

Choose Scandinavian trust

Radio Test report – AIR 1641 B2/25a B66a

Project number:

391738-1TRFWL-R1

Applicant:

Ericsson Canada

Product:	Model:	Part number:
AIR 1641	AIR 1641 B2/25a B66a	KRD 901 800/1
FCC ID:	ISED Reg. Number	HVIN:
TA8AKRD901800-1	287AB-AS9018001	AS9018001

Requirements/Summary:

Standard	Environmental phenomenon	Compliance
FCC 47 CFR Part 27	Miscellaneous wireless communications services	Yes
FCC 47 CFR Part 24, Subpart E	Broadband Personal Communications Services (PCS)	Yes
RSS-133 Issue 6 A1, Jan 18, 2018	2 GHz Personal Communications Services	Yes
RSS-139 Issue 3, July 16, 2015	Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710–1780 MHz and 2110–2180 MHz	Yes
RSS-170 Issue 3, July 9, 2015	Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands	Yes

Date of issue: February 25, 2020

Andrey Adelberg, Senior EMC/Wireless Specialist

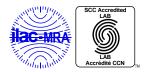
Tested by

Predrag Golic, EMC Specialist

Tested by

David Duchesne, Senior EMC/Wireless Specialist

Reviewed by


Signature Maglin

Signature

Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

FCC 27 and RSS-139.docx; Date: Jul 2017

www.nemko.com

Two test location	S	
	_	
Company name	Nemko Canada Inc.	
Address	303 River Road	349 Terry Fox
City	Ottawa	Ottawa
Province	Ontario	Ontario
Postal code	K1V 1H2	K2K 2V6
Country	Canada	Canada
Telephone	+1 613 737 9680	+1 613 963 8000
Facsimile	+1 613 737 9691	
Toll free	+1 800 563 6336	
Website	www.nemko.com	
Site number	FCC test site registration n	umber: CA2040, IC: 2040A-4 (3 m semi anechoic chamber)

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this reAnt Are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test method	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Summary of test results	5
2.1	FCC Part 27 test results	5
2.2	FCC Part 24 test results	5
2.3	RSS-133 test results	5
2.4	RSS-139 test results	5
2.5	RSS-170 test results	5
Section 3	. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Product description and theory of operation	7
3.4	EUT test details	8
3.5	EUT setup diagram	11
3.6	Setup photographs	12
Section 4	. Engineering considerations	. 14
4.1	Modifications incorporated in the EUT	14
4.2	Technical judgment	14
4.3	Deviations from laboratory tests procedures	14
Section 5	. Test conditions	. 15
5.1	Atmospheric conditions	15
5.2	Power supply range	15
Section 6	6. Measurement uncertainty	. 16
6.1	Uncertainty of measurement	16
Section 7	7. Test equipment	. 17
7.1	Test equipment list	17
Section 8	8. Testing data	. 18
8.1	FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector (B66)	18
8.2	FCC 24.232(a)(2) and RSS-133, 6.4 Transmitter output power (EIRP) and antenna height (B2/25a)	28
8.3	FCC 27.53 and RSS-139, 4.2, RSS-170, 5.4 Spurious emissions at RF antenna connector (Band 66)	38
8.4	FCC 27.53 and RSS-139, 4.2, RSS-170, 5.4 Radiated spurious emissions (Band 66 & Band 2/25)	55
8.5	FCC 24.238(a) and RSS-133, 6.5.1 Spurious out-of-band emissions (Band 2/25a)	59
8.6	FCC Part 2.1049 and RSS-Gen, 6.7 Occupied bandwidth (Band 66)	81
8.7	FCC Part 2.1049 and RSS-Gen, 6.7 Occupied bandwidth (Band 2/25a)	
8.8	FCC 27.54 and RSS-139, Section 6.4 Frequency stability (Band 66)	
8.9	FCC 24.235 and RSS-133, 6.3 Frequency stability (Band 2/25a)	
8.10	RSS-133, 6.6 Receiver Spurious Emissions	
Section 9		
9.1	Radiated emissions set-up for frequencies below 1 GHz	
9.2	Radiated emissions set-up for frequencies above 1 GHz	
9.3	Conducted emissions set-up	91

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Ericsson Canada Inc.
Address	349 Terry Fox Drive, Ottawa, ON, Canada, K2K 2V6

1.2 Test specifications

FCC 47 CFR Part 2	Frequency Allocations and Radio Treaty Maters; General Rules and Regulations
FCC 47 CFR Part 24, Subpart E	Broadband Personal Communications Services (PCS)
FCC 47 CFR Part 27	Miscellaneous wireless communications services (2110–2200 MHz)
RSS-133 Issue 6 A1, Jan 18, 2018	2 GHz Personal Communications Services
RSS-139 Issue 3, July 16, 2015	Advanced Wireless Services (AWS) equipment operating in the bands 1710–1780 MHz and 2110–2180 MHz
SRSP-510, Issue 5, Feb. 2009	Technical Requirements for Personal Communications Services (PCS) in the Bands 1850–1915 MHz and 1930–1995
SKSP-510, ISSUE 5, FED. 2009	MHz
RSS-170 Issue 3, July 9, 2015	Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands
RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus

Equipment operating in the ancillary terrestrial component (ATC) of the frequency bands 2000–2020 MHz and 2180–2200 MHz is certified under RSS-170.

1.3 Test method

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services	
KDB 662911 D01	Multiple Transmitter Output v02r01	
KDB 662911 D02	MIMO with Cross-Polarized Antennas v01	

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant. Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested.

This report (**391738-1TRFWL-R1**) applies to the AIR 1641 B2/25a and B66 with model number KRD 901 800/1. See "Summary of test results" for full details.

EUT Configuration(s):

LTE: 10, 15, 20 MHz (1-2 Carriers) LTE + NB IoT (GB, IB): 10, 15, 20 MHz

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Details of changes made to test report
TRFWL-R1	Original report issued

Section 2. Summary of test results

2.1 FCC Part 27 test results

Part	Test description	Verdict
§27.50(b)	Maximum output power at RF antenna connector	Pass
§27.53	Spurious emissions at RF antenna connector	Pass
§27.53	Radiated spurious emissions (conducted and radiated)	Pass
§27.54	Frequency stability	Pass
§2.1049	Occupied bandwidth	Pass

2.2 FCC Part 24 test results

Part	Test description	Verdict
§24.229	Frequencies	Pass ¹
§24.232(a)(2)	Power and antenna height limits for base stations with BW greater than 1 MHz	Pass
§24.235	Frequency stability	Pass
§24.238(a)	Emission limitations for Broadband PCS equipment – out of band emissions (conducted and radiated)	Pass
§2.1049	Occupied bandwidth	Pass

Notes: ¹EUT transmits within 1930–1995 MHz frequency range

2.3 RSS-133 test results

Part	Test description	Verdict
6.1	Frequency Plan	Pass ¹
6.2	Types of Modulation	Pass ²
6.3	Frequency stability	Pass
6.4	Transmitter Output Power and Equivalent Isotropically Radiated Power	Pass
6.5	Transmitter Unwanted Emissions (conducted and radiated)	Pass
6.6	Receiver Spurious Emissions	Pass
RSS-Gen, 6.7	Occupied bandwidth	Pass

Notes: ¹EUT transmits within 1930–1995 MHz frequency range. ²EUT employs digital modulation (QPSK to 256-QAM)

2.4 RSS-139 test results

Part	Test description	Verdict
4.1	Transmitter output power and Equivalent Isotropic Radiated Power (e.i.r.p.)	Pass
4.2	Spurious emissions at RF antenna connector	Pass
4.2	Radiated spurious emissions (conducted and radiated)	Pass
6.4	Transmitter frequency stability	Pass
RSS-Gen, 6.7	Occupied bandwidth	Pass

2.5 RSS-170 test results

Part	Test description	Verdict
5.3	Transmitter output power and Equivalent Isotropic Radiated Power (e.i.r.p.)	Pass
5.4	Spurious emissions at RF antenna connector	Pass
5.4	Radiated spurious emissions (conducted and radiated)	Pass
5.2	Frequency stability	Pass
RSS-Gen, 6.7	Occupied bandwidth	Pass

Note: ATC Base Station Equipment operating in bands 2000–2020 MHz and 2180–2200 MHz

The unwanted emissions of ATC base station equipment transmitting in the bands 2000–2020 MHz and 2180–2200 MHz shall comply with the following:

- (1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by 43 + 10 log p (watts), dB.
- (2) For equipment operating in the band 2180–2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of –100.6 dBW/4 kHz (–70.6 dBm/4 kHz).*

* This requirement is for implementation and is enforced at the time of licensing. Therefore, results are not included in this report.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	January 20, 2020
Nemko sample ID number	None

3.2 EUT information

Due duet source	AIR 1641
Product name	
Model	AIR 1641 B2/25a B66a
Part number	KRD 901 800/1
Revision	R1D
Serial number	E23B014781
Antenna ports	16 TX/RX Ports
RF BW / IBW	B25 IBW DL: 65 MHz
	B25 IBW UL: 65 MHz
	B66 IBW DL: 90 MHz
	B66 IBW UL: 70 MHz
FDD	B2/25: 80 MHz
	B66: 400 MHz
Frequency	B25 TX (DL): 1930–1995 MHz
	B25 RX (UL): 1850–1915 MHz
	B66 TX (DL): 2110–2200 MHz
	B66 RX (UL): 1710–1780 MHz
Nominal O/P per Antenna port	20 W (43 dBm): 10 W (40 dBm) per Band
Nominal O/P per Band	Single Carrier: 1 × 10 W (40 dBm)
	2 Carrier: 2 × 5 W (40 dBm total)
Accuracy (nominal)	±0.1 ppm
Nominal voltage	-48 V _{DC} @ 40 A
RAT	LTE: SC, MC, IoT (GB, IB)
Modulation	LTE: QPSK, 16 QAM, 64 QAM, 256 QAM
Channel bandwidth	LTE: 10, 15, 20 MHz
Channel bandwidth LTE + NB IoT	LTE + NB IOT: GB, IB (200 kHz) LTE BW: 10, 15, 20 MHz (IB, GB)
Maximum combined OBW per port	B2/25: 65 MHz
	B66: 90 MHz
CPRI	10 Gbps
Channel raster	LTE: 100 kHz
Regulatory requirements	Radio: FCC Part 2, 24, 27, RSS-Gen, RSS-133, RSS-139, RSS-170
	EMC: FCC Part 15, ICES-003
	Safety: IEC/EN 62368-1, UL/CSA 62368-1
	IEC/EN 60950-22, UL 50E
Emission Designator	LTE: 10M0W7D, 15M0W7D, 20M0W7D
Supported Configurations	Single Antenna, TX Diversity, MIMO, Carrier Aggregation
Operating temperature	-40 °C to +55 °C
Total Power based on IBW	160 W/band; Total (Radio) 320 W (16 × 20 W)
Supported carrier / port	LTE: (1-2)

3.3 Product description and theory of operation

EUT description of the methods used to exercise the EUT and all relevant ports:

Description/theory of operation	outdoor environment. The AIR 164 integrated antenna. Radio unit ins RRU/RBS control and digital interfa- vertically. Output RF Power is rated at 16 × 1 Altitude during operation: Below 4 The AIR 1641 is a synthesized Tran Evolution) - E-UTRA Base Station defined by 3GPP. TX (DL): 1930–13 For LTE, the AIR 1641 B2/25a B66a 10, 15 or 20 MHz. The Radio trans Width). NB IoT is supported for IB The AIR 1641 supports single and r Test Configuration: KRC 161 800/1: The radio function antenna with the Ericsson RDNB (F	enna Integra 1 operates tallation is c icce betweer 0 W (per Ba 000 m sceiver desi AIR 1641 B2 995 MHz, R3 supports m mits in singl and GB. nulti-beam ality and pei tadio Distrib	ted Radio) 1641 provide over 2 bands (Band 2/2 lesigned for pole, wall o the Radio and the RBS nd). gned for use in the 3GP /25a B66a is a 16TX/16 (UL): 1850–1915 MHz odulations QPSK, 16QA e carrier mode and mul FD MIMO (Multiple Inpi formance is evaluated ution Network Board) p	es radio access for mobile and 5 and Band 66) via 16 TX/RX p or mast mount options. A fibe . The AIR 1641 product is con P (Third Generation Partnersh RX remote radio unit (RRU). T and Band 66 TX (DL): 2110–22 M, 64QAM and 256QAM. Cha ti carrier mode within the Bar ut Multiple Output) and Carrie without the antenna attached providing access to the RF Port	fixed devices and is designed for the orts connected directly into an r optic interface (4) provides the vection cooled and shall be mounted ip Project) for LTE (Long Term his RRU operates in Band 2/25 as 200 MHz, RX (UL): 1710–1780 MHz annel Bandwidth is configurable for id Specific IBW (Instantaneous Band er Aggregation for LTE. I. This configuration replaces the ts for compliance measurements.				
	compliance verification.	embly (KRE 1	.05 341/1R) designed to	o plug into and support the rac	dio equipment assessment, test and				
Ant Description	Port	Descri	ption						
	ANT 1–16		ut ports from 1 to 16						
	Alarm	Alarm							
	Data 1	Optical I	nterface Data 1						
	Data 2	Optical I	nterface Data 2						
	Data 3	Optical I	nterface Data 3						
	Data 4	Optical Interface Data 4							
	DC Input -48 V _{DC} MMI Display - Radio Status								
	MMI		Radio Status						
	GND	Ground							
Physical	Dimensions								
	Weight	Weight 101 kg							
	Operating Temperature	-40 to	+55 °C						
	Mounting	Pole, V	/all, Mast Mount						
	Cooling	Conve	ction (forced air)						
Software details	CXP9017316%12-R81JC								
Radio Hardware Configuration	Product: KRD 901 800/1	R1D	KRC 161 800/1	R1D	Description				
	KRY 901 800/1	R1C	KRY 901 800/1	R1C	Radio Unit				
	ROA 128 6840/625	R1C	ROA 128 6840/625	R1C	Radio PCP (4)				
	ROA 128 6850/625	R1B	ROA 128 6850/625	R1B	FIB PCP				
	ROA 128 6860/625	R1B	ROA 128 6860/625	R1B	РСВ РСР				
	KRF 901 800	R1A	KRF 901 800	R1A	Filter Unit (4)				
	NTB 101 0679/1	R1B	NTB 101 0679/1	R1B	Parts				
	KRY 901 850/1	R1B	KRY 901 850/1	R1B	I/O Assembly				
	ROA 128 6850/99	R1B	ROA 128 6850/99	R1B	PCB SFP Daughter Card				
	KRE 105 322	R1B	KRE 105 341/1R	R1B	Antenna / RDNB				
	NTB 101 0678/1	R1B	NTB 101 0678/1	R1B	Parts				
Product Identification Label		A 1641 B2/25a B ade in Estonia	HI -	FCC ID: TA8AKRD90180 IC: 287AB-AS9018001 AS9018001	00-1				
	Image: Non-State State State Non-State Non-State Non-State 1 O+ 2 O+	3 @•	4 G +	RELATE TO A CONTRACT OF A CONT	2266 E A Har 68A				

3.4 EUT test details

EUT setup/configuration rationale:

Down link	RAT	Modulation	Performance Requirement		Test Model / Configuration
	LTE	QPSK	N/A	E-TM1.1	
	LTE	16QAM	N/A	E-TM3.2	
	LTE	64QAM	N/A	E-TM3.1	
	LTE	256QAM	N/A		E-TM3.1a
Uplink					
Op link	RAT	Modulation	Performance Requirement	Input Signal	Test Model / Configuration
	LTE	QPSK	N/A		E-UTRA-UL
Up link	LTE RAT	256QAM Modulation	N/A Performance Requirement	Input Signal	E-TM3.1a Test Model / Configuration

Single carrier B25

Bandwidth, MHz			LTE Transm	it / DL, MHz		
	В	EARFCN	М	EARFCN	т	EARFCN
5	1932.5	66461	1962.5	66761	1992.5	67061
10	1935.0	66486	1962.5	66761	1990.0	67036
15	1937.5	66511	1962.5	66761	1987.5	67011
20	1940.0	66536	1962.5	66761	1985.0	66986

Bandwidth, MHz			LTE Receive	e / UL, MHz		
	В	EARFCN	М	EARFCN	т	EARFCN
5	1852.5	131997	1882.5	132297	1912.5	132597
10	1855.0	132022	1882.5	132297	1910.0	132572
15	1857.5	132047	1882.5	132297	1907.5	132547
20	1860.0	132072	1882.5	132297	1905.0	132522

Single carrier B66

Bandwidth, MHz			LTE Transm	it / DL, MHz		
Danuwiutii, Winz	В	EARFCN	М	EARFCN	т	EARFCN
5	2112.5	66461	2155.0	66886	2197.5	67311
10	2115.0	66486	2155.0	66886	2195.0	67286
15	2117.5	66511	2155.0	66886	2192.5	67261
20	2120.0	66536	2155.0	66886	2190.0	67236

Bandwidth, MHz			LTE Receive	e / UL, MHz		
Banuwiuth, Minz	В	EARFCN	М	EARFCN	т	EARFCN
5	1712.5	131997	1745.0	132322	1777.5	132647
10	1715.0	132022	1745.0	132322	1775.0	132622
15	1717.5	132047	1745.0	132322	1772.5	132597
20	1720.0	132072	1745.0	132322	1770.0	132572

B25 LTE Multi-Carrier for Band Edge Emissions:

Bandwidth,					Transmit / DL, MHz				
MHz	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFCN
5	1932.5	66461	1937.5	66511		1987.5	67011	1992.5	67061
10	1935.0	66486	1945.0	66586		1980.0	66936	1990.0	67036
15	1937.5	66511	1952.5	66661		1972.5	66861	1987.5	67011
20	1940.0	66536	1960.0	66736		1965.0	66786	1985.0	66986

Bandwidth,					Receive / UL, MHz				
MHz	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFO
5	1852.5	131997	1857.5	132047		1907.5	132547	1912.5	13259
10	1855.0	132022	1865.0	132122		1900.0	132472	1910.0	1325
15	1857.5	132047	1872.5	132197		1892.5	132397	1907.5	13254
20	1860.0	132072	1880.0	132272		1885.0	132322	1905.0	13252

B66 LTE Multi-Carrier for Band Edge Emissions:

Bandwidth,					Transmit / DL, MHz				
MHz	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFCN
5	2112.5	66461	2117.5	66511		2192.5	67261	2197.5	67311
10	2115.0	66486	2125.0	66586		2185.0	67186	2195.0	67286
15	2117.5	66511	2132.5	66661		2177.5	67111	2192.5	67261
20	2120.0	66536	2140.0	66736		2170.0	67036	2190.0	67236

Bandwidth,					Receive / UL, MHz				
MHz	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EAR
5	1712.5	131997	1717.5	132047		1772.5	132597	1777.5	1326
10	1715.0	132022	1725.0	132122		1765.0	132522	1775.0	1326
15	1717.5	132047	1732.5	132197		1757.5	132447	1772.5	1325
20	1720.0	132072	1740.0	132272		1750.0	132372	1770.0	1325

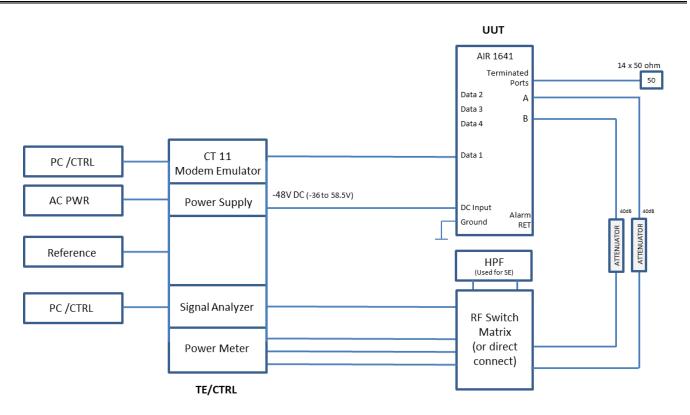
B25 LTE Multiple-Carriers for spurious emissions (IBW=65MHz):

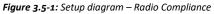
Bandwidth		Transmit / DL (MHz)			
(MHz)	C1	EARFCN	C2	EARFCN	
5	1932.5	66461	1992.5	67061	
10	1935.0	66486	1990.0	67036	
15	1937.5	66511	1987.5	67011	
20	1940.0	66536	1985.0	66986	

Bandwidth	Receive / UL (MHz)				
(MHz)	C1	EARFCN	C2	EARFCN	
5	1852.5	131997	1912.5	132597	
10	1855.0	132022	1910.0	132572	
15	1857.5	132047	1907.5	132547	
20	1860.0	132072	1905.0	132522	

Bandwidth		Transmi		
(MHz)	C1	EARFCN	C2	EARFCN
5	2112.5	66461	2177.5	67111
10	2115.0	66486	2175.0	67086
15	2117.5	66511	2172.5	67061
20	2120.0	66536	2170.0	67036

B66 LTE Multiple-Carriers for spurious emissions (IBW=70)


Bandwidth	Receive / UL (MHz)				
(MHz)	C1	EARFCN	C2	EARFCN	
5	1712.5	131997	1777.5	132647	
10	1715.0	132022	1775.0	132622	
15	1717.5	132047	1772.5	132597	
20	1720.0	132072	1770.0	132572	


EUT Monitoring Method / Equipment:

Support equipment	Node EMC Test System
	- Anritsu MS 2691 VSA/Sig Gen
	- HP Laptop
	- Timing and Synchronization box (GPS)
	- Ethernet Switch
	- Isolation Transformer
	RBS 6601, BFM 901 009/1:
	- DUS 4101 KDU 137 624/ 11, R4G, S/N: T48X68357
	- DUS SW: CXP102051/27-R18A179
	- Input Voltage: –48 V _{DC}

3.5 EUT setup diagram

3.6 Setup photographs

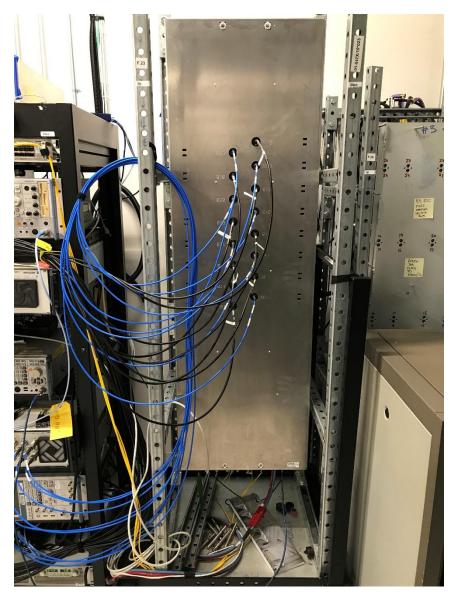
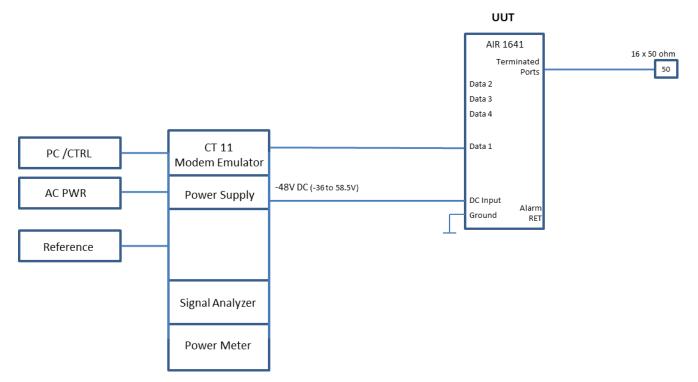



Figure 3.6-1: Set up photo for Radio Compliance Testing

Figure 3.6-2: EUT Set-up diagram for Radiated Compliance Testing

Figure 3.6-3: EUT Set-up photo for Radiated Compliance Testing

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

The testing was performed in accordance with the test plan, which suggested to measure output power on all 16 antenna ports, to find the port with the highest output power and perform the rest of the testing on that one representing antenna port.

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 24, 2021
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR
Controller	Sunol	SC104V	FA002060	-	NCR
Antenna mast	Sunol	TLT2	FA002061	-	NCR
DC Power source	Ametek	SGA80X125C-0AAA	FA002737	-	VOU
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	May 8, 2020
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002877	1 year	November 4, 2020
Biconical antenna (30–300 MHz)	Sunol	BC2	FA002078	1 year	October 31, 2020
Log periodic antenna (200–5000 MHz)	Sunol	LP5	FA002077	1 year	October 31, 2020
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	October 31, 2020
Horn antenna (18–26.5 GHz)	Electro-metrics	SH-50/60-1	FA000479	_	VOU
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	_	VOU
50 Ω coax cable	C.C.A.	None	FA002556	1 year	April 18, 2020
50 Ω coax cable	Huber + Suhner	None	FA003099	1 year	May 10, 2020
Spectrum Analyser	Keysight	PXA N9030A	MY55410202	1 year	September 24, 2020
PSU (DC)	Xantrex	XKW60-50	1001425551	-	NCR
USB Power Sensor	Keysight	U2044XA	MY58090002	2 year	April 16, 2020
USB Power Sensor	Keysight	U2044XA	MY58040008	2 year	April 16, 2020
USB Power Sensor	Keysight	U2044XA	MY57510012	2 year	April 15, 2020
USB Power Sensor	Keysight	U2044XA	MY57520003	2 year	April 15, 2020
RF Swtich	Ericsson	RARFSW4X1	1	—	NCR
Switch Driver	Hewlett Packard	11713A	3748A06076	_	NCR
PSU (DC)	Leader	730-3D	9801135	—	NCR
Testing Equipment*	Ericsson	CT11	T01G495060	_	NCR

Note: NCR - no calibration required, VOU - verify on use.

* Testing equipment (CT11) is the test equipment that drives the radios traffic.

Report reference ID: 391738-1TRFWL-R1

Nèmko

Section 8. Testing data

8.1 FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector (B66)

8.1.1 Definitions and limits

§ 27.50(d) Operation within the bands: 2110–2155 MHz and 2155–2180 MHz.

(1) The power of each fixed or base station transmitting in the 1995–2000 MHz, 2110–2155 MHz, 2155–2180 MHz or 2180–2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 3280 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(2) The power of each fixed or base station transmitting in the 1995–2000 MHz, the 2110–2155 MHz 2155–2180 MHz band, or 2180–2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(3) A licensee operating a base or fixed station in the 2110–2155 MHz band utilizing a power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must coordinate such operations in advance with all Government and non-Government satellite entities in the 2025–2110 MHz band. A licensee operating a base or fixed station in the 2110–2180 MHz band utilizing power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must be coordinated in advance with the following licensees authorized to operate within 120 kilometers (75 miles) of the base or fixed station operating in this band: All Broadband Radio Service (BRS) licensees authorized under this part in the 2155–2160 MHz band and all advanced wireless services (AWS) licensees authorized to operate on adjacent frequency blocks in the 2110–2180 MHz band.

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(6) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Section 8 Test name Specification

RSS-139, Section 4.1

The transmitter power shall be measured in terms of a root-mean-square (RMS) average value.

RSS-139, Section 6.5

Consult SRSP-513 for e.i.r.p. limits on fixed and base stations operating in the band 2110–2180 MHz.

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

RSS-170, Section 5.3.1

Consult SRSP-519 for e.i.r.p. limits on ATC base stations operating in the bands 2000-2020 MHz and 2180-2200 MHz.

SRSP-513, Section 5.1

5.1.1 Fixed and base stations

5.1.1.1 For fixed and base stations operating within the frequency range 2110–2180 MHz with a channel bandwidth equal to or less than 1 MHz, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.2 For fixed and base stations operating within the frequency range 2110–2180 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 1640 watts/MHz e.i.r.p. (i.e. no more than 1640 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.3 Fixed and base stations located in geographic areas at a distance greater than 26 km from large or medium population centres, and transmitting within the frequency range 2110–2180 MHz, may increase their e.i.r.p. up to a maximum of 3280 watts/MHz (i.e. no more than 3280 watts e.i.r.p. in any 1 MHz band segment), with an antenna HAAT up to 300 metres.

Within 26 km of any large or medium population centre, fixed and base stations may operate at increased e.i.r.p. if more than 50% of the population within a particular sector's coverage is located outside these large and medium population centres.

Fixed and base stations with increased e.i.r.p. must not be used to provide coverage to large and medium population centres. However, some incidental coverage of these large and medium population centres by stations with increased e.i.r.p. is permitted.

This provision also applies for fixed and base stations with a channel bandwidth equal to or less than 1 MHz (i.e. the e.i.r.p. may be increased up to a maximum of 3280 watts).

5.1.1.4 Fixed and base station antenna heights above average terrain may exceed 300 metres with a reduction in e.i.r.p. The maximum permissible e.i.r.p. for installations with antenna HAAT in excess of 300 metres is given in the following table:

Table 8.1-1: Reduction to Maximum Allowable E.I.R.P. for HAAT > 300 m

HAAT (m)	Maximum EIRP, W/MHz
HAAT ≤ 300	1640 (or 3280 ¹)
300 < HAAT ≤ 500	1070
500 < HAAT ≤ 1000	490
1000 < HAAT ≤ 1500	270
1500 < HAAT ≤ 2000	160

Note: ¹for fixed and base stations with a channel bandwidth equal to or less than 1 MHz

Testing data FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

SRSP-519, Section 5.1

The equivalent isotropically radiated power (e.i.r.p.) of base stations shall not exceed 1640 W when transmitting with an emission bandwidth of 1 MHz or less, and 1640 W/MHz when transmitting with an emission bandwidth greater than 1 MHz.

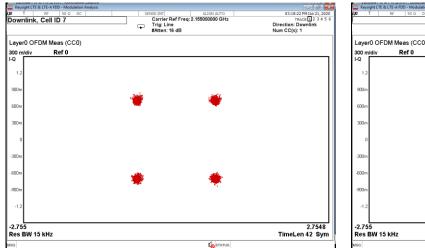
Base stations located outside of large or medium population may increase their e.i.r.p. to a maximum of 3280 W when transmitting with an emission bandwidth of 1 MHz or less, and to 3280 W/MHz when transmitting with an emission bandwidth greater than 1 MHz.

A licensee operating a base station utilizing an e.i.r.p greater than 1640 W/MHz must coordinate in advance with all AWS-4 licensees authorized to operate on adjacent frequency blocks within the same band.

Base station antenna heights above average terrain may exceed 300 m with a corresponding reduction in e.i.r.p. in accordance with Table above

8.1.2 Test summary

Test date	January 20, 2020
Test engineer	Andrey Adelberg


8.1.3 Observations, settings and special notes

Output power was measured with RMS power meter per ANSI C63.26 Paragraph 5.2.4.2 method. PSD was measured using method described in paragraph 5.2.4.4.

Antenna sub-array gain is 14.5 dBi with uncorrelated signals. Test receiver settings for PSD measurements:

Detector mode	RMS
Resolution bandwidth	1 MHz
Video bandwidth	>RBW
Measurement mode	Power over emission bandwidth
Trace mode	Averaging
Measurement time	Auto

8.1.4 Test data

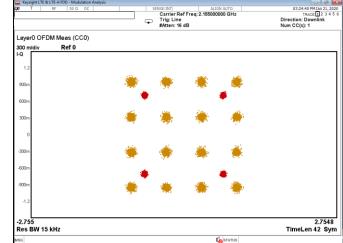


Figure 8.1-1: Modulation characteristics, QPSK

Figure 8.1-2: Modulation characteristics, 16QAM

Figure 8.1-3: Modulation characteristics, 64QAM

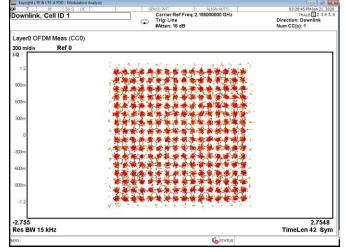


Figure 8.1-4: Modulation characteristics, 256QAM

Table 8.1-2: Output power measurem	ient results
------------------------------------	--------------

Port	RF output power, dBm	RF output power, W	Dual band combined power, dBm	Dual band combined power, W
000	39.22	8.356	42.63	18.323
010	39.35	8.610	42.77	18.923
020	39.44	8.790	42.73	18.750
030	39.41	8.730	42.83	19.187
031	39.28	8.472	42.66	18.450
021	39.49	8.892	42.84	19.231
011	39.23	8.375	42.62	18.281
001	39.27	8.453	42.67	18.493
070	39.19	8.299	42.64	18.365
060	39.48	8.872	42.83	19.187
050	39.29	8.492	42.67	18.493
040	39.44	8.790	42.84	19.231
041	39.28	8.472	42.71	18.664
051	39.43	8.770	42.77	18.923
061	39.23	8.375	42.70	18.621
071	39.26	8.433	42.68	18.535

Note: The measurement results in the table above were obtained during single band and multi band operation. 10 MHz channel BW (worst case) was used. Frequency of carriers were 2155.0 MHz and 1962.5 MHz for dual band config.

Note: it was determined that the highest level of output power is at antenna port **021**. This port was considered as a representative one and all the rest of the measurements were performed on it.

Table 8.1-3: Output power density measurement results of a single-carrier operation for Port 021

Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 10 MHz, Low channel	2115.0	29.69	14.50	44.19	62.15	17.96
16QAM, 10 MHz, Low channel	2115.0	30.35	14.50	44.85	62.15	17.30
64QAM, 10 MHz, Low channel	2115.0	29.60	14.50	44.10	62.15	18.05
256QAM, 10 MHz, Low channel	2115.0	29.76	14.50	44.26	62.15	17.89
16QAM, 10 MHz, Mid channel	2155.0	30.72	14.50	45.22	62.15	16.93
16QAM, 10 MHz, High channel	2195.0	29.79	14.50	44.29	62.15	17.86
QPSK, 15 MHz, Low channel	2117.5	28.11	14.50	42.61	62.15	19.54
16QAM, 15 MHz, Low channel	2117.5	28.81	14.50	43.31	62.15	18.84
64QAM, 15 MHz, Low channel	2117.5	28.24	14.50	42.74	62.15	19.41
256QAM, 15 MHz, Low channel	2117.5	27.95	14.50	42.45	62.15	19.70
16QAM, 15 MHz, Mid channel	2155.0	29.53	14.50	44.03	62.15	18.12
16QAM, 15 MHz, High channel	2192.5	28.94	14.50	43.44	62.15	18.71
QPSK, 20 MHz, Low channel	2120.0	27.09	14.50	41.59	62.15	20.56
16QAM, 20 MHz, Low channel	2120.0	27.26	14.50	41.76	62.15	20.39
64QAM, 20 MHz, Low channel	2120.0	27.01	14.50	41.51	62.15	20.64
256QAM, 20 MHz, Low channel	2120.0	27.02	14.50	41.52	62.15	20.63
16QAM, 20 MHz, Mid channel	2155.0	27.71	14.50	42.21	62.15	19.94
16QAM, 20 MHz, High channel	2190.0	27.39	14.50	41.89	62.15	20.26

Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 30.72 dBm/MHz. Maximum PSD sum = 30.72 dBm/MHz + $10 \times Log_{10}(8) = 39.75$ dBm/MHz

Table 8.1-4: Total EIRP calculation for a single-carrier operation

Maximum PSD sum,	Antenna Gain, dBi		EIRP per polarization ² ,	EIRP per polarization,
dBm/MHz			dBm/MHz	W/MHz
39.75	14.50	9.00	63.25	2113.489

Notes: ¹ Antenna Array Column Gain = $10 \times Log_{10}(8)$

²EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Total EIRP calculation for a single Macro Narrow traffic beam: 39.75 + 25 dBi (directional beam) = 64.75 dBm or 2985 W

	Table 8.1-5: Output power density	measurement results of a	a two-carrier operation for Port 021
--	-----------------------------------	--------------------------	---

Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2115 + 2125	27.45	14.50	41.95	62.15	20.20
2150 + 2160	27.72	14.50	42.22	62.15	19.93
2185 + 2195	27.22	14.50	41.72	62.15	20.43
2117.5 + 2132.5	26.05	14.50	40.55	62.15	21.60
2147.5 + 2162.5	26.28	14.50	40.78	62.15	21.37
2177.5 + 2192.5	26.17	14.50	40.67	62.15	21.48
2120 + 2140	24.52	14.50	39.02	62.15	23.13
2145 + 2165	24.65	14.50	39.15	62.15	23.00
2170 + 2190	24.66	14.50	39.16	62.15	22.99

Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 27.72 dBm/MHz. Maximum PSD sum = $27.72 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 36.75 \text{ dBm/MHz}$

Table 8.1-6: Total EIRP calculation for a two-carrier operation

Maximum PSD sum, Antenna Gain, dBi		Antenna Array Column	EIRP per polarization ² ,	EIRP per polarization,
dBm/MHz		Gain ¹ , dB	dBm/MHz	W/MHz
36.75	14.50	9.00	60.25	1059.473

Notes: ¹ Antenna Array Column Gain = 10 × Log₁₀(8); ²EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-7: Output power density measurement results of LTE and IoT operation for Port 021

Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
10 MHz low channel with 2 × GB IoT	2115.0	29.63	14.50	44.13	62.15	18.02
10 MHz mid channel with 2 × GB IoT	2155.0	30.10	14.50	44.60	62.15	17.55
10 MHz high channel with 2 × GB IoT	2195.0	29.75	14.50	44.25	62.15	17.90
15 MHz low channel with 2 × GB IoT	2117.5	28.10	14.50	42.60	62.15	19.55
15 MHz mid channel with 2 × GB IoT	2155.0	28.56	14.50	43.06	62.15	19.09
15 MHz high channel with 2 × GB IoT	2192.5	28.15	14.50	42.65	62.15	19.50
20 MHz low channel with 2 × GB IoT	2120.0	27.12	14.50	41.62	62.15	20.53
20 MHz mid channel with 2 × GB IoT	2155.0	27.44	14.50	41.94	62.15	20.21
20 MHz high channel with 2 × GB IoT	2190.0	27.42	14.50	41.92	62.15	20.23

Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 30.10 dBm/MHz. Maximum PSD sum = $30.10 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 39.13 \text{ dBm/MHz}$

 Table 8.1-8:
 Total EIRP calculation for LTE + IoT operation

Maximum PSD sum,	dBm/MHz Antenna Gain, dBi		EIRP per polarization ² ,	EIRP per polarization,
dBm/MHz			dBm/MHz	W/MHz
39.13	14.50	9.00	62.63	1832.694

Notes: ¹ Antenna Array Column Gain = 10 Log(8) ²EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

T RF 50 Ω DC		4	SENSE:INT	ALIGN AUTO		11:19:50	AM Jan 21, 2020
nter Freg 2.15500000				Avg Typ	e RMS		RACE 1 2 3 4 5
mer Fred 2. 1550000	P	NO: Wide Gain:Low	Trig: Free Ru #Atten: 12 di	un Avg Hold	d: 100/100	1	DET A NNNN
Ref Offset 44.2 dB dB/div Ref 40.00 dBm					M		482 GH: 723 dBn
			i				
0			and the second s		~		
.0					-		
0	1						
~	/						
00	/						
0	r				+ +		
0							
						\	
0 money warmen						mann	
0					+		
0							
nter 2.15500 GHz es BW 1.0 MHz		VBW	3.0 MHz*		Sween	Span 1 000 ms	20.00 MH (1001 pts)

Figure 8.1-5: PSD of 10 MHz channel bandwidth, single carrier operation, sample plot

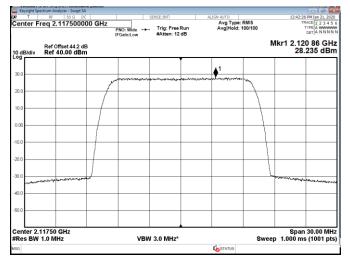
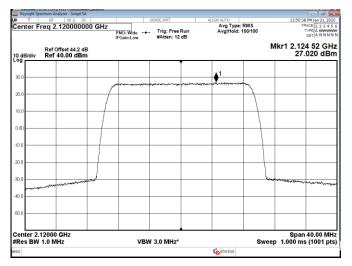
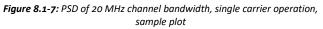
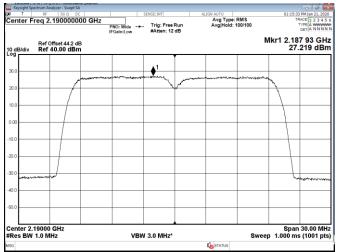




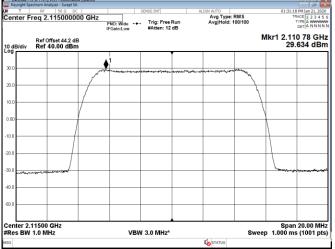
Figure 8.1-6: PSD of 15 MHz channel bandwidth, single carrier operation, sample plot

Testing data FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

Keysight Spectrum Analyzer - Swept SA T RF 50 Ω DC	SENSE:INT	ALIGN AUTO	01:13:02 PM Jan 21, 2020
Center Freq 2.185000000 GHz	PNO: Fast Trig: Free Run IFGain:Low #Atten: 12 dB	Avg Type: RMS Avg Hold: 100/100	TYPE A WWWWW DET A NNNN
Ref Offset 44.2 dB 0 dB/div Ref 40.00 dBm			/kr1 2.177 350 GHz 26.171 dBm
30.0			
20.0			
0.00			
10.0			
20.0			
0.0 pate-qu-tothytelyer*			warns warne war
10.0			
enter 2.18500 GHz Res BW 1.0 MHz	VBW 3.0 MHz*	Swe	Span 45.00 MHz ep 1.000 ms (1001 pts
sa		K STATUS	

Figure 8.1-9: PSD of 15 MHz channel bandwidth, two-carrier operation, sample plot




Figure 8.1-8: PSD of 10 MHz channel bandwidth, two-carrier operation, sample plot

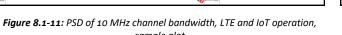

æ Cent	ter Fre	RF 50 Ω cq 2.15500		PNO: Fast	SENSE:INT Trig: Free F #Atten: 12 c	tun	Avg Type: Avg Hold: 1	RMS 100/100	TE	A NNNN
10 dE Log r		Ref Offset 44. Ref 40.00 d					1	M	kr1 2.14 24.	9 54 GH 648 dBr
30.0		_		_	↓ ¹					
20.0			/ marine	den start wighter and seeder			, and a second and a		$\overline{)}$	
10.0					V				+	
0.00				-						
10.0										
20.0										
30.0		erseement							hanne	
40.0										
50.0										
	ter 2.15 s BW 1.	500 GHz		VB	W 3.0 MHz*			Sween	Span 1.000 ms	60.00 MH
ASG										

Figure 8.1-10: PSD of 20 MHz channel bandwidth, two-carrier operation, sample plot

Section 8 Test name Specification Testing data FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

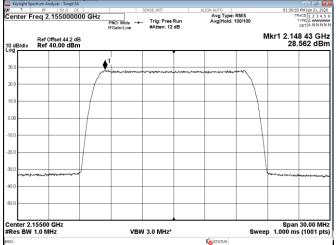


Figure 8.1-12: PSD of 15 MHz channel bandwidth, LTE and IoT operation, sample plot

sample plot

enter Freq 2.120000	PN	O: Wide	Trig: Free Run #Atten: 12 dB	Avg Type: R Avg Hold: 10	MS 0/100	TF	ACE 1 2 3 4 5 TYPE A WWW DET A NNNN
Ref Offset 44.2 d dB/div Ref 40.00 dBr	в				M	kr1 2.12 27.	8 60 GH 122 dBr
.0					≜ 1		
.0					\uparrow		
10							
.0							
0							
0 anorthanterrational						and a stand of the second second	analyse and
.0							
enter 2.12000 GHz les BW 1.0 MHz		VBW	/ 3.0 MHz*		Sweep	Span 1.000 ms	40.00 MH (1001 pt

Figure 8.1-13: PSD of 20 MHz channel bandwidth, LTE and IoT operation, sample plot

Table 8.1-9: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single carrier operation

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
QPSK, 10 MHz, Low channel	2115.0	7.37	13.00	5.63
16QAM, 10 MHz, Low channel	2115.0	7.36	13.00	5.64
64QAM, 10 MHz, Low channel	2115.0	7.37	13.00	5.63
256QAM, 10 MHz, Low channel	2115.0	7.38	13.00	5.62
16QAM, 10 MHz, Mid channel	2155.0	7.36	13.00	5.64
16QAM, 10 MHz, High channel	2195.0	7.37	13.00	5.63
QPSK, 15 MHz, Low channel	2117.5	7.39	13.00	5.61
16QAM, 15 MHz, Low channel	2117.5	7.39	13.00	5.61
64QAM, 15 MHz, Low channel	2117.5	7.40	13.00	5.60
256QAM, 15 MHz, Low channel	2117.5	7.40	13.00	5.60
16QAM, 15 MHz, Mid channel	2155.0	7.37	13.00	5.63
16QAM, 15 MHz, High channel	2192.5	7.39	13.00	5.61
QPSK, 20 MHz, Low channel	2120.0	7.41	13.00	5.59
16QAM, 20 MHz, Low channel	2120.0	7.39	13.00	5.61
64QAM, 20 MHz, Low channel	2120.0	7.42	13.00	5.58
256QAM, 20 MHz, Low channel	2120.0	7.41	13.00	5.59
16QAM, 20 MHz, Mid channel	2155.0	7.38	13.00	5.62
16QAM, 20 MHz, High channel	2190.0	7.40	13.00	5.60

Table 8.1-10: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for LTE + IoT operation

Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz
10 MHz low channel with 2 × GB IoT	2115.0	7.54	13.00	5.46
10 MHz mid channel with 2 × GB IoT	2155.0	7.55	13.00	5.45
10 MHz high channel with 2 × GB IoT	2195.0	7.54	13.00	5.46
15 MHz low channel with 2 × GB IoT	2117.5	7.50	13.00	5.50
15 MHz mid channel with 2 × GB IoT	2155.0	7.49	13.00	5.51
15 MHz high channel with 2 × GB IoT	2192.5	7.50	13.00	5.50
20 MHz low channel with 2 × GB IoT	2120.0	7.47	13.00	5.53
20 MHz mid channel with 2 × GB IoT	2155.0	7.46	13.00	5.54
20 MHz high channel with 2 × GB IoT	2190.0	7.48	13.00	5.52

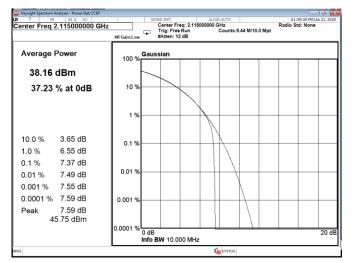


Figure 8.1-14: CCDF sample plot, 10 MHz channel

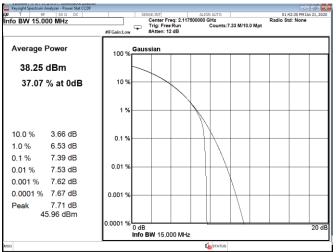


Figure 8.1-15: CCDF sample plot, 15 MHz channel

Testing data FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

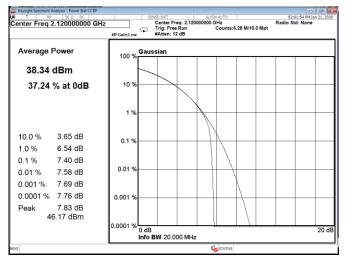


Figure 8.1-16: CCDF sample plot, 20 MHz channel

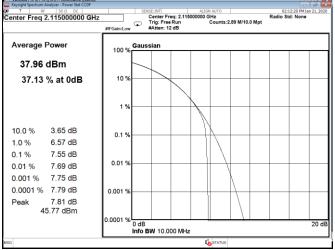


Figure 8.1-17: CCDF sample plot, 10 MHz channel LTE + IoT

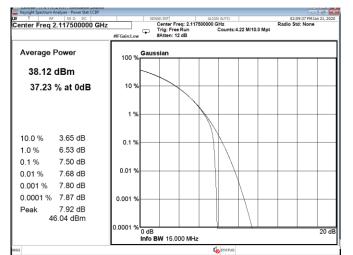


Figure 8.1-18: CCDF sample plot, 15 MHz channel LTE + IoT

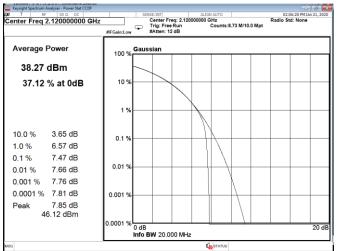


Figure 8.1-19: CCDF sample plot, 20 MHz channel LTE + IoT

8.2 FCC 24.232(a)(2) and RSS-133, 6.4 Transmitter output power (EIRP) and antenna height (B2/25a)

8.2.1 Definitions and limits

§24.232(a)(2)

Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.

(2) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see table below.

(b)(1) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth of 1 MHz or less are limited to 3280 watts equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

RSS-133, Section 6.4

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510. In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

SRSP-510, Section 5.1

5.1.1 Base stations

For base stations with a channel bandwidth greater than 1 MHz, the maximum e.i.r.p. is limited to 3280 watts/MHz e.i.r.p. (i.e., no more than 3280 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres. Fixed or base stations operating in urban areas are limited to a maximum allowable e.i.r.p. of 1640 watts/MHz e.i.r.p. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table.

Table 8.2-1: Reduction to Maximum Allowable E.I.R.P. for HAAT > 300 m

HAAT (m)	Maximum EIRP, W/MHz
HAAT ≤ 300	1640
300 < HAAT ≤ 500	1070
500 < HAAT ≤ 1000	490
1000 < HAAT ≤ 1500	270
1500 < HAAT ≤ 2000	160

8.2.2 Test summary

Test date	January 21, 2020
Test engineer	Andrey Adelberg

8.2.3 Observations, settings and special notes

Output power was measured with RMS power meter per ANSI C63.26 Paragraph 5.2.4.2 method. PSD was measured using method described in paragraph 5.2.4.4.

Antenna sub-array gain is 14.5 dBi with uncorrelated signals. Test receiver settings for PSD measurements:

Detector mode	RMS
Resolution bandwidth	1 MHz
Video bandwidth	>RBW
Measurement mode	Power over emission bandwidth
Trace mode	Averaging
Measurement time	Auto

8.2.4 Test data

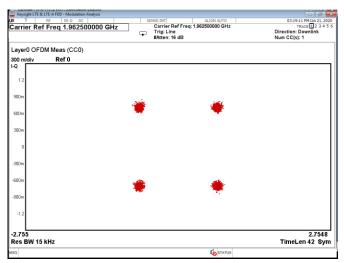
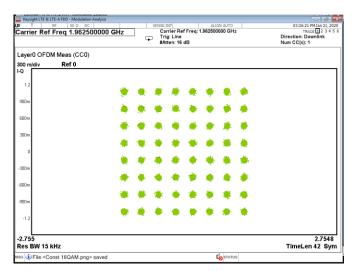
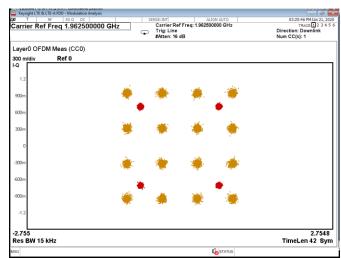
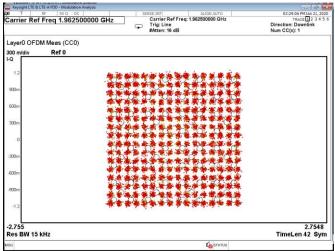





Figure 8.2-1: Modulation characteristics, QPSK

Figure 8.2-2: Modulation characteristics, 16QAM

Testing data FCC 24.232(a)(2) and RSS-133, 6.4 Transmitter output power (EIRP) and antenna height FCC Part 24 and RSS-133 Issue 6

Figure 8.2-3: Modulation characteristics, 64QAM

Figure 8.2-4: Modulation characteristics, 256QAM