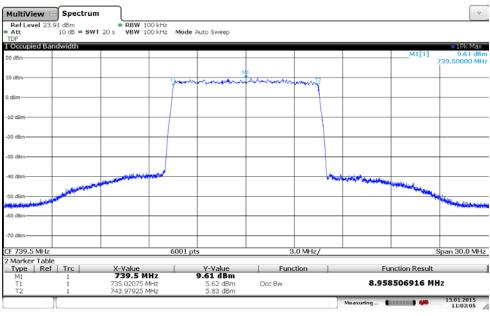


Diagram 3:

Date: 13.JAN.2015 10:53:15

Diagram 4:



Date: 13.JAN.2015 13:13:36

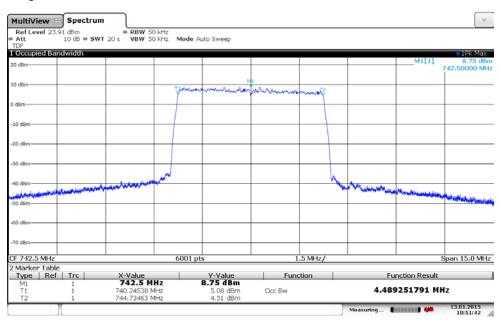
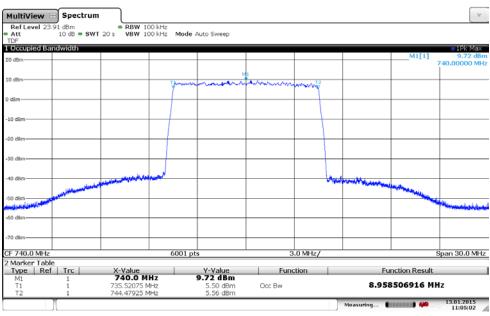


Diagram 5:

Date: 13.JAN.2015 11:03:05


Diagram 6:

Date: 13.JAN.2015 10:51:41

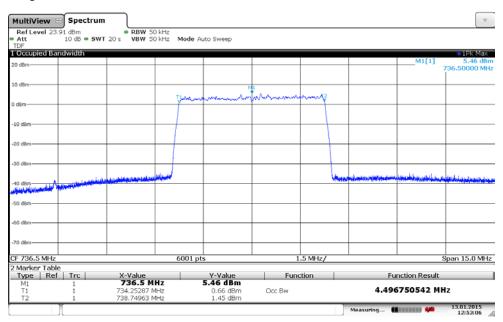
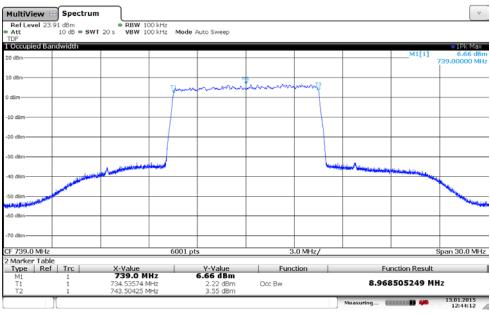


Diagram 7:

Date: 13.JAN.2015 11:05:02

Diagram 8:



Date: 13.JAN.2015 12:53:06

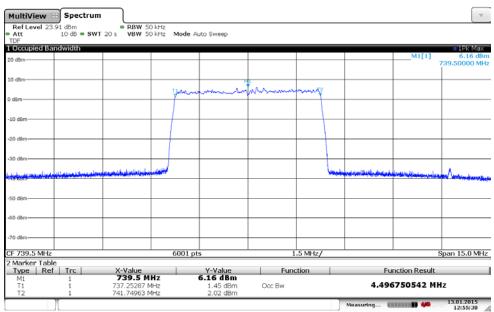
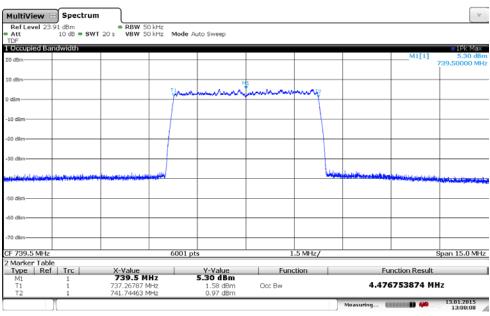


Diagram 9:

Date: 13.JAN.2015 12:44:12


Diagram 10:

Date: 13.JAN.2015 12:55:37

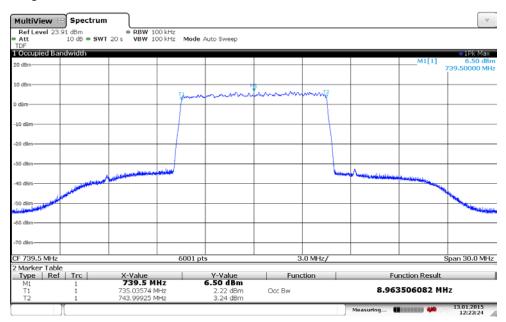
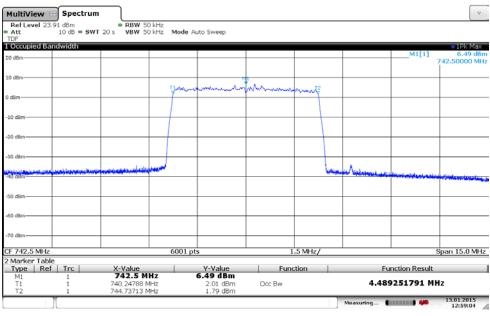


Diagram 11:

Date: 13.JAN.2015 13:08:08

Diagram 12:



Date: 13.JAN.2015 12:23:23

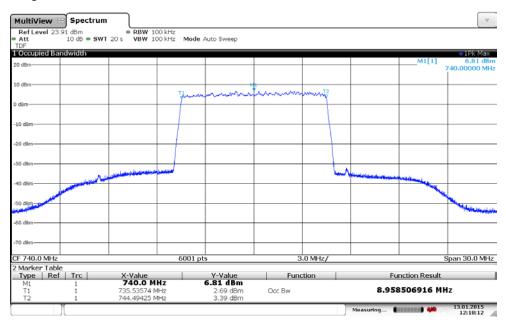


Diagram 13:

Date: 13.JAN.2015 12:59:04

Diagram 14:

Date: 13.JAN.2015 12:18:12

Band edge measurements according to CFR 47 2.1051 / RSS-130 4.6

Date	Temperature	Humidity
2014-01-13	22 °C ± 3°C	19 % ± 5%

Test set-up and procedure

The measurements were made per definition in CFR 47 §27.53 The test object was connected to a spectrum analyzer with the RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

The measurements were made as defined in §27.53 (g). The FCC rules, specifying a RBW of at least 30k up to 100 kHz away from the band edges and a RBW of 100 kHz for measurements of emissions more than 100 kHz away from the band edges.

A resolution bandwidth of 100 kHz was used at the band edges up to 10 MHz from the band edges.

Before comparing the results to the limit, 3 dB [$10 \log (2)$] should be added according to method 2 "measure and add $10 \log (N_{ANT})$ " of FCC KDB662911 D01 Multiple Transmitter Output v02r01.

Measurement equipment	SP number
R&S FSW 43	902 073
RF attenuator	900 691
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 3.7 dB

Results

Configuration: RDI Cable 20m

MIMO mode, single carrier

Diagram	BW configuration [MHz]	Tested frequency	Tested Port
1	5	B5	RF B
2	10	B10	RF B
3	5	T5	RF B
4	10	T10	RF B

MIMO mode, multi carrier

Diagram	BW configuration [MHz]	Testedfrequency	Tested Port	
5	5	2B5	RF B	
6	5	2T5	RF B	

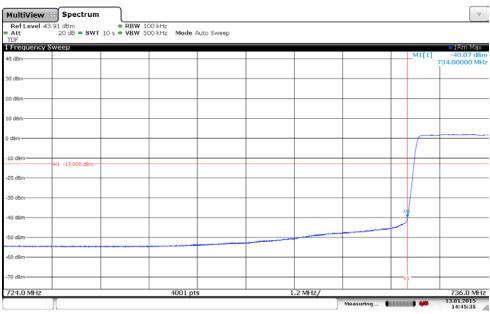
Configuration: RDI Cable 200m

MIMO mode, single carrier

Diagram	BW configuration	Tested frequency	Tested Port
	[MHz]		
7	5	B5	RF B
8	10	B10	RF B
9	5	T5	RF B
10	10	T10	RF B

MIMO mode, multi carrier

Diagram	BW configuration [MHz]	Testedfrequency	Tested Port
11	5	2B5	RF B
12	5	2T5	RF B


Limits

CFR 47 § 27.53 (g) and RSS-130 4.6:

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm.

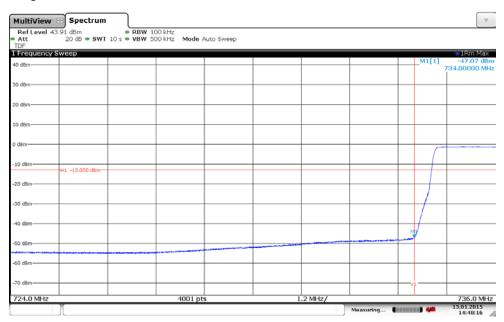
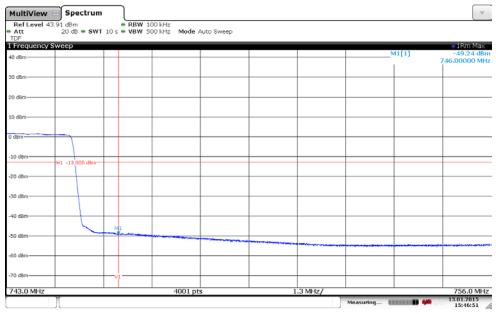
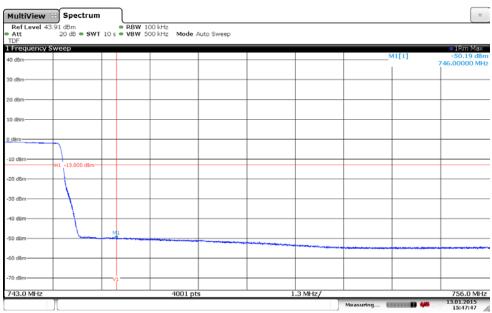


Diagram 1:

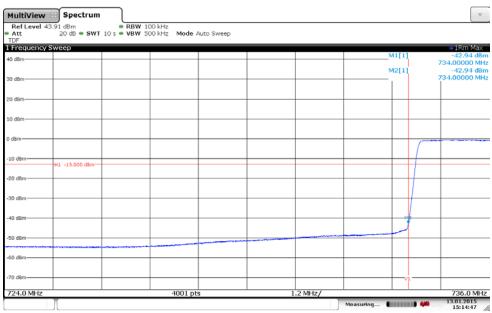
Date: 13.JAN.2015 14:45:35


Diagram 2:

Date: 13.JAN.2015 14:48:16



Date: 13.JAN.2015 15:46:51


Diagram 4:

Date: 13.JAN.2015 15:47:47

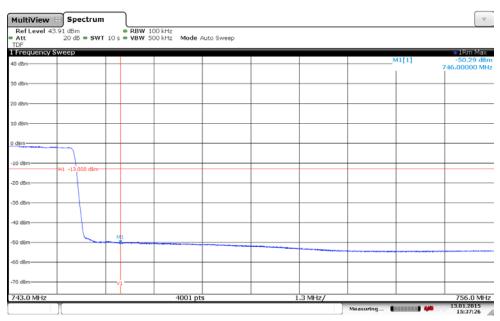
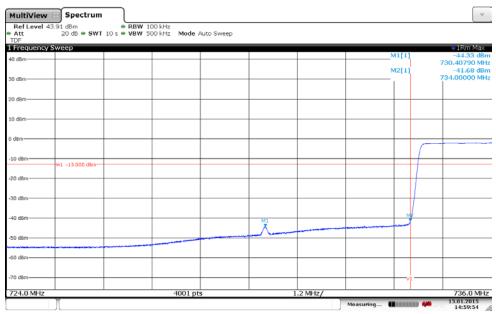


Diagram 5:

Date: 13.JAN.2015 15:14:47


Diagram 6:

Date: 13.JAN.2015 15:37:26

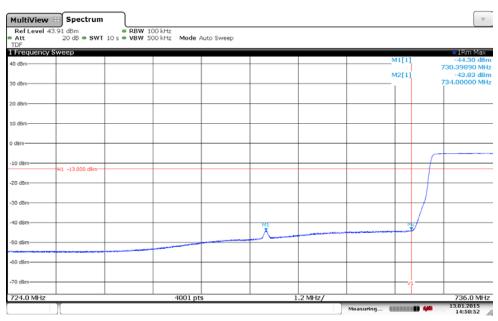
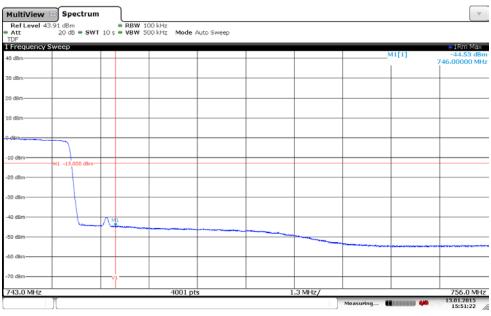
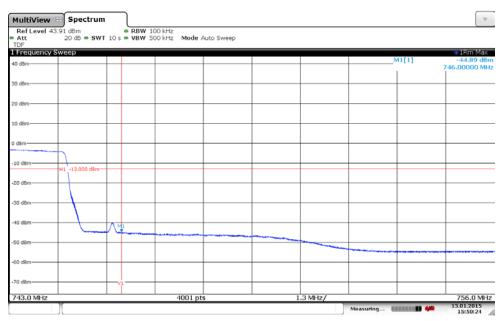


Diagram 7:

Date: 13.JAN.2015 14:59:54

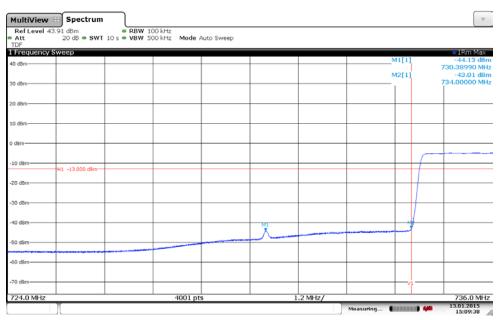

Diagram 8:

Date: 13.JAN.2015 14:58:52



Date: 13.JAN.2015 15:51:23

Diagram 10:



Date: 13.JAN.2015 15:50:24

Diagram 11:

Date: 13.JAN.2015 15:09:38

Diagram 12:

Date: 13.JAN.2015 15:33:41

Conducted spurious emission measurements according to CFR 47 $\S 27.53~(g)$ and RSS-130 4.6

Date	Temperature	Humidity
2014-01-13	$22~^{\circ}\text{C} \pm 3^{\circ}\text{C}$	19 % ± 5%
2014-01-14	$23 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	$18 \% \pm 5\%$

Test set-up and procedure

The measurements were made per definition in §27.53. The output was connected to a spectrum analyzer with a RBW setting of 1 MHz and RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

Before comparing the results to the limit, 3 dB [10 log (2)] should be added according to method 2 "measure and add $10 \log(N_{ANT})$ " of FCC KDB662911 D01 Multiple Transmitter Output v02r01.

Measurement equipment	SP number
R&S FSW 43	902 073
RF attenuator	900 691
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 3.7 dB

Results

Configuration: RDI Cable 20m

MIMO mode, Single carrier

Diagram	BW configuration [MHz]	Tested frequency	Tested Port
1 a+b	5	B5	RF B
2 a+b	5	M5	RF B
3 a+b	5	M5	RF A
4 a+b	10	M10	RF B
5 a+b	5	T5	RF B

MIMO mode, multi carrier

Diagram	BW configuration [MHz]	Symbolic name	Tested Port
6 a+b+c	5	2B5	RF B
7 a+b+c	5	2M5	RF B
8 a+b+c	5	2T5	RF B

Configuration: RDI Cable 200m

MIMO mode, Single carrier

Diagram	BW configuration [MHz]	Tested frequency	Tested Port
9 a+b	5	B5	RF B
10 a+b	5	M5	RF B
11 a+b	5	M5	RF A
12 a+b	10	M10	RF B
13 a+b	5	T5	RF B

MIMO mode, multi carrier

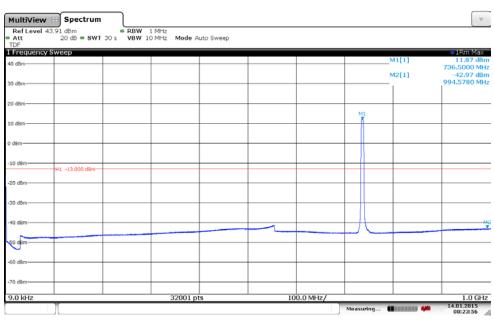
Diagram	BW configuration [MHz]	Symbolic name	Tested Port
14 a+b+c	5	2B5	RF B
15 a+b+c	5	2M5	RF B
16 a+b+c	5	2T5	RF B

Remark

The emission at 9 kHz on the plots was not generated by the test object. A complementary measurement with a smaller RBW showed that it was related to the LO feed-through.

The highest fundamental frequency is 745 MHz. The measurements were made up to $8\,\text{GHz}$ ($10x745\,\text{MHz} = 7.45\,\text{GHz}$).

Limits


CFR 47 § 27.53 (g) and RSS-130 4.6:

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm per 100 kHz RBW.

Complian?	Vac
Complies?	Yes

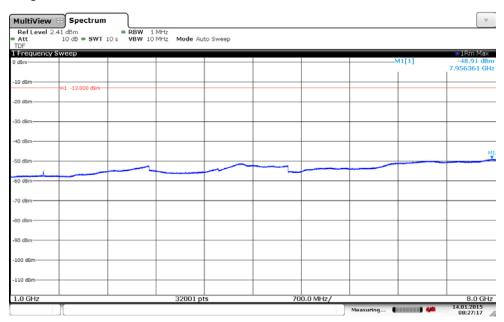
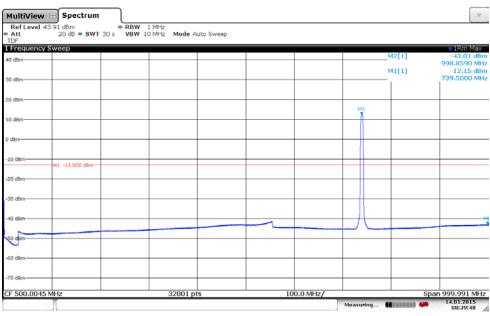


Diagram 1a:

Date: 14.JAN.2015 08:23:56


Diagram 1b:

Date: 14.JAN.2015 08:27:17

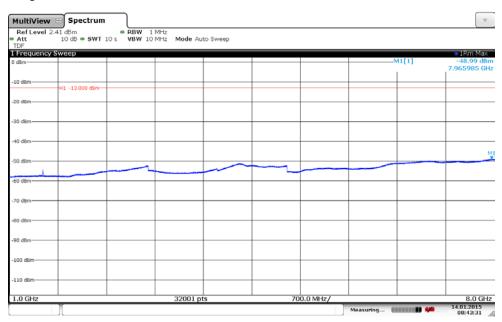
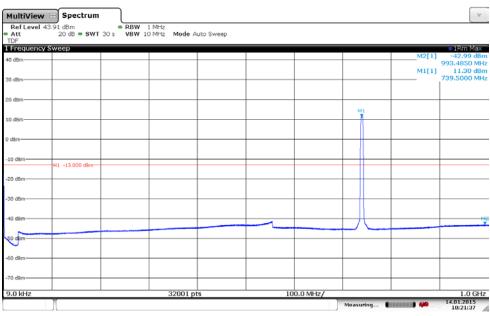


Diagram 2a:

Date: 14.JAN.2015 08:39:48

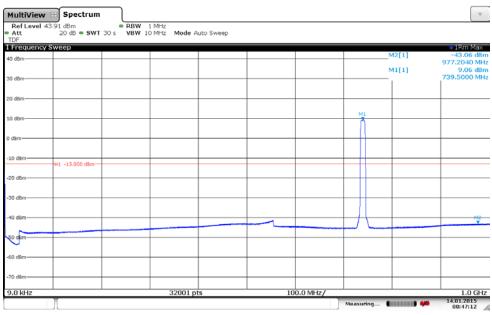

Diagram 2b:

Date: 14.JAN.2015 08:43:32



Diagram 3a:

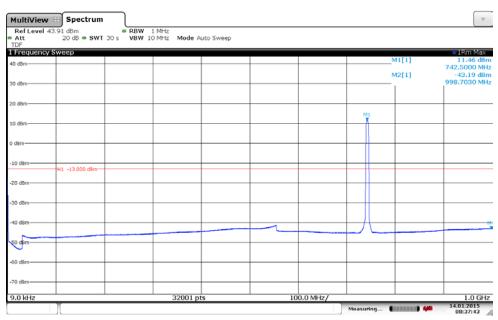
Date: 14.JAN.2015 10:21:37


Diagram 3b:

Date: 14.JAN.2015 10:20:34

Diagram 4a:

Date: 14.JAN.2015 08:47:13


Diagram 4b:

Date: 14.JAN.2015 08:46:03

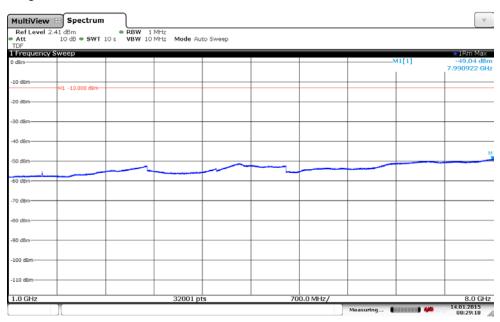
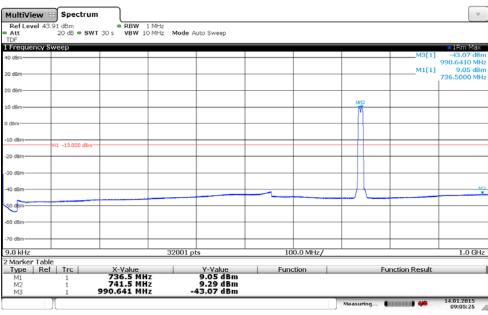


Diagram 5a:

Date: 14.JAN.2015 08:37:43


Diagram 5b:

Date: 14.JAN.2015 08:29:18

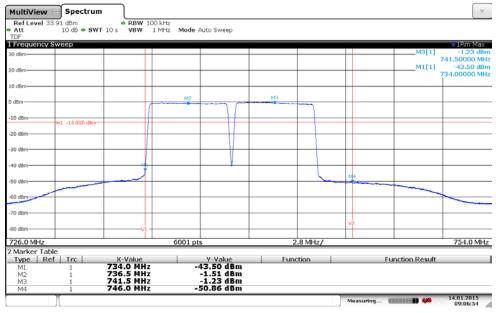
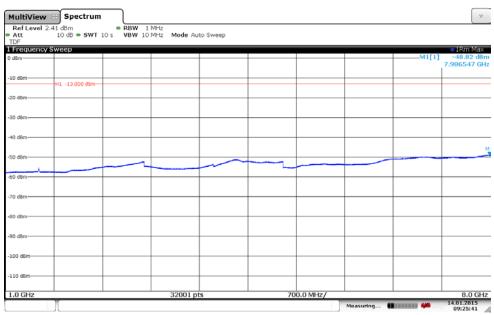
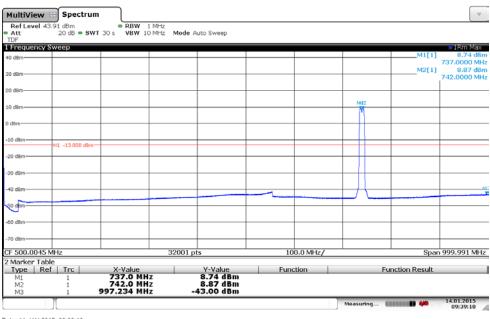


Diagram 6a:

Date: 14.JAN.2015 09:05:26


Diagram 6b:

Date: 14.JAN.2015 09:06:53


Diagram 6c:

Date: 14.JAN.2015 09:25:41

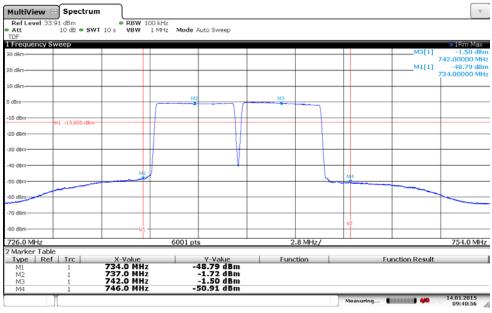
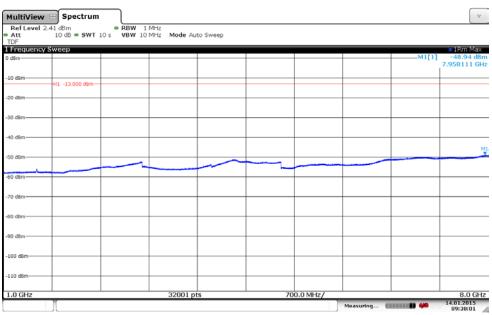
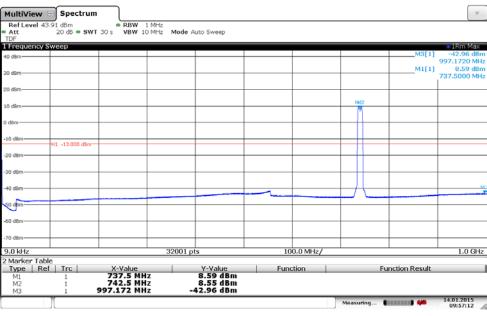


Diagram 7a:

Date: 14.JAN,2015 09:39:10


Diagram 7b:

Date: 14.JAN.2015 09:40:55


Diagram 7c:

Date: 14.JAN.2015 09:38:01

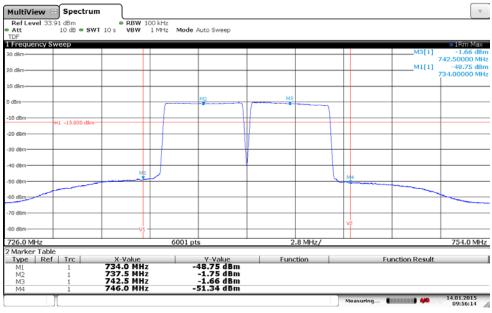
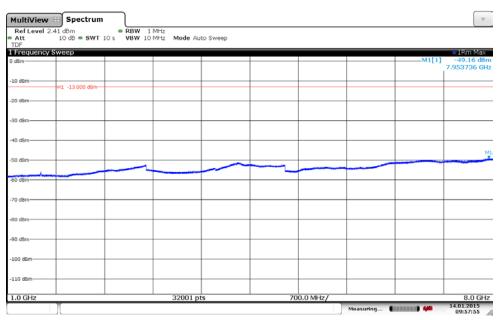
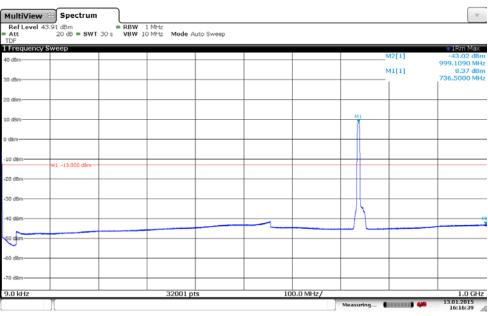


Diagram 8a:

Date: 14.JAN.2015 09:57:12


Diagram 8b:

Date: 14.JAN.2015 09:56:15


Diagram 8c:

Date: 14.JAN.2015 09:57:54

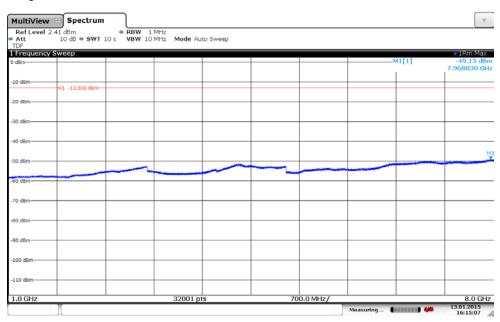
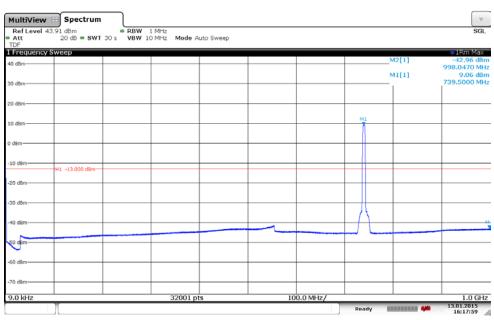


Diagram 9a:

Date: 13.JAN.2015 16:16:38


Diagram 9b:

Date: 13.JAN.2015 16:15:06

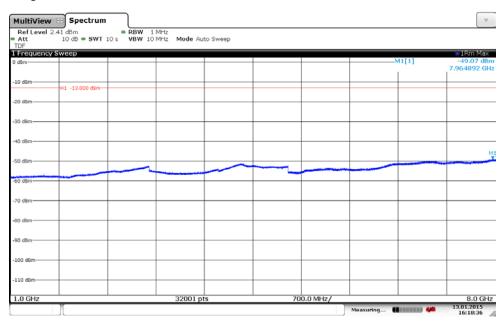
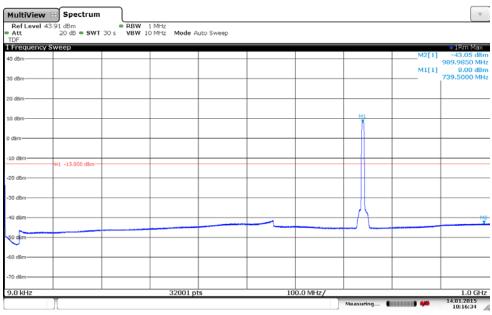


Diagram 10a:

Date: 13.JAN.2015 16:18:00


Diagram 10b:

Date: 13.JAN.2015 16:18:36

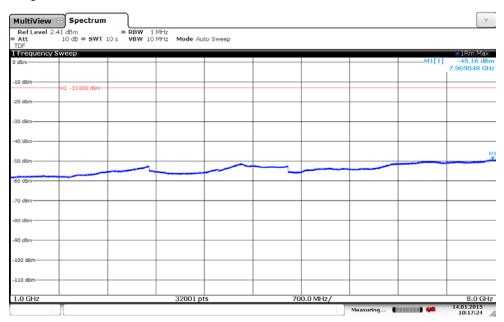
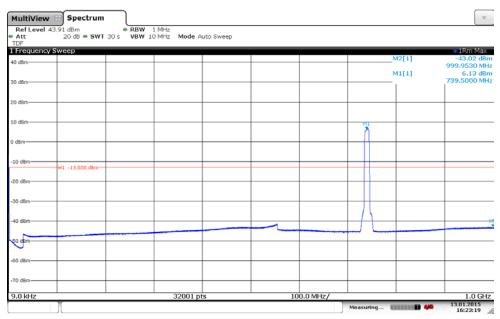


Diagram 11a:

Date: 14.JAN.2015 10:16:34


Diagram 11b:

Date: 14.JAN.2015 10:17:24

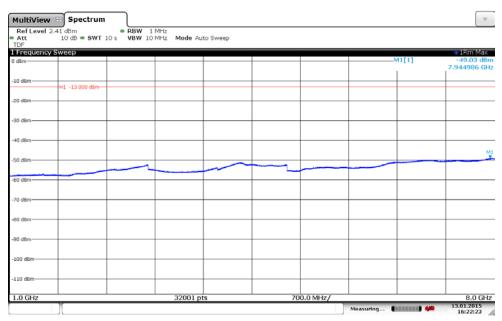


Diagram 12a:

Date: 13.JAN.2015 16:23:18

Diagram 12b:

Date: 13.JAN.2015 16:22:23

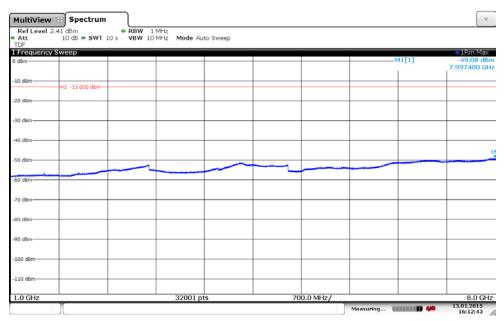
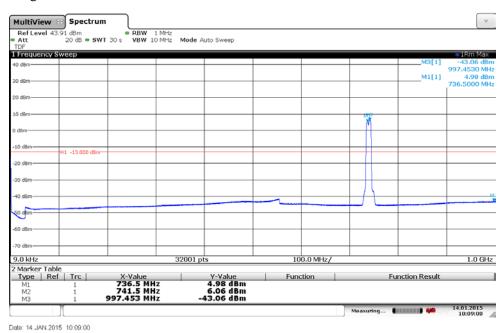


Diagram 13a:

Date: 13.JAN.2015 16:10:25


Diagram 13b:

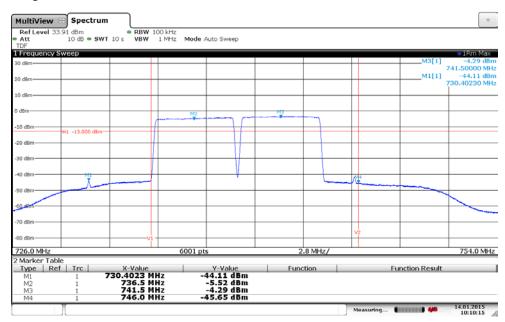
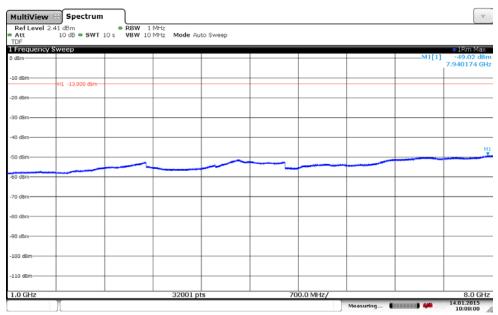
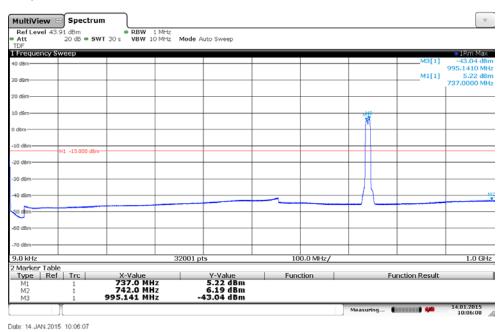

Date: 13.JAN.2015 16:12:43

Diagram 14a:


Diagram 14b:

Date: 14.JAN.2015 10:10:15


Diagram 14c:

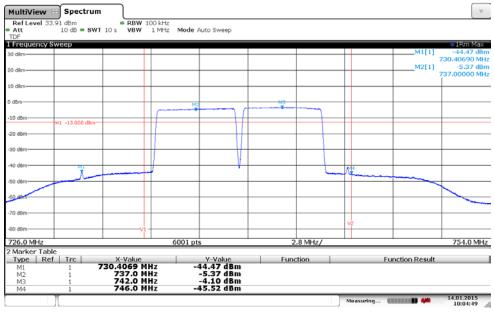
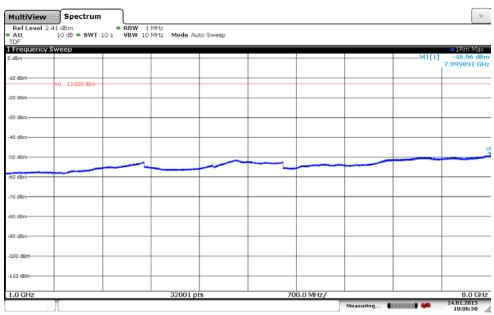
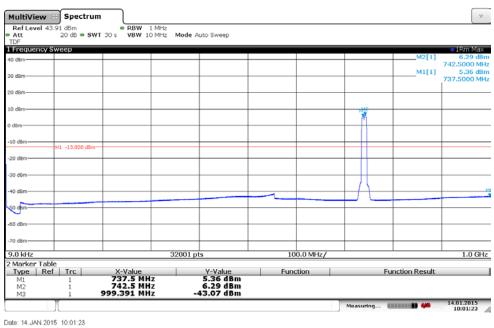

Date: 14.JAN.2015 10:08:00

Diagram 15a:


Diagram 15b:

Date: 14.JAN.2015 10:04:49


Diagram 15c:

Date: 14.JAN.2015 10:06:50

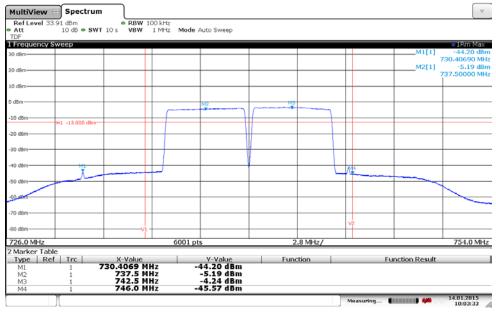
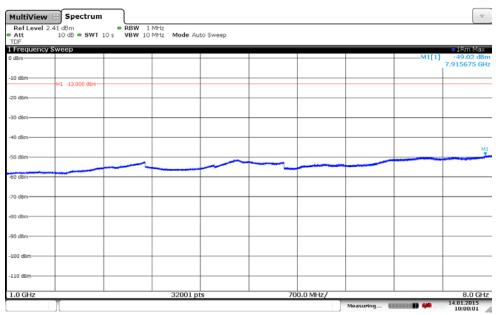


Diagram 16a:

Date: 14.3A14.2015 10:01.23


Diagram 16b:

Date: 14.JAN.2015 10:03:32

Diagram 16c:

Date: 14.JAN.2015 10:00:00

Field strength of spurious radiation measurements according to 47 CFR 27.53 (f) and RSS-130 4.6

Date	Temperature	Humidity
2015-10-17	22 °C ± 3°C	$25~\%~\pm 5~\%$

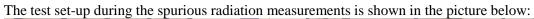
Test set-up and procedure

REPORT

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarization of the antenna. The antenna distance was 3 m in the frequency range 30 MHz - 8 GHz.

In the frequency range 30 MHz – 8 GHz the measurement was performed in power with a RBW of 1 MHz. A propagation loss in free space was calculated. The used formula was


$$\gamma = 20\log\left(\frac{4\pi D}{\lambda}\right), \ \gamma \ \ {
m is the propagation loss and} \ \ D \ \ {
m is the antenna distance}.$$

The measurement procedure was as the following:

- A pre-measurement is performed with peak detector. For measurement < 1 GHz the test object is measured in eight directions with the antenna at 1.0 m. For measurements > 1 GHz the test object was measured in seventeen directions with the antenna at 1.0 m in height.
- 2. Spurious radiation on frequencies closer than 20 dB to the limit in the pre-measurement is scanned 0-360 degrees and the antenna is scanned 1-4 m for maximum response. The emission is then measured with the RMS detector and the RMS value is reported. Frequencies closer than 10 dB to the limit when measured with the RMS detector were measured with the substitution method according ANSI/TIA-603-C-2004.

REPORT

Appendix 7

Measurement equipment

Measurement equipment	SP number
Semi anechoic chamber	503 881
R&S ESU 26	901 553
EMC 32 ver. 8.52.0	503 899
Chase Bilog Antenna CBL 6111A	503 182
EMCO Horn Antenna 3115	502 175
High pass filter, RLC Electronics	901 373
μComp Nordic, Low Noise Amplifier	901 545
Testo 625 temperature and humidity meter	504 188

REPORT 2015-01-23 4P08235-F27

Appendix 7

Tested configurations

B5
M5
M10
Т5
2M5

Results, representing worst case

M, BW: 5 MHz Diagram 1 a-b

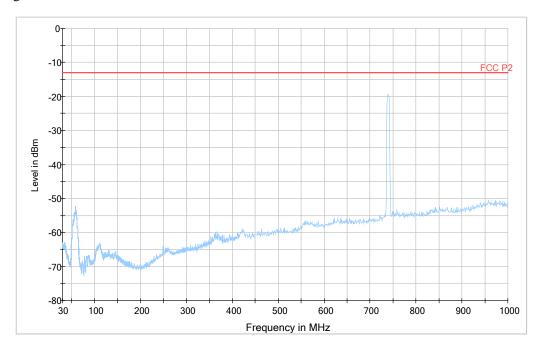
	Spurious emission level (dBm)		
Frequency (MHz)	Vertical	Horizontal	
30-8000	All emission > 20 dB below limit	All emission > 20 dB below limit	

Measurement uncertainty:

3.2 dB up to 18 GHz

Limits

CFR 47 § 27.53 (g) and RSS-130 4.6:


Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm per 100 kHz RBW.

Limits

Complies?	Yes

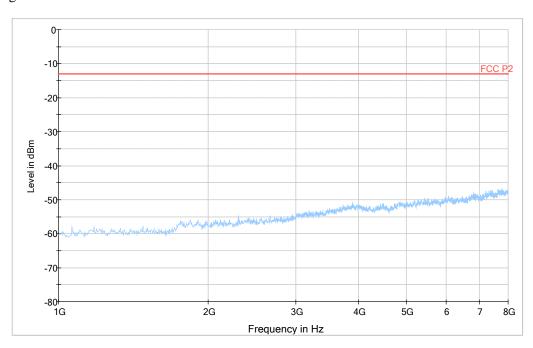

REPORT 2015-01-23

Diagram 1a:

Note: The emission at 739.5 MHz is the carriers frequency and shall be ignored in the context.

Diagram 1b:

2013-01-23 4F00233-F2

Frequency stability measurements according to CFR 47 § 27.54 / IC RSS 130 4.3

Date	Temperature	Humidity
2015-01-14	23 °C ± 3°C	$18\% \pm 5\%$
2015-01-15	23 °C ± 3°C	$18\% \pm 5\%$

Test set-up and procedure

REPORT

The measurement was made per 3GPP TS 36.141. The output was connected to a spectrum analyser. The spectrum analyser was connected to an external 10 MHz reference standard during the measurements.

The measurement was also made using a resolution bandwidth of 1% of the emission bandwidth, a reference point at the unwanted emission level which complies with the attenuation of $43 + 10 \log 10 p$ (watts) (i.e. -13 dBm) (for MIMO -16 dBm) at the band edge of the lowest and highest channel was selected, and the frequency at these points was recorded as fL and fH respectively.

Measurement equipment	SP number		
R&S FSQ 40	504 143		
RF attenuator	900 691		
RF Terminator	-		
Temperature Chamber	503 360		
Testo 635, temperature and humidity meter	504 203		
Multimeter Fluke 87	502 190		

Results

Nominal transmitter frequency was 739.5 MHz (M) with a bandwidth of 5 MHz. Rated output power level at connector RF A (maximum): 17 dBm.

Configuration: RDI Cable 200m

REPORT

eomigaration 1				
Test conditions Supply voltage Temp. DC (V) (°C)		Frequency error (Hz)		
-48.0	+20	+5		
-55.2	+20	+5		
-40.8	+20	-5		
-48.0	+30	-5		
-48.0	+40	-5		
-48.0	+50	-6		
-48.0	+10	+4		
-48.0	0	Not possible to activate transmitter		
Maximum freq. error (Hz)		6		
Measurement uncertainty		$< \pm 1 \times 10^{-7}$		

Measurements according to 3GPP TS 36.141.

REPORT

Appendix 8

Configuration: RDI Cable 20m

Test conditions			Frequency margin to band edge at -16 dBm			
Supply voltage	Temp [°C].	Carrier Bandwidth [MHz]	Test frequency Symbolic name B5		Test frequency Symbolic name T5	
DC [V]			fL [MHz]	Offset to lower band edge (734 MHz) [kHz]	fH [MHz]	Offset to upper band edge (746 MHz) [kHz]
-48.0	+20	5	734.196	196	744.799	1201
-48.0	+20	10	734.407	407	744.587	1413

Configuration: RDI Cable 200m

Test conditions			Frequency margin to band edge at -16 dBm			
Supply voltage	Temp [°C].	Carrier Bandwidth [MHz]	Test frequency Symbolic name B5		Test frequency Symbolic name T5	
DC [V]			fL [MHz]	Offset to lower band edge (734 MHz) [kHz]	fH [MHz]	Offset to upper band edge (746 MHz) [kHz]
-48.0	+20	5	734.209	209	744.792	1208
-48.0	+20	10	734.427	427	744.576	1424

Measurements according to FCC CFR 47 $\S~27.54\,/$ IC RSS 130 4.3

The frequency error results clearly shows that the frequency stability is good enough to ensure that the transmitted carrier stay within the operating band.

REPORT

Date Reference 4P08235-F27

Appendix 8

4(4)

Remark

It was deemed sufficient to test one combination of TX frequency, channel bandwidth configuration and test model (modulation), as all combinations share a common internal reference to derive the TX frequency from.

Limits

CFR 47 § 27.54 Frequency stability

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-130 4.3 Frequency:

The frequency stability shall be sufficient to ensure that the emission bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

Complies?	Yes

External photos

Top side

Side

Bottom side

Label

