

Choose Scandinavian trust

Radio Test report – AIR 3246 B66

Project number:

421512-1TRFWL-R1

Applicant:

Ericsson Canada Inc.

Product:	Model:	Part number:
AIR 3246	AIR 3246 B66	KRD 901 190/1
FCC ID:	ISED Reg. Number	HVIN:
TA8AKRD901190-1	287AB-AS9011901	AS9011901

Requirements/Summary:

Standard	Environmental phenomenon	Compliance
FCC 47 CFR Part 27	Miscellaneous wireless communications services	Yes
RSS-139 Issue 3, July 16, 2015	Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710–1780 MHz	
	and 2110–2180 MHz	
RSS-170 Issue 3, July 9, 2015	Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite	Yes
	Service (MSS) Bands	
	Limitations specified under Industry Canada P9 Licensing Agreement applied as per	
	https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf11536.html	

Date of issue: April 26, 2021

Andrey Adelberg, Senior EMC/Wireless Specialist

Tested by

David Duchesne, Senior EMC/Wireless Specialist Reviewed by

Signature

Signature

www.nemko.com

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation. The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

SCC File Number: 15064 (Ottawa/Almonte); 151100 (Montreal); 151097 (Cambridge)

FCC 27 and RSS-139.docx; Date: Jul 2017

Two test locations		
Company name	Nemko Canada Inc.	
Address	303 River Road	349 Terry Fox
City	Ottawa	Ottawa
Province	Ontario	Ontario
Postal code	K1V 1H2	K2K 2V6
Country	Canada	Canada
Telephone	+1 613 737 9680	+1 613 963 8000
Facsimile	+1 613 737 9691	
Toll free	+1 800 563 6336	
Website	www.nemko.com	
Site number	FCC test site registration numbe	r: CA2040, IC: 2040A-4 (3 m semi anechoic chamber)

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Applicant and manufacturer	. 4
1.2	Test specifications	. 4
1.3	Test method	. 4
1.4	Statement of compliance	. 4
1.5	Test report revision history	. 4
Section 2	Summary of test results	5
2.1	Testing location	. 5
2.2	Testing period	. 5
2.3	Sample information	. 5
2.4	FCC test results	6
2.5	ISED test results	6
Section 3	Equipment under test (EUT) details	7
3.1	EUT information	7
3.2	Product description and theory of operation	8
3.3	EUT test details	. 9
3.4	EUT setup diagram	11
3.5	Setup photographs	12
Section 4	. Engineering considerations	15
4.1	Modifications incorporated in the EUT	15
4.2	Technical judgment	15
4.3	Deviations from laboratory tests procedures	15
Section 5	. Test conditions	16
5.1	Atmospheric conditions	16
5.2	Power supply range	16
Section 6	. Measurement uncertainty	17
6.1	Uncertainty of measurement	17
Section 7	. Test equipment	18
7.1	Test equipment list	18
Section 8	B. Testing data	19
8.1	Maximum output power at RF antenna connector	19
8.2	Spurious emissions at RF antenna connector	35
8.3	Radiated spurious emissions	61
8.4	Occupied bandwidth	65
Section 9). Block diagrams of test setups	68
9.1	Radiated emissions set-up for frequencies below 1 GHz	68
9.2	Radiated emissions set-up for frequencies above 1 GHz	68
9.3	Conducted emissions set-up	69

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Ericsson Canada Inc.
Address	349 Terry Fox Drive, Ottawa, ON, Canada, K2K 2V6

1.2 Test specifications

FCC 47 CFR Part 2	Frequency Allocations and Radio Treaty Maters; General Rules and Regulations
FCC 47 CFR Part 27	Miscellaneous wireless communications services (2110–2200 MHz)
RSS-139 Issue 3, July 16, 2015	Advanced Wireless Services (AWS) equipment operating in the bands 1710–1780 MHz and 2110–2180 MHz
SRSP-513, Issue 3, July 2015	Technical Requirements for Advanced Wireless Services (AWS) in the Bands 1710–1780 MHz and 2110–2180 MHz
SRSP-519, Issue 1, July 2015	Technical Requirements for the Ancillary Terrestrial Component (ATC) of Mobile-Satellite Service (MSS) Systems
	Operating in the Bands 2000-2020 MHz and 2180-2200 MHz
RSS-170 Issue 3, July 9, 2015*	Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands
RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus

*Equipment operating in the ancillary terrestrial component (ATC) of the frequency bands 2000–2020 MHz and 2180–2200 MHz is certified under RSS-170. Limitations specified under Industry Canada P9 Licensing Agreement applied as per <u>https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf11536.html</u>

1.3 Test method

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
KDB 662911 D01	Multiple Transmitter Output v02r01
KDB 662911 D02	MIMO with Cross-Polarized Antennas v01

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant. Testing was completed against customer test plan. Results obtained indicate that the product under test complies in full with the requirements tested.

This CIIPC test report (421512-1TRFWL-R1) applies to the AIR 3246 B66 with part number KRD 901 190/1. See "Summary of test results" for full details. EUT Configuration(s) SRO/MRO: SRO SC/MC: NR: 5, 10, 15,20 MHz (1–3 Carriers) MRO: NR+LTE 5, 10, 15, 20 MHz Report Reference(s): 356913-1TRFWL-R1; 356914-1TRFWL-R1 Notes: CIIPC adding NR 5, 10, 15, 20 MHz MRO: L+NR (LTE Configurations include NB-IoT (IB, GB))

1.5 Test report revision history

 Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	April 26, 2021	Original report issued

Section 2. Summary of test results

2.1 Testing location			
Test location (s)	Ottawa		
2.2 Testing period			
Test start date	February 17, 2021	Test end date	January 27, 2021
2.3 Sample information			
Receipt date	February 17, 2021	Nemko sample ID number	1

2.5

2.4 FCC test results

Table 2.4-1: FCC results summary

FCC Part	Test description	Verdict
§27.50(b)	Maximum output power at RF antenna connector	Pass
§27.53	Spurious emissions at RF antenna connector	Pass
§27.53	Radiated spurious emissions	Pass
§2.1049	Occupied bandwidth	Pass
Notes:	Only tests requested by the client have been performed	

ISED test results

Table 2.5-1: ISED results summary

ISED Part	Test description			Verdict
RSS-139, 4.1 / RSS-170, 5.3	Transmitter output power and Eq	uivaler	t Isotropic Radiated Power (e.i.r.p.)	Pass
RSS-139, 4.2 / RSS-170, 5.4	Spurious emissions at RF antenna	conne	ctor	Pass
RSS-139, 4.2 / RSS-170, 5.4	Radiated spurious emissions			Pass
RSS-Gen, 6.7	Occupied bandwidth			Pass
Notes: Only tests requested by the client have been performed Limitations specified under Industry Canada P9 Licensing Agreement applied as per https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf11536.html ATC Base Station Equipment operating in bands 2000–2020 MHz and 2180–2200 MHz				
 The unwanted emissions of ATC base station equipment transmitting in the bands 2000–2020 MHz and 2180–2200 MHz shall comply with the following: The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by 43 + 10 log p (watts), dB. For equipment operating in the band 2180–2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of -100.6 dBW/4 kHz (-70.6 dBm/4 kHz).* 				
* This requirement is for implementation and is enforced at the time of licensing. Therefore, results are not included in this report.				

Section 3. Equipment under test (EUT) details

3.1 EUT information

Product name	AIR 3246		
Model	AIR 3246 B66		
Part number	KRD 901 190/1		
Revision	R2F		
Serial number	E23B593893		
Antenna ports	32 TX/RX Ports		
RF BW / IBW	IBW DL: 90 MHz		
	IBW UL: 70 MHz		
FDD	400 MHz		
Frequency	LTE / NR TX (DL): 2110–2200 MHz		
	LTE / NR RX (UL): 1710–1780 MHz		
Nominal O/P per antenna port	Single Carrier: 1 × 5 W (37 dBm)		
Up to 20 MHz Carrier BW	2 Carrier: 2 × 2.5 W (37 dBm total)		
	3 Carrier: 3 × 1.67 W (37 dBm total)		
Accuracy (nominal)	±0.1 ppm		
Nominal voltage	-48 V _{DC} @ 40 A		
RAT	LTE/NR: SC, MC, SRO/MRO (LTE+NB-IoT (GB, IB))		
Modulation	LTE/NR: QPSK, 16 QAM, 64 QAM, 256 QAM		
Channel bandwidth	LTE/NR: 5, 10, 15, 20 MHz		
Channel bandwidth LTE + NB IoT	LTE + NB IoT: GB, IB (200 kHz) LTE BW: 5, 10, 15, 20 MHz (IB, GB)		
Maximum combined OBW per port	90MHz		
CPRI	10 Gbps		
Channel raster	LTE/NR: 100 kHz		
Regulatory requirements	Radio: FCC Part 2, 27, RSS-Gen, RSS-139, RSS-170		
	Limitations specified under Industry Canada P9 Licensing Agreement applied as per https://www.ic.gc.ca/eic/site/smt-		
	gst.nst/eng/st11536.html		
	Satety: IEC/EN 62368-1, UL/CSA 62368-1		
Emission Designator	IEC/EN 60950-22, UL 50E /CAN/CSA, IEC/EN 60529		
Emission Designator	LIE: 5M00W7D, 10M0W7D, 15M0W7D, 20M0W7D		
Supported Configurations	NK: SMUUW /D, 1UMUW /D, 15MUW /D, 20MUW /D Single Antenne, TV Diversity, MIMO, Carrier Aggregation, ESC (Existent Spectral Charics)		
Operating temperature	Single Antenna, TX Diversity, Milvio, Carrier Aggregation, ESS (Ericsson Spectral Sharing)		
Supported carrier / port	32 × 5 W		
supported carrier / port	LIE/INK, (1-3)		
	(LTE + IND-IUT; GB(1-2), IB(1-0))		

3.2 Product description and theory of operation

EUT description of the methods used to exercise the EUT and all relevant ports:

Description/theory of operation	The AIR 3246 B66 (KRD 901 190/1) is a multi-standard remote radio forming part of the Ericsson RBS (Radio Base Station) equipment. The AIR 3246 provides radio access for mobile and fixed devices and is designed for the outdoor environment. The AIR 3246 operates over 32 TX/RX ports connected directly into an integrated antenna. Radio unit installation is designed for pole, wall or mast mount options. A fiber optic interface provides the RRU/RBS control and digital interface between the Radio and the RBS. The AIR 3246 product is convection cooled and shall be mounted vertically. Output RF Power is rated at 32 × 5 W. Altitude during constitution and the RBS.								
	Altitude during operation: Below 4000 m								
	Test Configuration:								
	KRC 161 714/1: The radio functi configuration replaces the anter RF Ports for compliance measur assembly.	onality ar ana with t ements. A	nd performance are evaluated the Ericsson RDNB (Radio Distr All RF paths / components are	without the antenna attached. This alternate ibution Network Board) to allow access to the identical. The RDNB is an ODM supplied					
Ant Description	Port	Descri	otion						
	ANT 1-32	RF Outp	out ports from 1 to 32						
	Alarm	Alarm							
	Data 1	Optical	Interface Data 1						
	Data 2	Optical	Interface Data 2						
	Data 3	Optical	Interface Data 3						
	Data 4	Optical	Interface Data 4						
	DC Input	-48 V _{DC}							
	ММІ	Display	- Radio Status						
	GND	Ground							
Physical	Dimensions	1490mi	m x 400mm x 240mm (H x W x D)						
	Weight	100kg							
	Operating Temperature	-40 to -	+55 °C						
	Mounting	Pole, W	all Mount						
	Cooling	Convec	tion (forced air)						
Software details	CXP9017316%25-R72XE								
Radio Hardware Configuration	Product: KRD 901 190/1	R2F	KRC 161 714/1	Description					
	KRY 901 410/66	R2E	KRY 901 410/66	Radio Unit (2)					
	ROA 128 6510/66	R1L	ROA 128 6510/66	PCB/Radio Board B66					
	NTB 101 0110/66	R2A	NTB 101 0110/66	Parts					
	KRF 901 320	R1A	KRF 901 320	Filter Unit					
	KRY 901 420/66	R2F	KRY 901 420/66	FIB/PSU					
	ROA 128 6520/66	R1M	ROA 128 6520/66	PCB FIB/PSU					
	NTB 101 0120/66	R2A	NTB 101 0120/66	Parts					
	KRE 105 290	R1D	KRE 105 288/2	Antenna / RDNB Fixture					
	NTB 101 0100/66	R2A	NTB 101 0100/66	Parts					
Product Identification Label	(1P)KRC 161 714/1 (3E238593893) (2200629) (20069	AIR 324 Made in II II AN II II AN KRD ()	S B66 Estonia IC: : ASS 3 ⊕+ 4 ⊕+	CID: TA8AKRD901190-1 287AB-AS9011901 2011901					

3.3 EUT test details

EUT setup/configuration rationale:					
Down link	RAT	Modulation	Performance Requirement		Test Model / Configuration
	LTE/NR	QPSK	N/A		E-TM1.1
	LTE/NR	16QAM	N/A	E-TM3.2	
	LTE/NR	64QAM	N/A	E-TM3.1	
	LTE/NR	256QAM	N/A		E-TM3.1a
Unlink	-				
opinik	RAT	Modulation	Performance Requirement	Input Signal	Test Model / Configuration
	LTE/NR	QPSK	N/A		E-UTRA-UL

Carrier Configurations:

LTE Single carrier

Bandwidth, MHz	LTE Transmit / DL, MHz									
	В	EARFCN	М	EARFCN	т	EARFCN				
5	2112.5	66461	2155.0	66886	2197.5	67311				
10	2115.0	66486	2155.0	66886	2195.0	67286				
15	2117.5	66511	2155.0	66886	2192.5	67261				
20	2120.0	66536	2155.0	66886	2190.0	67236				

Bandwidth, MHz	LTE Receive / UL, MHz									
	В	EARFCN	М	EARFCN	т	EARFCN				
5	1712.5	131997	1745.0	132322	1777.5	132647				
10	1715.0	132022	1745.0	132322	1775.0	132622				
15	1717.5	132047	1745.0	132322	1772.5	132597				
20	1720.0	132072	1745.0	132322	1770.0	132572				

NR Single Carrier

Bandwidth, MHz	NR Transmit / DL, MHz									
	В	NR-ARFCN	М	NR-ARFCN	т	NR-ARFCN				
5	2112.5	422500	2155.0	431000	2197.5	439500				
10	2115.0	423000	2155.0	431000	2195.0	439000				
15	2117.5	423500	2155.0	431000	2192.5	438500				
20	2120.0	424000	2155.0	431000	2190.0	438000				

Bandwidth, MHz	NR Receive / UL, MHz									
	В	NR-ARFCN	М	NR-ARFCN	т	NR-ARFCN				
5	1712.5	342500	1755.0	351000	1797.5	359500				
10	1715.0	343000	1755.0	351000	1795.0	359000				
15	1717.5	343500	1755.0	351000	1792.5	358500				
20	1720.0	344000	1755.0	351000	1790.0	358000				

LTE Multi-Carrier for Band Edge Emissions

Bandwidth,		LTE Transmit / DL, MHz										
MHz	B1	EARFCN	B2	EARFCN		T1	EARFCN	T2	EARFCN			
5	2112.5	66461	2117.5	66511		2192.5	67261	2197.5	67311			
10	2115.0	66486	2125.0	66586		2185.0	67186	2195.0	67286			
15	2117.5	66511	2132.5	66661		2177.5	67111	2192.5	67261			
20	2120.0	66536	2140.0	66736		2170.0	67036	2190.0	67236			

Bandwidth,		LTE Receive / UL, MHz										
MHz	B1	EARFCN	B2	EARFCN		T1	EARFCN	T2	EARFCN			
5	1712.5	131997	1717.5	132047		1772.5	132597	1777.5	132647			
10	1715.0	132022	1725.0	132122		1765.0	132522	1775.0	132622			
15	1717.5	132047	1732.5	132197		1757.5	132447	1772.5	132597			
20	1720.0	132072	1740.0	132272		1750.0	132372	1770.0	132572			

NR Multi-Carrier for Band Edge Emissions:

Bandwidth,		NR Transmit / DL, MHz										
MHz	B1	NR-ARFCN	B2	NR-ARFCN		T2	NR-ARFCN	T1	NR-ARFCN			
5	2112.5	422500	2117.5	423500		2192.5	438500	2197.5	439500			
10	2115.0	423000	2125.0	425000		2185.0	437000	2195.0	439000			
15	2117.5	423500	2132.5	426500		2177.5	435500	2192.5	438500			
20	2120.0	424000	2140.0	428000		2170.0	434000	2190.0	438000			

Bandwidth,	NR Receive / UL, MHz										
MHz	B1	NR-ARFCN	B2	NR-ARFCN		T2	NR-ARFCN	T1	NR-ARFCN		
5	1712.5	342500	1717.5	343500		1797.5	359500	1792.5	358500		
10	1715.0	343000	1725.0	345000		1795.0	359000	1785.0	357000		
15	1717.5	343500	1732.5	346500		1792.5	358500	1777.5	355500		
20	1720.0	344000	1740.0	348000		1790.0	358000	1770.0	354000		

LTE Multiple-Carriers (3C) for spurious emissions

Bandwidth, MHz	LTE Transmit / DL, MHz										
	C1	EARFCN	C2	EARFCN	С3	EARFCN					
5	2112.5	66461	2155.0	66886	2197.5	67311					
10	2115.0	66486	2155.0	66886	2195.0	67286					
15	2117.5	66511	2155.0	66886	2192.5	67261					
20	2120.0	66536	2155.0	66886	2190.0	67236					

Bandwidth, MHz	LTE Receive / UL, MHz									
	C1	EARFCN	C2	EARFCN	C3	EARFCN				
5	1712.5	131997	1745.0	132322	1777.5	132647				
10	1715.0	132022	1745.0	132322	1775.0	132622				
15	1717.5	132047	1745.0	132322	1772.5	132597				
20	1720.0	132072	1745.0	132322	1770.0	132572				

NR Multiple-Carriers (3C) for spurious emissions

Bandwidth MHz	NR Transmit / DL, MHz								
Bandwidth, Whiz	C1	EARFCN	C2 EARFCN C3	EARFCN					
5	2112.5	422500	2117.5	423500	2197.5	439500			
10	2115.0	423000	2125.0	425000	2195.0	439000			
15	2117.5	423500	2132.5	426500	2192.5	438500			
20	2120.0	424000	2140.0	428000	2190.0	438000			

Bandwidth, MHz	NR Receive / UL, MHz								
	C1	EARFCN	C2	EARFCN	C3	EARFCN			
5	1712.5	342500	1717.5	343500	1797.5	359500			
10	1715.0	343000	1725.0	345000	1795.0	359000			
15	1717.5	343500	1732.5	346500	1792.5	358500			
20	1720.0	344000	1740.0	348000	1790.0	358000			

3.4 EUT setup diagram

3.5 Setup photographs

Figure 3.5-1: Test / Measurement Equipment - Set up for Radio Compliance Testing

Figure 3.5-2: EUT Set-up for Radiated Compliance Testing

Figure 3.5-3: EUT Set-up for Radiated Compliance Testing

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

The testing was performed in accordance with the test plan, which suggested to measure output power on all 32 antenna ports, to find the port with the highest output power and perform the rest of the testing on that one representing antenna port. Reference power testing was performed with 5 MHz NR QPSK signal. Port number 8 showed the worst-case power measurement therefore it was selected as a representative one.

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78

Section 7. Test equipment

Test equipment list 7.1

Table 7.1-1: Equipment list								
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.			
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	April 24, 2021			
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR			
Controller	Sunol	SC104V	FA002060	—	NCR			
Antenna mast	Sunol	TLT2	FA002061	_	NCR			
DC Power source	Ametek	SGA80X125C-0AAA	FA002737	—	VOU			
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	November 6, 2021			
Biconical antenna (30–300 MHz)	Sunol	BC2	FA002078	1 year	April 30, 2021			
Log periodic antenna (200–5000 MHz)	Sunol	LP5	FA002077	1 year	April 30, 2021			
Horn antenna (18–40 GHz)	EMCO	3116	FA001847	1 year	May 7, 2021			
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	_	VOU			
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	April 30, 2021			
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002873	1 year	October 13, 2021			
50 Ω coax cable	C.C.A.	None	FA002556	1 year	April 9, 2021			
High pass filter (3-18 GHz)	Thilithic Inc.	6HC3000/18000-1.3-KK	FA002231	_	VOU			
Spectrum analyzer (Ericsson)	Keysight	PXA N9030B	MY57144347	1 year	04-April-2021			
Testing Equipment*	Ericsson	CT11	T01G495060	_	NCR			
Notes: NCR - no calibration required, VC	DU - verify on use.							

NCR - no calibration required, VOU - verify on use.

* Testing equipment (CT11) is the test equipment that drives the radios traffic.

Report reference ID: 421512-1TRFWL-R1

Section 8. Testing data

8.1 Maximum output power at RF antenna connector

8.1.1 Definitions and limits

FCC §27.50(d) Operation within the bands: 2110-2155 MHz and 2155-2180 MHz.

(1) The power of each fixed or base station transmitting in the 1995–2000 MHz, 2110–2155 MHz, 2155–2180 MHz or 2180–2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 3280 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(2) The power of each fixed or base station transmitting in the 1995–2000 MHz, the 2110–2155 MHz 2155–2180 MHz band, or 2180–2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(3) A licensee operating a base or fixed station in the 2110–2155 MHz band utilizing a power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must coordinate such operations in advance with all Government and non-Government satellite entities in the 2025–2110 MHz band. A licensee operating a base or fixed station in the 2110–2180 MHz band utilizing power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must be coordinated in advance with the following licensees authorized to operate within 120 kilometers (75 miles) of the base or fixed station operating in this band: All Broadband Radio Service (BRS) licensees authorized under this part in the 2155–2160 MHz band and all advanced wireless services (AWS) licensees authorized to operate on adjacent frequency blocks in the 2110–2180 MHz band.

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(6) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

8.1.1 Definitions and limits, continued

RSS-139, Section 4.1

The transmitter power shall be measured in terms of a root-mean-square (RMS) average value.

RSS-139, Section 6.5

Consult SRSP-513 for e.i.r.p. limits on fixed and base stations operating in the band 2110–2180 MHz.

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

RSS-170, Section 5.3.1

Consult SRSP-519 for e.i.r.p. limits on ATC base stations operating in the bands 2000–2020 MHz and 2180–2200 MHz.

SRSP-513, Section 5.1

5.1.1 Fixed and base stations

5.1.1.1 For fixed and base stations operating within the frequency range 2110–2180 MHz with a channel bandwidth equal to or less than 1 MHz, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.2 For fixed and base stations operating within the frequency range 2110–2180 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 1640 watts/MHz e.i.r.p. (i.e. no more than 1640 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.3 Fixed and base stations located in geographic areas at a distance greater than 26 km from large or medium population centres, and transmitting within the frequency range 2110–2180 MHz, may increase their e.i.r.p. up to a maximum of 3280 watts/MHz (i.e. no more than 3280 watts e.i.r.p. in any 1 MHz band segment), with an antenna HAAT up to 300 metres.

Within 26 km of any large or medium population centre, fixed and base stations may operate at increased e.i.r.p. if more than 50% of the population within a particular sector's coverage is located outside these large and medium population centres.

Fixed and base stations with increased e.i.r.p. must not be used to provide coverage to large and medium population centres. However, some incidental coverage of these large and medium population centres by stations with increased e.i.r.p. is permitted.

This provision also applies for fixed and base stations with a channel bandwidth equal to or less than 1 MHz (i.e. the e.i.r.p. may be increased up to a maximum of 3280 watts).

5.1.1.4 Fixed and base station antenna heights above average terrain may exceed 300 metres with a reduction in e.i.r.p. The maximum permissible e.i.r.p. for installations with antenna HAAT in excess of 300 metres is given in the following table:

HAAT (m)	Maximum EIRP, W/MHz
HAAT ≤ 300	1640 (or 3280 ¹)
300 < HAAT ≤ 500	1070
500 < HAAT ≤ 1000	490
1000 < HAAT ≤ 1500	270
1500 < HAAT ≤ 2000	160

Table 8.1-1: Reduction to Maximum Allowable E.I.R.P. for HAAT > 300 m

Note: ¹for fixed and base stations with a channel bandwidth equal to or less than 1 MHz

8.1.1 Definitions and limits, continued

SRSP-519, Section 5.1

The equivalent isotropically radiated power (e.i.r.p.) of base stations shall not exceed 1640 W when transmitting with an emission bandwidth of 1 MHz or less, and 1640 W/MHz when transmitting with an emission bandwidth greater than 1 MHz.

Base stations located outside of large or medium population may increase their e.i.r.p. to a maximum of 3280 W when transmitting with an emission bandwidth of 1 MHz or less, and to 3280 W/MHz when transmitting with an emission bandwidth greater than 1 MHz.

A licensee operating a base station utilizing an e.i.r.p greater than 1640 W/MHz must coordinate in advance with all AWS-4 licensees authorized to operate on adjacent frequency blocks within the same band.

Base station antenna heights above average terrain may exceed 300 m with a corresponding reduction in e.i.r.p. in accordance with Table above

8.1.2 Test summary

Test date	February 17, 2021
Test engineer	Andrey Adelberg

8.1.3 Observations, settings and special notes

- Output power was measured with RMS power meter per ANSI C63.26 Paragraph 5.2.4.2 method. PSD was measured using method described in paragraph 5.2.4.4.
- Antenna sub-array gain is 10.5 dBi with uncorrelated signals.

Spectrum analyzer settings for PSD:

Detector mode	RMS
Resolution bandwidth	1 MHz (integrated)
Video bandwidth	>RBW
Measurement mode	Power over emission bandwidth
Trace mode	Averaging
Measurement time	Auto

8.1.4 Test data

Table 8.1-2: Output power density measurement results of a single-carrier operation for 5 MHz channel

Remarks	Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 5 MHz, Low channel	2112.5	37.10	31.87	10.50	42.37	62.15	19.78
16QAM, 5 MHz, Low channel	2112.5	37.20	32.06	10.50	42.56	62.15	19.59
64QAM, 5 MHz, Low channel	2112.5	37.10	31.84	10.50	42.34	62.15	19.81
256QAM, 5 MHz, Low channel	2112.5	37.13	31.79	10.50	42.29	62.15	19.86
QPSK, 5 MHz, Mid channel	2155.0	36.90	31.94	10.50	42.44	62.15	19.71
QPSK, 5 MHz, High channel	2197.5	36.85	32.27	10.50	42.77	62.15	19.38

Table 8.1-3: Total EIRP calculation for a single-carrier operation and a single Macro Narrow traffic beam operation for 5 MHz channel

Maximum PSD, dBm/MHz	Maximum PSD sum ¹ , dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ² , dB	EIRP per polarization ³ , dBm/MHz	EIRP per polarization, W/MHz
32.27	44.31	10.50	6.02	60.83	1210.933
Maximum PSI	D sum, dBm/MHz	Directional beam gain, dBi	Total EIRP, dBm/MHz	Total EIRP	, W/MHz
4	4.31	22.00	66.31	4276.	810

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Remarks	Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 10 MHz, Low channel	2115.0	37.20	28.53	10.50	39.03	62.15	23.12
16QAM, 10 MHz, Low channel	2115.0	37.21	29.28	10.50	39.78	62.15	22.37
64QAM, 10 MHz, Low channel	2115.0	37.15	28.50	10.50	39.00	62.15	23.15
256QAM, 10 MHz, Low channel	2115.0	37.16	28.72	10.50	39.22	62.15	22.93
QPSK, 10 MHz, Mid channel	2155.0	36.95	28.95	10.50	39.45	62.15	22.70
QPSK, 10 MHz, High channel	2195.0	36.94	28.97	10.50	39.47	62.15	22.68

Table 8.1-5: Total EIRP calculation for a single-carrier operation and a single Macro Narrow traffic beam operation for 10 MHz channel

Maximum PSD, dBm/MHz	Maximum PSD sum ¹ , dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ² , dB	EIRP per polarization ³ , dBm/MHz	EIRP per polarization, W/MHz
29.28	41.32	10.50	6.02	57.84	608.303
Maximum PSI	D sum, dBm/MHz	Directional beam gain, dBi	Total EIRP, dBm/MHz	Total EIRP, W/MHz	
4	1.32	22.00	63.32	2148.424	

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = 10 × Log₁₀(4)

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-6: Output	power densitv	measurement results	of a sinale-carrie	operation	for 15 MHz channel
rable of a charper	sower achisty	incusur cincinci i counto	of a single carrier	operation	

Remarks	Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 15 MHz, Low channel	2117.5	37.19	26.76	10.50	37.26	62.15	24.89
16QAM, 15 MHz, Low channel	2117.5	37.20	28.10	10.50	38.60	62.15	23.55
64QAM, 15 MHz, Low channel	2117.5	37.14	26.81	10.50	37.31	62.15	24.84
256QAM, 15 MHz, Low channel	2117.5	37.16	26.82	10.50	37.32	62.15	24.83
16QAM, 15 MHz, Mid channel	2155.0	36.95	27.78	10.50	38.28	62.15	23.87
16QAM, 15 MHz, High channel	2192.5	36.93	27.70	10.50	38.20	62.15	23.95

Table 8.1-7: Total EIRP calculation for a single-carrier operation and a single Macro Narrow traffic beam operation for 15 MHz channel

Maximum PSD, dBm/MHz	Maximum PSD sum ¹ , dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ² , dB	EIRP per polarization ³ , dBm/MHz	EIRP per polarization, W/MHz			
28.10	40.14	10.50	6.02	56.66	463.575			
Maximum PS	D sum, dBm/MHz	Directional beam gain, dBi	Il beam gain, dBi Total EIRP, dBm/MHz Total EIRP, W/MHz		, W/MHz			
4	0.14	22.00	62.14	1637.	269			
Notes: ¹ Linear sum	Notes: ¹ Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:							

Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Remarks	Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 20 MHz, Low channel	2120.0	37.25	25.63	10.50	36.13	62.15	26.02
16QAM, 20 MHz, Low channel	2120.0	37.23	27.06	10.50	37.56	62.15	24.59
64QAM, 20 MHz, Low channel	2120.0	37.24	25.73	10.50	36.23	62.15	25.92
256QAM, 20 MHz, Low channel	2120.0	37.26	25.62	10.50	36.12	62.15	26.03
QPSK, 20 MHz, Mid channel	2155.0	37.01	27.04	10.50	37.54	62.15	24.61
QPSK, 20 MHz, High channel	2190.0	36.98	27.00	10.50	37.50	62.15	24.65

Table 8.1-9: Total EIRP calculation for a single-carrier operation and a single Macro Narrow traffic beam operation for 20 MHz channel

Maximum PSD, dBm/MHz	Maximum PSD sum ¹ , dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ² , dB	EIRP per polarization ³ , dBm/MHz	EIRP per polarization, W/MHz			
27.06	39.10	10.50	6.02	55.62	364.855			
Maximum PS	D sum, dBm/MHz	Directional beam gain, dBi	Total EIRP, dBm/MHz	Total EIRP, W/MHz				
3	9.10	22.00	61.10	1288	.606			
Notes: ¹ Linear sum	lotes: ¹ Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:							

tes: "Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-10: Output power density measurement results of a two-carrier operation for 5 MHz channel

Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2112.5 + 2117.5	37.21	29.06	10.50	39.56	62.15	22.59
2152.5 + 2157.5	36.90	28.84	10.50	39.34	62.15	22.81
2192.5 + 2197.5	36.95	28.92	10.50	39.42	62.15	22.73

Table 8.1-11: Total EIRP calculation for a two-carrier operation for 5 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
29.06	41.10	10.50	6.02	57.62	578.256

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

Maximum PSD sum = Maximum RF power density + $10 \times Log_{10}(16)$

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Table 8.1-12: Output power density measurement results of a two-carrier operation for 10 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2115 + 2125	37.18	26.18	10.50	36.68	62.15	25.47
2150 + 2160	36.90	25.80	10.50	36.30	62.15	25.85
2185 + 2195	36.90	25.80	10.50	36.30	62.15	25.85

Table 8.1-13: Total EIRP calculation for a two-carrier operation for 10 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
26.18	38.22	10.50	6.02	54.74	297.934

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = 10 × Log₁₀(4)

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-14: Output power density measurement results of a two-carrier operation for 15 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	aBm	dBm/IVIHz	Antenna gain, dBi	EIRP, dBm/IVIHZ	EIRP limit, dBm/iviHz	iviargin, dB
2117.5 + 2132.5	37.13	25.00	10.50	35.50	62.15	26.65
2147.5 + 2162.5	36.90	24.78	10.50	35.28	62.15	26.87
2177.5 + 2192.5	36.91	24.88	10.50	35.38	62.15	26.77

Table 8.1-15: Total EIRP calculation for a two-carrier operation for 15 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
25.00	37.04	10.50	6.02	53.56	227.049

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

 $Maximum \ PSD \ sum = Maximum \ RF \ power \ density + 10 \times Log_{10}(16)$ ^Antenna Array Column Gain = 10 $\times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Table 8.1-16: Output power density measurement results of a two-carrier operation for 20 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2120 + 2140	37.11	24.04	10.50	34.54	62.15	27.61
2145 + 2165	36.88	23.63	10.50	34.13	62.15	28.02
2170 + 2190	36.96	23.68	10.50	34.18	62.15	27.97

Table 8.1-17: Total EIRP calculation for a two-carrier operation for 20 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
24.04	36.08	10.50	6.02	52.60	182.020

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = 10 × Log₁₀(4)

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-18: Output power density measurement results of a three-carrier operation for 5 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2112.5 + 2117.5 + 2122.5	36.92	27.12	10.50	37.62	62.15	24.53
2150.0 + 2155.0 + 2160.0	36.70	27.10	10.50	37.60	62.15	24.55
2187.5 + 2192.5 + 2197.5	36.66	26.77	10.50	37.27	62.15	24.88

Table 8.1-19: Total EIRP calculation for a three-carrier operation for 5 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column EIRP per polarizatio		EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB dBm/MHz		W/MHz
27.12	39.16	10.50	6.02	55.68	369.930

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

 $Maximum \ PSD \ sum = Maximum \ RF \ power \ density + 10 \times Log_{10}(16)$ ^Antenna Array Column Gain = 10 $\times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Table 8.1-20: Output power density measurement results of a three-carrier operation for 10 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2115 + 2125 + 2135	37.12	24.24	10.50	34.74	62.15	27.41
2145 + 2155 + 2165	36.92	24.22	10.50	34.72	62.15	27.43
2175 + 2185 + 2195	36.95	24.08	10.50	34.58	62.15	27.57

Table 8.1-21: Total EIRP calculation for a three-carrier operation for 10 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
24.24	36.28	10.50	6.02	52.80	190.599

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = 10 × Log₁₀(4)

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-22: Output power density measurement results of a three-carrier operation for 15 MHz channel

-	Total RF power,	RF power density,	•		•	
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2117.5 + 2132.5 + 2147.5	37.02	23.30	10.50	33.80	62.15	28.35
2140.0 + 2155.0 + 2170.0	36.82	22.79	10.50	33.29	62.15	28.86
2162.5 + 2177.5 + 2192.5	36.86	23.12	10.50	33.62	62.15	28.53

Table 8.1-23: Total EIRP calculation for a three-carrier operation for 15 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
23.30	35.34	10.50	6.02	51.86	153.504

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

Maximum PSD sum = Maximum RF power density + $10 \times Log_{10}(16)$

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Table 8.1-24: Output power density measurement results of a three-carrier operation for 20 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2120 + 2140 + 2160	36.91	21.99	10.50	32.49	62.15	29.66
2135 + 2155 + 2175	36.76	21.64	10.50	32.14	62.15	30.01
2150 + 2170 + 2190	36.85	21.70	10.50	32.20	62.15	29.95

Table 8.1-25: Total EIRP calculation for a three-carrier operation for 20 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
21.99	34.03	10.50	6.02	50.55	113.532

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density: Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = 10 × Log₁₀(4)

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-26: Output power density measurement results of LTE + NR* operation for 5 MHz channel

Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2112.5 + 2117.5	37.25	29.00	10.50	39.50	62.15	22.65
2152.5 + 2157.5	37.00	28.70	10.50	39.20	62.15	22.95
2192.5 + 2197.5	36.96	28.65	10.50	39.15	62.15	23.00

Note: *NR 5 MHz + LTE 5 MHz

Table 8.1-27: Total EIRP calculation for LTE + NR operation for 5 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
29.00	41.04	10.50	6.02	57.56	570.322

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Table 8.1-28: Output power density measurement results of LTE + NR* operation for 10 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2115 + 2125	37.17	27.15	10.50	37.65	62.15	24.50
2150 + 2160	36.95	27.24	10.50	37.74	62.15	24.41
2185 + 2195	36.95	26.54	10.50	37.04	62.15	25.11

Note: *NR 10 MHz + LTE 10 MHz with IoT

Table 8.1-29: Total EIRP calculation for LTE + NR operation for 10 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
27.24	39.28	10.50	6.02	55.80	380.294

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

Maximum PSD sum = Maximum RF power density + $10 \times Log_{10}(16)$

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-30: Output power density measurement results of LTE + NR* operation for 15 MHz channel

Frequency, MHz	Total RF power, dBm	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2117.5 + 2132.5	37.17	24.97	10.50	35.47	62.15	26.68
2147.5 + 2162.5	36.96	25.00	10.50	35.50	62.15	26.65
2177.5 + 2192.5	37.01	24.72	10.50	35.22	62.15	26.93

Note: *NR 15 MHz + LTE 15 MHz with IoT

 Table 8.1-31: Total EIRP calculation for LTE + NR operation for 15 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
25.00	37.04	10.50	6.02	53.56	227.049

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

EIRP Limits for the specific RBS (Radio Base Station) are deployment dependent. To ensure compliance with legal limits detailed in section 8.1.1, RBS set up and carrier configurations are addressed during site commissioning.

Table 8.1-32: Output power density measurement results of LTE + NR* operation for 20 MHz channel

	Total RF power,	RF power density,				
Frequency, MHz	dBm	dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2120 + 2140	36.98	23.61	10.50	34.11	62.15	28.04
2145 + 2165	36.90	23.81	10.50	34.31	62.15	27.84
2170 + 2190	36.94	23.56	10.50	34.06	62.15	28.09

Note: *NR 20 MHz + LTE 20 MHz with IoT

Table 8.1-33: Total EIRP calculation for LTE + NR operation for 20 MHz channel

Maximum PSD,	Maximum PSD sum ¹ ,	Antenna Gain, dBi	Antenna Array Column	EIRP per polarization ³ ,	EIRP per polarization,
dBm/MHz	dBm/MHz		Gain ² , dB	dBm/MHz	W/MHz
23.81	35.85	10.50	6.02	52.37	172.631

Notes: ¹Linear sum of 16 ports of each polarization was based on the worst-case scenario, when all ports transmit at the maximum found power density:

Maximum PSD sum = Maximum RF power density + 10 × Log₁₀(16)

²Antenna Array Column Gain = $10 \times Log_{10}(4)$

³EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Testing data Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.1-3: PSD of 15 MHz channel bandwidth, single carrier operation, sample plot

Figure 8.1-5: PSD of 5 MHz channel bandwidth, two-carrier operation, sample plot

Figure 8.1-2: PSD of 10 MHz channel bandwidth, single carrier operation, sample plot

Figure 8.1-4: PSD of 20 MHz channel bandwidth, single carrier operation, sample plot

Figure 8.1-6: PSD of 10 MHz channel bandwidth, two-carrier operation, sample plot

Testing data Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.1-9: PSD of 5 MHz channel bandwidth, three-carrier operation, sample plot

Figure 8.1-11: PSD of 15 MHz channel bandwidth, three-carrier operation, sample plot

Figure 8.1-8: PSD of 20 MHz channel bandwidth, two-carrier operation, sample plot

Figure 8.1-10: PSD of 10 MHz channel bandwidth, three-carrier operation, sample plot

Figure 8.1-12: PSD of 20 MHz channel bandwidth, three-carrier operation, sample plot Testing data Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

Figure 8.1-13: PSD of 5 MHz channel bandwidth, LTE + NR operation, sample plot

Figure 8.1-15: PSD of 15 MHz channel bandwidth, LTE + NR operation, sample plot

Figure 8.1-14: PSD of 10 MHz channel bandwidth, LTE + NR operation, sample plot

Figure 8.1-16: PSD of 20 MHz channel bandwidth, LTE + NR operation, sample plot

Table 8.1-34: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single carrier operation for 5 MHz

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
QPSK, 5 MHz, Low channel	2112.5	7.25	13.00	5.75
16QAM, 5 MHz, Low channel	2112.5	7.24	13.00	5.76
64QAM, 5 MHz, Low channel	2112.5	7.30	13.00	5.70
256QAM, 5 MHz, Low channel	2112.5	7.31	13.00	5.69
QPSK, 5 MHz, Mid channel	2155.0	7.24	13.00	5.76
QPSK, 5 MHz, High channel	2197.5	7.23	13.00	5.77

Table 8.1-35: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single carrier operation for 10 MHz

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
QPSK, 10 MHz, Low channel	2115.0	7.28	13.00	5.72
16QAM, 10 MHz, Low channel	2115.0	7.28	13.00	5.72
64QAM, 10 MHz, Low channel	2115.0	7.32	13.00	5.68
256QAM, 10 MHz, Low channel	2115.0	7.29	13.00	5.71
QPSK, 10 MHz, Mid channel	2155.0	7.29	13.00	5.71
QPSK, 10 MHz, High channel	2195.0	7.30	13.00	5.70

Table 8.1-36: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single carrier operation for 15 MHz

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
QPSK, 15 MHz, Low channel	2117.5	7.35	13.00	5.65
16QAM, 15 MHz, Low channel	2117.5	7.33	13.00	5.67
64QAM, 15 MHz, Low channel	2117.5	7.37	13.00	5.63
256QAM, 15 MHz, Low channel	2117.5	7.35	13.00	5.65
16QAM, 15 MHz, Mid channel	2155.0	7.30	13.00	5.70
16QAM, 15 MHz, High channel	2192.5	7.34	13.00	5.66

Table 8.1-37: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single carrier operation for 20 MHz

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB	
QPSK, 20 MHz, Low channel	2120.0	7.34	13.00	5.66	
16QAM, 20 MHz, Low channel	2120.0	7.32	13.00	5.68	
64QAM, 20 MHz, Low channel	2120.0	7.32	13.00	5.68	
256QAM, 20 MHz, Low channel	2120.0	7.35	13.00	5.65	
QPSK, 20 MHz, Mid channel	2155.0	7.27	13.00	5.73	
QPSK, 20 MHz, High channel	2190.0	7.36	13.00	5.64	

Testing data Maximum output power at RF antenna connector FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.1-17: CCDF sample plot, 5 MHz channel

Figure 8.1-18: CCDF sample plot, 10 MHz channel

Figure 8.1-19: CCDF sample plot, 15 MHz channel

8.2 Spurious emissions at RF antenna connector

8.2.1 Definitions and limits

FCC §27.53:

(h) AWS emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 \log_{10} (P) dB.

(3) Measurement procedure.

(i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1-megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

RSS-139, Section 6.6:

i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.

ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 \log_{10} p (watts) dB.

RSS-170, Section 5.4:

The transmitter unwanted emissions shall be measured for all channel bandwidths with the carrier frequency set at both the highest and lowest channels in which the equipment is designed to operate.

The e.i.r.p. density of unwanted and carrier-off state emissions outlined in this section (Section 5.4) shall be averaged over any 2-ms active transmission using an RMS detector with a resolution bandwidth of 1 MHz for broadband emissions and a resolution bandwidth of 1 kHz for discrete emissions, unless stated otherwise.

For ATC equipment operating in the bands 2000–2020 MHz and 2180–2200 MHz, the unwanted emission limits shall be determined using a measurement bandwidth of 1 MHz or greater. However, in the 1 MHz band immediately outside and adjacent to the equipment's operating frequency block, a resolution bandwidth of at least 1% of the occupied bandwidth may be employed.

5.4.1.2 ATC Base Station Equipment operating in bands 2000–2020 MHz and 2180–2200 MHz

The unwanted emissions of ATC base station equipment transmitting in the bands 2000-2020 MHz and 2180-2200 MHz shall comply with the following:

(1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by 43 + 10 log p (watts), dB.

(2) *For equipment operating in the band 2180–2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of -100.6 dBW/4 kHz (-70.6 dBm/4 kHz).

* This requirement is for implementation and is enforced at the time of licensing. Therefore, results are not included in this report.

8.2.2 Test summary

Test date	February 17, 2021
Test engineer	Andrey Adelberg

8.2.3 Observations, settings and special notes

- The spectrum was searched from 30 MHz to the 10th harmonic.
- All measurements were performed using an average (RMS) detector per ANSI C63.26 Paragraph 5.7.2 method.
- Limit line (43 + 10 log₁₀ (P) or -13 dBm) was adjusted for MIMO operation by 15.05 dB*: -13 dBm 15.05 dB = -28.05 dBm
- *MIMO correction factor for 32 antenna ports: 10 × Log₁₀(32) = 15.05 dB
- RBW 1 MHz, VBW was wider than RBW.

8.2.4 Test data

Figure 8.2-2: Conducted spurious emissions of 5 MHz mid channel, single carrier operation

Figure 8.2-3: Conducted spurious emissions of 5 MHz top channel, single carrier operation

Figure 8.2-4: Conducted spurious emissions of 10 MHz low channel, single carrier operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.2-5: Conducted spurious emissions of 10 MHz mid channel, single carrier operation

Figure 8.2-7: Conducted spurious emissions of 15 MHz low channel, single carrier operation

Figure 8.2-9: Conducted spurious emissions of 15 MHz top channel, single carrier operation

Figure 8.2-6: Conducted spurious emissions of 10 MHz top channel, single carrier operation

Figure 8.2-8: Conducted spurious emissions of 15 MHz mid channel, single carrier operation

Figure 8.2-10: Conducted spurious emissions of 20 MHz low channel, single carrier operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Figure 8.2-13: Conducted spurious emissions of 5 MHz two low channels, two-carrier operation

Figure 8.2-15: Conducted spurious emissions of 5 MHz two top channels, two-carrier operation

Figure 8.2-12: Conducted spurious emissions of 20 MHz top channel, single carrier operation

Figure 8.2-14: Conducted spurious emissions of 5 MHz two mid channels, two-carrier operation

Figure 8.2-16: Conducted spurious emissions of 10 MHz two low channels, two-carrier operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.2-19: Conducted spurious emissions of 15 MHz two low channels, two-carrier operation

Figure 8.2-21: Conducted spurious emissions of 15 MHz two top channels, two-carrier operation

Figure 8.2-18: Conducted spurious emissions of 10 MHz two top channels, two-carrier operation

Figure 8.2-20: Conducted spurious emissions of 15 MHz two mid channels, two-carrier operation

Figure 8.2-22: Conducted spurious emissions of 20 MHz two low channels, two-carrier operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Figure 8.2-25: Conducted spurious emissions of 5 MHz three low channels, three-carrier operation

Figure 8.2-27: Conducted spurious emissions of 5 MHz three top channels, three-carrier operation

Figure 8.2-24: Conducted spurious emissions of 20 MHz two top channels, two-carrier operation

Figure 8.2-26: Conducted spurious emissions of 5 MHz three mid channels, three-carrier operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Figure 8.2-31: Conducted spurious emissions of 15 MHz three low channels, three-carrier operation

Figure 8.2-33: Conducted spurious emissions of 15 MHz three top channels, three-carrier operation

Figure 8.2-30: Conducted spurious emissions of 10 MHz three top channels, three-carrier operation

Figure 8.2-32: Conducted spurious emissions of 15 MHz three mid channels, three-carrier operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Figure 8.2-37: Conducted spurious emissions of 5 MHz two low channels, LTE + NR operation

Figure 8.2-39: Conducted spurious emissions of 5 MHz two top channels, LTE + NR operation

Figure 8.2-36: Conducted spurious emissions of 20 MHz three top channels, three-carrier operation

Figure 8.2-38: Conducted spurious emissions of 5 MHz two mid channels, LTE + NR operation

Figure 8.2-40: Conducted spurious emissions of 10 MHz two low channels, LTE + NR operation

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.2-43: Conducted spurious emissions of 15 MHz two low channels, LTE + NR operation

Figure 8.2-45: Conducted spurious emissions of 15 MHz two top channels, LTE + NR operation

Figure 8.2-42: Conducted spurious emissions of 10 MHz two top channels, LTE + NR operation

Figure 8.2-44: Conducted spurious emissions of 15 MHz two mid channels, LTE + NR operation

Report reference ID: 421512-1TRFWL-R1

Testing data Spurious emissions at RF antenna connector FCC Part 27, RSS-139, Issue 3, RSS-170 Issue 3

Test data, continued

Figure 8.2-48: Conducted spurious emissions of 20 MHz two top channels, LTE + NR operation

On the plots below the measured "Total Channel Power" value must be lower than -28.05 dBm

Figure 8.2-49: Conducted band edge emission at 2110 MHz, 5 MHz channel single-carrier operation (RBW = 1% of EBW)

B66 LBE 1PC 10M Channel Power			B66 LBE 1PC 15M Channel Power		B66 LBE 1PC 20M Channel Power		B66 UBE 1PC 5M Channel Power	· +
EYS	IGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) NFE: Off	Atten: 12 dB Preamp: Off µW Path: Standard #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2.200025 Avg Hold: 90/100 Radio Std: None	5000 GHz	
Graph V				Ref Lvi Offset 44.10 dB			Mkr1 2.20000000 GH	
ale/D	Div 10.0	dB		F	Ref Value 44.10	dBm		-44.701 dBi
41								
4.1								
41								
40	Annal	and rendered	Joseph hand	and a she makes here	month 1			
00								
50 J								
5.97								
5.9								
5.9								
5.9						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
nter Res B	2.20002 W 10.00	25 GHz		· · · ·	Video BW 100.	00 kHz*	Swee	Span 10 MH p 119 ms (1001 pts
Metric	s	•						p ()
Total	Chann	el Power	-38.63 dBm / 50.	0 kHz				
Total	Power	Spectral Densit	v	lm/Hz				
rotal	- owei	Opeoardi Densii	-60.02 db	410112				
				~)				
	5	C 1	P Feb 18, 2021					HNH HH 💥

Figure 8.2-51: Conducted band edge emission at 2200 MHz, 5 MHz channel single-carrier operation (RBW = 1% of EBW)

Figure 8.2-50: Conducted band edge emission at 2109 MHz, 5 MHz channel single-carrier operation (RBW = 1 MHz)

Figure 8.2-52: Conducted band edge emission at 2201 MHz, 5 MHz channel single-carrier operation (RBW = 1 MHz)