

Ericsson AB RF TEST REPORT

Report Type: RF report

PRODUCT NAME: Radio 4460 44B2/B25 44B66 C

REPORT NUMBER: 230700496SHA-001

ISSUE DATE: July 17, 2023

DOCUMENT CONTROL NUMBER: TTRFFCC Part 24_V1 © 2018 Intertek

TEST REPORT

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 230700496SHA-001

Applicant:	Ericsson AB
	Isafjordsgatan 10 SE-164 80 Stockholm 16480 Sweden
Manufacturer:	Ericsson AB
	Isafjordsgatan 10 SE-164 80 Stockholm 16480 Sweden
FCC ID:	TA8AKRC161912-3
IC:	287AB-AS1619123

SUMMARY:

The equipment is tested according to the following standard(s) or Specification:

FCC CFR 47 Part 24: PERSONAL COMMUNICATIONS SERVICES

ISED RSS-133 Issue 6: 2 GHz Personal Communications Services

FCC CFR 47 Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ISED RSS-139 Issue 4: Advanced Wireless Services Equipment Operating in the Bands 1710-1780 MHz and 2110-2200 MHz

PREPARED BY:

REVIEWED BY:

Oictor Yong

Project Engineer Victor Yang

Jackson Mang

Reviewer Jackson Huang

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Content

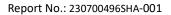
RE	VISIO	IN HISTORY	4
Μ	EASU	REMENT RESULT SUMMARY	5
1	G	ENERAL INFORMATION	6
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	6
	1.2	TECHNICAL SPECIFICATION	
	1.3	DESCRIPTION OF TEST FACILITY	
2	TE	EST SPECIFICATIONS	9
	2.1	RELATED DOCUMENTS	9
	2.2	PRODUCT INFORMATION	
	2.3	CONFIGURATION DESCRIPTION	10
	2.4	TEST SETUP	11
	2.5	Test environment condition:	12
	2.6	INSTRUMENT LIST	13
	2.7	Measurement uncertainty	14
3	М	IAXIMUM OUTPUT POWER AND PEAK TO AVERAGE POWER RATIO AND EIRP	. 15
	3.1	LIMIT	.15
	3.2		
	3.2 3.3		15
4	3.3	Measurement Procedure	15 16
4	3.3	Measurement Procedure Measurement result	15 16 .17
4	3.3 O	Measurement Procedure Measurement result CCUPIED BANDWIDTH	15 16 .17 17
4	3.3 0 4.1 4.2	MEASUREMENT PROCEDURE MEASUREMENT RESULT CCUPIED BANDWIDTH MEASUREMENT PROCEDURE	15 16 .17 17 18
•	3.3 0 4.1 4.2	MEASUREMENT PROCEDURE MEASUREMENT RESULT CCUPIED BANDWIDTH MEASUREMENT PROCEDURE MEASUREMENT RESULT	15 16 . 17 17 18 . 22
•	3.3 0 4.1 4.2 U	MEASUREMENT PROCEDURE MEASUREMENT RESULT CCUPIED BANDWIDTH MEASUREMENT PROCEDURE MEASUREMENT RESULT NWANTED EMISSIONS AT BAND EDGE	15 16 17 17 18 22
•	3.3 0 4.1 4.2 UI 5.1	MEASUREMENT PROCEDURE MEASUREMENT RESULT CCUPIED BANDWIDTH MEASUREMENT PROCEDURE MEASUREMENT RESULT NWANTED EMISSIONS AT BAND EDGE LIMIT	15 16 17 17 18 22 22
•	3.3 4.1 4.2 UI 5.1 5.2 5.3	MEASUREMENT PROCEDURE	15 16 17 17 18 22 22 23
5	3.3 4.1 4.2 UI 5.1 5.2 5.3	MEASUREMENT PROCEDURE	15 16 17 17 18 22 22 23 29
5	3.3 0 4.1 4.2 UI 5.1 5.2 5.3 CC	MEASUREMENT PROCEDURE	15 16 17 18 22 22 23 29

Revision History

Report No.	Version	Description	Issued Date
230700496SHA-001	Rev. 01	Initial issue of report	July 17, 2023

Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Max Output Power and Peak to Average Power Ratio and EIRP	24.232(a) 2.1046	RSS-133 6.4	Pass
Occupied Bandwidth	24.238(b) 2.1049	RSS-GEN 6.6	Pass
Unwanted Emissions at Band Edge	24.238(b) 2.1051	RSS-133 6.5	Pass
Conducted Unwanted Emission	24.238(b) 2.1051	RSS-133 6.5	Pass
Max Output Power and Peak to Average Power Ratio and EIRP	27.50(d)	RSS-139 5.5	Pass
Occupied Bandwidth	27.53(h) 2.1049	RSS-GEN 6.7	Pass
Unwanted Emissions at Band Edge	27.53(h)	RSS-139 5.6	Pass
Conducted Unwanted Emission	27.53(h)	RSS-139 5.6	Pass


Note: The requirement of additional filtering in the band 2180-2200 MHz is for implementation and is enforced at the time of licensing. Therefore results are not included in this report. For operation in the Band 66 (AWS-4) upper 20MHz (DL: 2180 – 2200MHz), operation is permitted by Industry Canada under a specific Industry Canada/Telco Licensing Agreement: P9 - AWS-4 (Ancillary Terrestrial Component) Subordinate Spectrum Licences

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Description:	Remote Radio Unit
Product name:	Radio 4460 44B2/B25 44B66 C
Product number:	KRC 161 912/3
HVIN	A\$1619123
Serial Number(s)	E23E427380
Rating:	-48V DC
Software Version:	ngr2_app-CXP9013268_15-R95BN53.xlf
Hardware Version:	R3F
Sample received date:	June 26, 2023
Date of test:	June 26, 2023 ~ July 6, 2023

1.2 Technical Specification

	B2 TX (DL): 1930 – 1990 MHz
	B2 RX (UL): 1850 – 1910 MHz
	B25 TX (DL): 1930–1995 MHz
	B25 RX (UL): 1850–1915 MHz
	B66 TX (DL): 2110–2200 MHz
Frequency Range:	B66 RX (UL): 1710–1780 MHz
Number of Antenna ports:	4 TX/RX
	B2: LTE, (LTE+NB-IoT (IB, GB)), NR, WCDMA, GSM, CDMA
	B25: LTE, (LTE+NB-IOT (IB, GB)), NR
Supported RAT:	B66: LTE, (LTE+NB-IOT (IB, GB)), NR, WCDMA (B4)
	B2: DL/UL 60 MHz
	B25: DL/UL 65MHz
Max RF bandwidth (IBW):	B66: DL 90MHz UL 70MHz
Supported Number of Carriers:	Maximum 6 carriers per port
	LTE: QPSK, 16 QAM, 64 QAM, 256 QAM
	NR: QPSK, 16 QAM, 64 QAM, 256 QAM
	NB-IoT: QPSK
	WCDMA: QPSK, 16 QAM, 64 QAM
	GSM: GMSK, 8-PSK, AQPSK
Supported modulation:	CDMA: QPSK, 8-PSK, 16 QAM
	LTE: 5, 10, 15, 20 MHz
	NR: 5, 10, 15, 20, 25, 30,35,40 MHz
	WCDMA: 5 MHz
	CDMA: 1.25 MHz
Supported Channel Bandwidth:	GSM: 200 kHz
	LTE+NB-IOT IB: 5, 10, 15, 20 MHz
	LTE+NB-IOT GB: 10, 15, 20 MHz
Channel bandwidth LTE +NB_IoT:	NB-IoT (GB, IB): 200 kHz
Declaration output power per port:	140W (51.46dBm):80W per Band

1.3 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address 1:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Address 2:	F9&F8&F7, Tianfu Software Park E7 Tower, No. 1366 Tianfu Avenue Middle, Hightech Zone, Chengdu City, Sichuan Province, P.R. of China
Telephone:	+86 21 61278200
Telefax:	+86 21 54262353
The test facility is	FCC Accredited Lab Designation Number: CN0175
recognized, certified, or accredited by these	IC Registration Lab CAB identifier.: CN0014
organizations:	A2LA Accreditation Lab Certificate Number: 3309.02

TEST REPORT

2 TEST SPECIFICATIONS

2.1 Related documents

FCC Part 24 (2021) FCC Part 2 (2021) ISED RSS-133 issue 6 January 2018 ANSI C63.26:2015 KDB 971168 D01 v03r01 KDB 662911 D01 v02r01 SRSP-510 FCC Part 27 (2021) ISED RSS-139 issue 4 September 29, 2022 ISED RSS-Gen issue 5 March 2019 Amendment 1

2.2 Product Information

The Equipment Under Test (EUT) is an Ericsson Radio Unit working in the wireless communications services 1930-1995MHz & 2110-2200MHz which provides communication connections to network in GSM/WCDMA/CDMA/LTE/NR/NB_IOT modes and MSR modes. The Radio 4460 44B2/B25 44B66 C operates from a -48V DC.

The EUT includes 4 TX/RX ports and it can be configured to transmit in MIMO mode, and MIMO mode was used for measurements as the worst configuration. The complete testing was performed with the EUT transmitting at maximum RF power unless otherwise stated.

A full technical description can be found in the Manufacturer's documentation.

2.3 Configuration Description

The following settings were used to represent all traffic scenarios. The output power was measured on the bottom, middle and top channel of all applicable antenna ports. By measuring the output power of QPSK, 16QAM, 64QAM, 256QAM on one of the antenna ports, it was determined that 64QAM for B25 & QPSK for B66 for NR was the worst-case modulation schemes and were used for all testing. Complete testing was carried out on the worst-case antenna port which was established as being the highest output power from the 4 measured ports on worst case modulation scheme. This antenna port was Port A-1 for B25 & Port B-2 for B66 for all modes.

The settings below were used for all measurements unless otherwise noted:

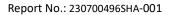
В	2	5	:

Ν	R	

	No. of	NR Carrier	Carri	er Frequency Configuration (MHz)
Configuration	Carriers	Bandwidth (MHz)	Bottom	Middle	Тор
NR-1C-B25	1NR	35	1947.5	1962.5	1977.5

NR

	No. of	NR Carrier	Carrier Fre	equency Configura	tion (MHz)
Configuration	Carriers	Bandwidth (MHz)	Bottom	Middle	Тор
NR-1C-BE-B25	1NR	35	1947.5	-	1977.5

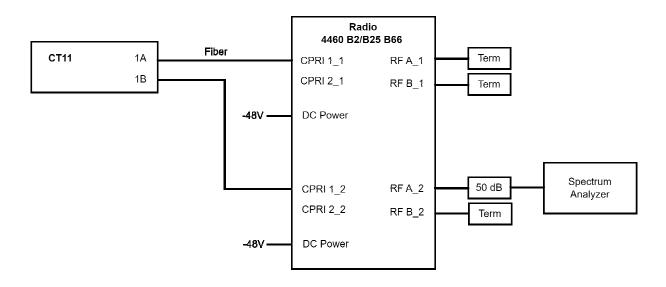

B66:

NR

	No. of	NR Carrier	Carrier Frequency Configuration (MHz)		
Configuration	Carriers	Bandwidth (MHz)	Bottom	Middle	Тор
NR-1C-B66	1NR	35	2127.5	2155	2182.5
NR-2C-B66	2NR	35	-	2127.5+2182.5	-

NR

	No. of	NR Carrier	Carrier Frequency Configuration (MHz)				
Configuration	Carriers	Bandwidth (MHz)	Bottom	Middle	Тор		
NR-1C-BE-B66	1NR	35	2127.5	-	2182.5		
NR-2C-BE-B66	2NR	35	2127.5+2162.5	-	2147.5+2182.5		



TEST REPORT

2.4 Test Setup

Conducted Measurement:

No.	Auxiliary Equipment	Product Number / Model Type	Version
1	PC	DESKTOP-M3JEA0E	-
2	DC Power Supply	N8737A	-
3	CT11	LPC102494/1	-
4	Terminator	WTF200-6G-B-NF	-
5	Terminator	WTF200-6G-B-NF	-
6	Terminator	WTF200-6G-B-NF	-
7	Attenuator	WDTS400-50-6-E2-NF	-

2.5 Test environment condition:

Test items	Temperature	Humidity	
Max Output Power and Peak to Average Power Ratio and EIRP			
Occupied Bandwidth	23°C	54% RH	
Unwanted Emissions at Band Edge			
Conducted Unwanted Emission			

2.6 Instrument list

RF test					
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
\boxtimes	Signal Analyzer	Rohde & Schwarz	FSVA3044	101087	2023-07-09
\square	Signal Analyzer	Keysight	N9030B	MY57140894	2023-07-09
	Signal Generator	Rohde & Schwarz	SMW200A	105850	2023-12-09
	Signal Generator	Rohde & Schwarz	SMU200A	103211	2023-12-09
\square	Climatic Chamber	Chongqing Yinhe	SDJ61F	101087	2023-06-30
	Climatic Chamber	Chongqing Yinhe	SDJ61F	201700268	2023-12-09
	TRUE RMS CLAMP METER	FLUKE	317	40500136WS	2023-07-22
\square	Hygrometer	TESTO	608-H1	1745127471	2023-12-09
\square	Hygrometer	TESTO	608-H1	1745127476	2023-12-09

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty				
Maximum output power	0.73dB				
Occupied Bandwidth	0.88%				
Unwanted Emissions at Band Edge	3.03dB				
Conducted Unwanted Emission	3.03dB				

3 Maximum Output Power and Peak to Average Power Ratio and EIRP

Test result: Pass

3.1 Limit

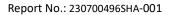
For B25:

Output Power: Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotopically radiated power (EIRP) with an antenna height up to 300 meters HAAT

Peak to Average Ratio: \leq 13 dB

For B66:

Output Power:


(EIRP) 1640 W(62.15dBm) or 3280W(65.16dBm) for emission bandwidth \leq 1MHz 1640 W/MHz(62.15dBm/MHz) or 3280W/MHz(65.16dBm/MHz) for emission bandwidth > 1MHz

Peak to Average Ratio: ≤13 dB

3.2 Measurement Procedure

The EUT was configured to transmit on maximum power and proper modulation. The transmitter power shall be measured in terms of a root-mean-square (RMS) average value. In case of the EUT was configured to MIMO mode, since the EUT transmits on all antennas simultaneously in the same frequency range, using the Measure-and-Sum approach, the output power at all antennas were tested, and the total output power were then summed mathematically in linear power units according to FCC KDB 662911 D01.

A peak to average ratio measurement is performed at the conducted ports of the EUT for single carrier for single RAT mode. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) was used and 0.1% probability value recorded.

TEST REPORT

3.3 Measurement result

NR-1C-B25

	Antenna NR		Output power / Peak-to-Average Ratio (PAR)									
Antonna		NR Carrier	Channel position B		Channel position M			Channel position T				
		Bandwidth (MHz)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	
A-1	64QAM	35	49.18	34.44	7.72	49.28	34.41	7.29	49.28	34.36	7.41	
B-1	64QAM	35	48.93	34.20	7.72	49.10	34.20	7.32	49.15	34.23	7.41	
A-2	64QAM	35	48.16	33.41	7.71	48.32	33.43	7.31	48.34	33.39	7.42	
B-2	64QAM	35	48.08	33.34	7.74	48.24	33.32	7.32	49.24	33.31	7.41	
Tot	Total conducted power		54.63	39.89	-	54.78	39.89	-	55.04	39.87	-	
	EIRP limit		-	62.15	13.00	-	62.15	13.00	-	62.15	13.00	
ſ	Max antenna gain		-	22.26	-	-	22.26	-	-	22.28	-	

NR-1C-B66

			Output power / Peak-to-Average Ratio (PAR)								
Antenna NR	NR Carrier	Chan	nel positi	on B	Channel position M			Channel position T			
Port	ort Modulation (MHz)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	
A-1	QPSK	35	49.13	34.25	7.44	49.20	34.23	7.29	49.09	34.14	7.64
B-1	QPSK	35	49.15	34.24	7.40	49.24	34.24	7.29	49.10	34.18	7.69
A-2	QPSK	35	49.07	34.22	7.44	49.15	34.22	7.29	49.09	34.09	7.65
B-2	QPSK	35	49.13	34.23	7.40	49.22	34.24	7.29	49.10	34.20	7.68
Tot	Total conducted power		55.14	40.26	-	55.22	40.25	-	55.12	40.17	-
	EIRP limit		-	62.15	13.00	-	62.15	13.00	-	62.15	13.00
ſ	Max antenna gain		-	21.89	-	-	21.90	-	-	21.98	-

NR-2C-B66

			Output power / Peak-to-Average Ratio (PAR)								
Antenna NR	NR Carrier	Chan	nel positi	on B	Channel position M			Channel position T			
Port	Bandwidth	Power (dBm)	Power (dBm /MHz)	PAR (dB)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	Power (dBm)	Power (dBm /MHz)	PAR (dB)	
A-1	QPSK	35	-	-	-	48.52	30.66	-	-	-	-
B-1	QPSK	35	-	-	-	48.59	30.70	-	-	-	-
A-2	QPSK	35	-	-	-	48.48	30.63	-	-	-	-
B-2	QPSK	35	-	-	-	48.57	30.67	-	-	-	-
Tot	Total conducted power		-	-	-	54.56	36.69	-	-	-	-
	EIRP limit		-	-	-	-	62.15	-	-	-	-
1	Max antenna g	ain	-	-	-	-	25.46	-	-	-	-

4 Occupied Bandwidth

Test result: Pass

4.1 Measurement Procedure

The EUT was set to transmit at maximum power and testing was carried out on bottom, middle and top channels. Using the Occupied Bandwidth measurement function in the spectrum analyzer, the 26dB bandwidth was measured in accordance with FCC KDB 971168 D01 Clause 4.2.

The measurement method is from KDB 971168 4.2:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation product s including the emission skirts (i.e., two to five times the OBW).

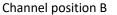
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

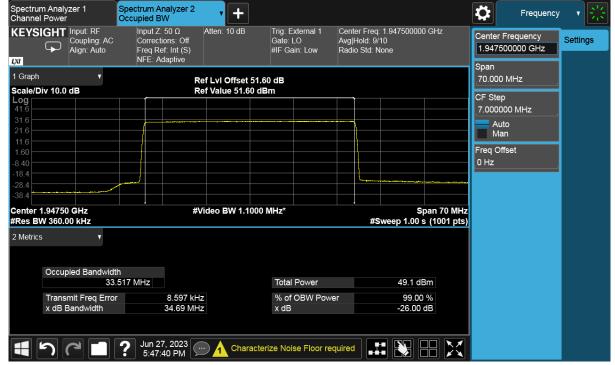
c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

d) Set the detection mode to peak, and the trace mode to max hold.

e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

4.2 Measurement result

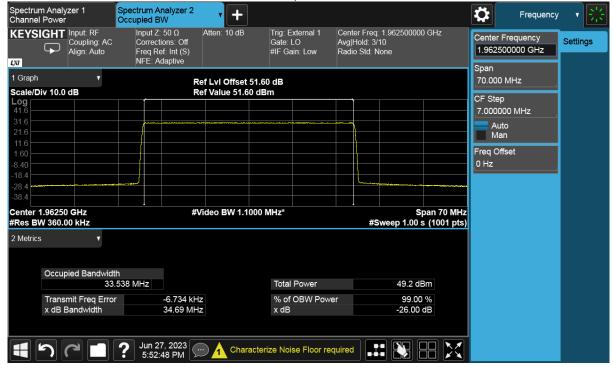

NR-1C-B25


99% Occupied Bandwidth

		Bandwidth	Occupied Bandwidth (MHz)				
Antenna Port	ntenna Port Modulation		Channel	Channel	Channel		
			Position B	Position M	Position T		
A-1	64QAM	35MHz	33.517	33.538	33.534		

-26dBc Occupied Bandwidth

			Осси	upied Bandwidth (N	ЛHz)
Antenna Port	Modulation	Bandwidth	Channel	Channel	Channel
			Position B	Position M	Position T
A-1	64QAM	35MHz	34.69	34.69	34.69



TEST REPORT

Channel position M

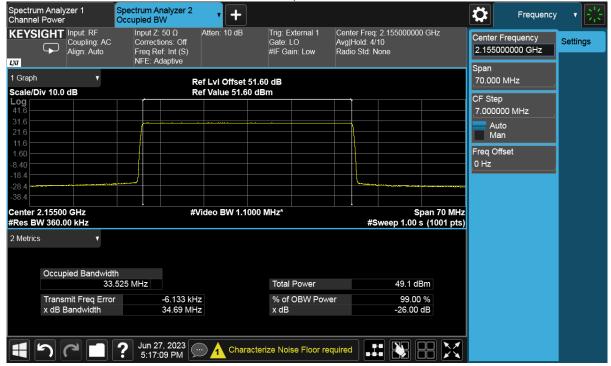
Channel position T Spectrum Analyzer 1 Channel Power Spectrum Analyzer 2 ¢ + Frequency Occupied BW KEYSIGHT Input: RF Input Z: 50 Ω Atten: 10 dB Trig: External 1 Center Freq: 1.977500000 GHz Avg|Hold: 2/10 Radio Std: None Center Frequency Coupling: AC Align: Auto Corrections: Off Freq Ref: Int (S) NFE: Adaptive Gate: LO #IF Gain: Low Settings 1.977500000 GHz DJ Span 1 Graph ۷ Ref LvI Offset 51.60 dB 70.000 MHz Scale/Div 10.0 dB Ref Value 51.60 dBm CF Step Log 7.000000 MHz Auto Man Freq Offset 0 Hz 8 40 18.4 Center 1.97750 GHz #Video BW 1.1000 MHz* Span 70 MHz #Res BW 360.00 kHz #Sweep 1.00 s (1001 pts) 2 Metrics Occupied Bandwidth 33.534 MHz Total Power 49.2 dBm % of OBW Power Transmit Freq Error -16.247 kHz 99.00 % x dB Bandwidth 34.69 MHz x dB -26.00 dB Jun 27, 2023 \mathbb{X} とら ? Characterize Noise Floor required

NR-1C-B66

99% Occupied Bandwidth

			Occ	upied Bandwidth (N	ЛHz)
Antenna Port	Modulation	Bandwidth	Channel	Channel	Channel
			Position B	Position M	Position T
B-2	QPSK	35MHz	33.522	33.525	33.509

-26dBc Occupied Bandwidth


			Occupied Bandwidth (MHz)				
Antenna Port	Modulation	Bandwidth	Channel	Channel	Channel		
			Position B	Position M	Position T		
B-2	QPSK	35MHz	34.69	34.69	34.69		

-			-						
Spectrum Channel	Analyzer 1 Power	Spectrum Analyzer 2 Occupied BW	• +				$\mathbf{\dot{\mathbf{v}}}$	Frequency	崇
KEYSI	GHT Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corrections: Off Freq Ref: Int (S) NFE: Adaptive	Atten: 10 dB	Trig: External 1 Gate: LO #IF Gain: Low	Center Freq: Avg Hold: 4/1 Radio Std: N		2.12	ter Frequency 27500000 GHz	Settings
1 Graph			Ref LvI Offset 51.				Spai 70.0	ר 000 MHz	
Log 41.6 31.6 21.6	v 10.0 dB		Ref Value 51.60 d	BM				Step 00000 MHz Auto Man	
11.6 1.60 -8.40 -18.4 -28.4						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Freq 0 H:	Offset z	
	.12750 GHz / 360.00 kHz	#	Video BW 1.1000) MHz*	#S	Span 70 weep 1.00 s(1001			
2 Metrics	Occupied Bandwidt	h							
		522 MHz		Total Power		49.1 dBm			
	Transmit Freq Error x dB Bandwidth	2.679 kH 34.69 MH		% of OBW Pow x dB	er	99.00 % -26.00 dB			
		? Jun 27, 2023 5:13:20 PM		erize Noise Floor re	quired		X		

Channel position B

TEST REPORT

Channel position M

			Cl	nannel positio	on T				
Spectru Channe	n Analyzer 1 Power	Spectrum Analyzer 2 Occupied BW	• +				₿	Frequenc	y v
KEYS	IGHT Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) NFE: Adaptive	Atten: 10 dB	Trig: External 1 Gate: LO #IF Gain: Low	Center Fr Avg Hold Radio Sto		2.182	r Frequency 2500000 GHz	Settings
1 Graph	• iv 10.0 dB		Ref LvI Offset 51 Ref Value 51.60 (L	00 MHz	
Log 41.6							CF St	ep)000 MHz	
31.6 21.6 11.6								luto /lan	
11.60 1.60 -8.40							Freq 0	Offset	
-18.4 -28.4									
	2.18250 GHz N 360.00 kHz		#Video BW 1.100	0 MHz*		Span 7 #Sweep 1.00 s (100			
2 Metrics							1 003		
	Occupied Bandwid	lth 3.509 MHz		Total Power		49.0 dBm			
	Transmit Freq Erro x dB Bandwidth	or -18.004 k 34.69 M		% of OBW Pow x dB	/er	99.00 % -26.00 dB			
	500	Jun 27, 2023 5:19:29 PM	1 Charact	terize Noise Floor re	equired		X		

Intertek Total Quality. Assured. TEST REPORT

5 Unwanted Emissions at Band Edge

Test result: Pass

5.1 Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

5.2 Measurement Procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

For MIMO mode configurations, the limit was adjusted with a correction of -6.02dB [10Log(1/4)] by using the Measure and Add 10Log(N) dB technique according to KDB 662911 D01 Multiple Transmitter Output accounting for simultaneous transmission from antenna ports. Then the limit was adjusted to -19.02dBm.

In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed and a RBW of 1MHz for measurements of emissions > 1MHz away from the band edges.

Spectrum analyzer detector was set as RMS.

TEST REPORT

5.3 Measurement result

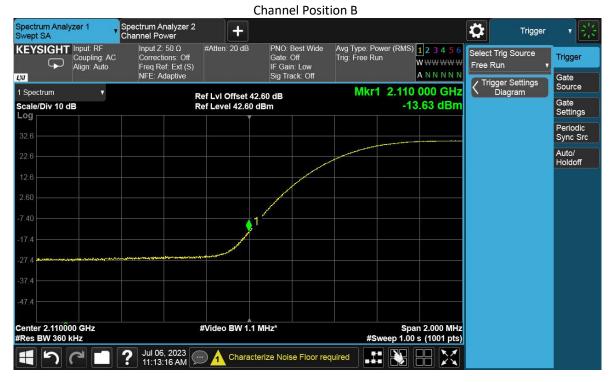
NR-1C-BE-B25

Antenna Port	Channel Position	Modulation	Carrier BW (MHz)	RBW (kHz)	Limit (dBm)
A-1	В	64QAM	35	360	-19.02
A-1	Т	64QAM	35	360	-19.02

Spectrum Analy Swept SA	/zer 1	Spectrum Analyzer 2 Channel Power	• +					‡	Marker	・影
	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Ext (S) NFE: Adaptive	Atten: 20 dB #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold:> Radio Std:		l GHz	Select Marke Marker 1	r	
LV 1 Graph Scale/Div 10.0	, dB	R	ef LvI Offset 42. ef Value 12.60 d		Mkr1	1.9298200	000 GHz 30 dBm	Marker Frequ 1.92982000	0 GHz	Settings Peak
Log								Marker Mode	e	Search
-7.40								 Normal 		Properties
-17.4								Delta (Δ)		
-27.4								Off		
-37.4	-		1	when when the second	-	www.www.www.www	the market and the second second	Delta M		
-57.4								(Reset [
-67.4								K Marker S Diagra		
-77.4								All Marke		
Center 1.92982 #Res BW 3.600		#	Video BW 11.00	0 kHz*	#	Sp Sweep 1.00 s	an 720 kHz (1001 pts)			
2 Metrics	v						(1001 ptb)			
Total Chann	el Power	-26.88 dBm / 360	kHz							
Total Power	Spectral Den	sity -82.44 dBn	n/Hz							
		? Jul 06, 2023 11:42:02 AM		erize Noise Floor re	quired					

TEST REPORT

Channel Position T



Spectrum Analyz Swept SA		Spectrum Analyzer 2 Channel Power	• +							Marker	- 7 景
	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Ext (S) NFE: Adaptive	Atten: 20 dB #PNO: Fast	Gate:	ree Run Off ain: Low	Center Fr Avg Hold: Radio Std	>10/10	30000 GHz	Select I Marker	1	•
1 Graph Scale/Div 10.0 c	v dB		Ref LvI Offset Ref Value 12.0			Mkr1		180000 GHz 16.573 dBm	1.9951	Frequency 80000 GHz	Settings Peak
Log 2.60									Marker		Search
-7.40									Del	ta (Δ)	Properties
-27.4	hannandra			1					Off		
-47.4								eh en de filoren en en en	(R	elta Marker eset Delta)	
-67.4									\succeq	rker Settings Diagram	
Center 1.995180 #Res BW 3.6000			#Video BW 11	.000 kHz*			#Sweep 1	Span 720 kHz .00 s (1001 pts)	All	Markers Off	
2 Metrics	v										
Total Channel Total Power S		-26.12 dBm / 36 sity -81.69 dB									
		? Jul 06, 2023 11:45:27 AM		acterize Nois	se Floor requ	uired					

TEST REPORT

NR-1C-BE-B66

Antenna Port	Channel Position	Modulation	Carrier BW (MHz)	RBW (kHz)	Limit (dBm)
B-2	В	QPSK	35	360	-19.02
B-2	Т	QPSK	35	360	-19.02

Spectrum Analy Swept SA	/zer 1	Spectrum Analyzer 2 Channel Power	• +				Trigger	v 兴
	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Ext (S)	Atten: 20 dB #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold: 8 Radio Std: I		Select Trig Source Free Run v	Trigger
LXI		NFE: Adaptive					7 Trigger Settings	Gate
1 Graph	•	F	Ref LvI Offset 42	.60 dB	Mkr1 2	2.109820000 GHz	Diagram	Source
Scale/Div 10.0	dB	,	Ref Value 12.60	dBm		-45.065 dBm		Gate Settings
2.60 -7.40								Periodic Sync Src
-17.4						3 3		Auto/ Holdoff
-37.4	ورواندا والمحرود التياس	the office of the second strange of the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Anados tribu vient province and pro-	egodian agent	atom and the story atom of the start		
-57.4		هيدي يول اليوا						
-67.4								
-77.4								
Center 2.10982 #Res BW 3.600		#	Video BW 11.00	0 kHz*	#	Span 720 kHz Sweep 1.00 s (1001 pts)		
2 Metrics	•							
Total Chann	el Power	-26.14 dBm / 360) kHz					
Total Power	Spectral Den	sity -81.71 dB	m/Hz					
1 5		? Jul 06, 2023 11:14:08 AM	Dharact	erize Noise Floor re	quired			

TEST REPORT

Channel Position T

Spectrum Analy Swept SA		Spectrum Analyzer 2 Channel Power	• +					Marker	· 米
	Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corrections: Off Freq Ref: Ext (S) NFE: Adaptive	Atten: 20 dB #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Frec Avg Hold:> Radio Std: I			Select Marker Marker 1	
1 Graph Scale/Div 10.0	۲ dB		tef LvI Offset 42 tef Value 12.60 o		Mkr1	2.200180000 -46.889 (Marker Frequency 2.200180000 GHz	Settings Peak
Log 2.60								Marker Mode	Search
-7.40								 Normal 	Properties
-17.4								Delta (Δ)	
-27.4			1					Off	
-47.4	and the second second	learn an	han had a second se	and and a second state of the s	***			Delta Marker (Reset Delta)	
-67.4								Marker Settings Diagram	
Center 2.20018 #Res BW 3.600		#	Video BW 11.00	0 kHz*	#:	Span 72 Sweep 1.00 s(100		All Markers Off	
2 Metrics	۲								
Total Channe	el Power	-26.54 dBm / 360	kHz						
Total Power	Spectral Den	sity -82.10 dBr	n/Hz						
		? Jul 06, 2023 11:19:44 AM		erize Noise Floor red	quired		X		

TEST REPORT

NR-2C-BE-B66

Antenna Port	Channel Position	Modulation	Carrier BW (MHz)	RBW (kHz)	Limit (dBm)
B-2	В	QPSK	35	360	-19.02
B-2	Т	QPSK	35	360	-19.02

Spectrum Analy Swept SA		Spectrum Analyzer 2 Channel Power	• +					Marker	• 器
	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Ext (S) NFE: Adaptive	Atten: 20 dB #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq Avg Hold: 9/ Radio Std: N		θHz	Select Marker Marker 1	
Da 1 Graph Scale/Div 10.0 Log	v dB	R	ef LvI Offset 42 ef Value 12.60		Mkr1 2	2.10982000 -45.21	00 GHz 2 dBm	Marker Frequency 2.109820000 GHz Marker Mode	Settings Peak Search
2.60								 Normal Delta (Δ) 	Properties
-17.4 -27.4 -37.4			1				Jama and Market	Off	
-47.4	4_11 }/ ^{**} **********************************			erety and a state of the second		when the second s		Delta Marker (Reset Delta) / Marker Settings	
-77.4		#	Video BW 11.00	00 kHz*			n 720 kHz	Diagram All Markers Off	
#Res BW 3.600 2 Metrics	00 kHz				#9	Sweep 1.00 s(1001 pts)		
Total Chann Total Power	el Power Spectral Dens	-24.40 dBm / 360 sity -79.97 dBr							
		? Jul 06, 2023 11:26:43 AM		erize Noise Floor re	quired				

TEST REPORT

Channel Position T

Spectrum Analy Swept SA		Spectrum Analyzer 2 Channel Power	• +					Marker	· 米
	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Ext (S) NFE: Adaptive	Atten: 20 dB #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold:> Radio Std:		GHz	Select Marker Marker 1	
<i>D</i> ⁄⁄⁄/ 1 Graph Scale/Div 10.0	dB	R	ef LvI Offset 42 ef Value 12.60		Mkr1	2.2001800 -46.4	00 GHz 63 dBm	Marker Frequency 2.200180000 GHz Marker Mode	Settings Peak
2.60 -7.40								Normal	Search Properties
-17.4								Delta (Δ) Off	
-37.4 -47.4 -57.4	maradan maradan maradan maradan maradan maradan marada marada marada marada marada marada marada marada marada Marada marada m			and the second	Lan Agentaph	and the second	~1^	Delta Marker (Reset Delta)	
-67.4								Marker Settings Diagram All Markers Off	
Center 2.20018 #Res BW 3.600 2 Metrics		#\	/ideo BW 11.00	00 kHz*	#	Spa Sweep 1.00 s	an 720 kHz (1001 pts)	All Markers Off	
Total Channe		-25.83 dBm / 360	kHz						
	Spectral Den								
1		? Jul 06, 2023 11:35:04 AM		erize Noise Floor re	quired				

6 Conducted Unwanted Emission

Test result: Pass

6.1 Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

6.2 Measurement Procedure

In accordance with FCC rules, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using an attenuator and the frequency spectrum investigated from 9kHz to 23GHz. The resolution bandwidth of 1MHz was employed for frequency band 9kHz to 23GHz. The spectrum analyzer detector was set to RMS.

For MIMO mode configurations, the limit was adjusted with a correction of -6.02dB [10Log(1/4)] by using the Measure and Add 10Log(N) dB technique according to KDB 662911 D01 Multiple Transmitter Output accounting for simultaneous transmission from antenna ports. Then the limit was adjusted to -19.02dBm.

6.3 Measurement result

NR-1C-B25

Antenna Port	Channel Position	Modulation	Carrier BW (MHz)	RBW (kHz)	Limit (dBm)
A-1	В	64QAM	35	1000	-19.02
A-1	М	64QAM	35	1000	-19.02
A-1	Т	64QAM	35	1000	-19.02

		Channel Position B		
MultiView 💶 Spectrum	× Spectrum 2 ×	Spectrum 3 ×		
	dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto Sv	1/00D		
1 Frequency Sweep		weep		• 1Rm Clrw
0 dBm				M1[1] -50.30 dBm
				1.923 939 GH;
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
				м
-50 dBm				
,				
60 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
CF 964.504 5 MHz	4000 pts	1	92.9 MHz/	Span 1.928 991 GHz

TEST REPORT

MultiView 🎫 Spectrum	X Spectrum 2 X	Spectrum 3 X		
Ref Level 3.30 dBm Offset 3 Att 30 dB SWT	3.30 dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto	Sween		
1 Frequency Sweep				0 1Rm Clrw
0 dBm				M1[1] -34.88 dBn
				1.999 380 GH
-10 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm	an a			
-70 dBm				
-80 dBm				
-90 dBm				
CF 2.998 GHz	8000	ots	200.4 MHz/	Span 2.004 GH2

AultiView 🎟 Spectrum	× Spectrum 2	X Spectrum 3 X			
Ref Level 42.60 dBm Offse					
Att 20 dB © SWT Frequency Sweep	10 s • VBW 3 MHz Mode /	Auto Sweep			• 1Rm Clr
0 dBm					M1[1] -24.16 d
					5.937 250
) dBm					
dBm					
) dBm					
dem					
) dBm					M
۲۰۵۵ - ۲۰۰۰ میلید میلید میلید داند. ۱۹۹۵ - ۲۰۰۰ میلید میلید میلید میلید داند. ۱۹۹۵ - ۲۰۰۰ میلید م			and a second		
) dBm					
) dBm					
) dBm					
5.0 GHz	- 1000		200.0 MHz/		Span 2.0
5.0 GHZ ↔	4000	pts	200.0 MHZ/	Measuring	Span 2.0

TEST REPORT

Auttiview	Spectrum	× Spectru	im 2 🗙	Spectrum 3	× Spectrum	×			
Ref Level -6.2 Att	0 dBm Offse 25 dB = SWT	4.00 dB • RBW	1 MHz 3 MHz Mode	Auto Euroon					
G:EXT1		IS C VBVV	3 MHZ MOOR	Auto Sweep					
requency Sv	veep								 1Rm Clr M1[1] -54.80 d
) dBm									7.493 60
0 dBm									
0 dBm									
0 dBm									
0 dBm		M							
		M1							
0 dBm					and the second sec				
) dBm									
) dBm									
) dBm									
0 dBm									
CII									12.75
			1	001 pts		675.0 MHz/	+ Measuring.		EXT 2023-
ultiView	Spectrum			001 pts		675.0 MHz/	Measuring,		EXT 2023-
ultiView Ref Level 36.4	Spectrum	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	- Measuring.		EXT 2023-
ultiView Ref Level 36.4 Att	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\				675.0 MHz/	→ Measuring.		EXT 3 5 2023 REF 5 6
ultiView Ref Level 36.4 Att requency Sv	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView Ref Level 36.4 Att requency Sv	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView A Ref Level 36.4 Att requency Sv dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView A Ref Level 36.4 Att requency Sv dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView A Ref Level 36.4 Att dBm dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.	·· (]]]]]]]]	■ EXT → 2023- REF → ▲ 2023- 06
ultiView d tef Level 36,4 ttt dBm dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView f lef Level 36.4 tt dBm dBm dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView 4 ef Level 36.4 tt dBm dBm dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView d lef Level 36.4 tt requency Sv dBm dBm dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView d lef Level 36.4 tt requency Sv dBm dBm dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView d tef Level 36,4 tt requency Sv dBm dBm b Bm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView d tef Level 36,4 tt requency Sv dBm dBm b Bm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → 2023- REF → ▲ 2023- 06
ultiView 8 tef Level 36,4 ttt requency Sv dBm dBm BBm J dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView 8 tef Level 36,4 ttt requency Sv dBm dBm BBm J dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView 8 Ref Level 36,4 Ht requency Sv dBm dBm Bm) dBm) dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView 8 Ref Level 36,4 Ht requency Sv dBm dBm dBm) dBm) dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
ultiView A Ref Level 36,4 Att requency Sv dBm dBm dBm) dBm) dBm) dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c
D GHz ultiView 4 Ref Level 36.4 tt requency Sw dBm dBm dBm) dBm) dBm) dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		
ultiView A Ref Level 36,4 Att requency Sv dBm dBm dBm) dBm) dBm) dBm	Spectrum 40 dBm Offse 20 dB © SWT	t 36.40 dB 🗢 RB\	₩ 1 MHz			675.0 MHz/	Measuring.		■ EXT → ▲ 2023- REF → ▲ 065 ● 1Rm Clt M1[1] -32.82 c

Measuring... EXT REF

TEST REPORT

	set 46.10 dB • RBW 1 MHz				
Att 10 dB © SW Frequency Sweep	T 1 s 🗢 VBW 3 MHz Mode	Auto Sweep			0 1Rm Clr
inequeity sincep			ľ	M1[1]	-25.35 d
0 dBm					21.702 80
dBm					
dBm					
dBm					
dbm				M1	
				 	manna
dBm					
) dBm					
.0 GHz		01 pts	700.0 MHz/		23.0

Channel Position M

MultiView 💶 Spectrum	🗙 Spectrum 2 😽 🗙	Spectrum 3 ×		
Ref Level 2.30 dBm Offset 2.30				
	10 s • VBW 3 MHz Mode Auto Sw	reep		
1 Frequency Sweep 0 dBm				• 1Rm Clrw M1[1] -52.15 dBr
0 dbm				1.923 939 GH
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
60 dBm			1. 4. 1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
70 dBm				
70 dbm				
-80 dBm				
-90 dBm				
CF 964.504 5 MHz	4000 pts	19:	2.9 MHz/	Span 1.928 991 GH
			→ Measuring	EXT 2023-07-0 REF 07:46:3

TEST REPORT

MultiView 🎫 Spec	trum 🗙	Spectrum 2	Spectrum 3	×				
Ref Level 3.30 dBm	Offset 3.30 dB • R	BW 1 MHz BW 3 MHz Mode Auto	Succes					
Frequency Sweep	5 VVI 10 5 C V	DW SIMINZ MICH	Jaweep					• 1Rm Clrw
0 dBm							M	[1] -32.78 dBr
								1.999 380 GH
-10 dBm								
10 dBm								
40 dBm								
-50 dBm								
					I			
-60 dBm	*****		**************************************	**) [*]	,	······································		
-70 dBm								
-80 dBm								
-90 dBm								
CF 2.998 GHz		8000	ate .	2	00.4 MHz/			Span 2.004 GH
		0000				- Measuring		XT 2023-07-0 EF 07:47:2

AultiView 🎫 Spec		Spectrum 2 ×	Spectrum 3	×			
Ref Level 42.60 dBm Att 20 dB •		RBW 1 MHz VBW 3 MHz Mode Au	- c				
Frequency Sweep	3001 103 0	VOW SMILZ MODE A	no sweep				• 1Rm Cl
) dBm							M1[1] -24.17
							5.927 750
dBm							
IBm							
) dBm							
							M
dBm							
5.0 GHz		4000 (ots	200	.0 MHz/		Span 2.0
*						Measuring	EXT 3 + 2023 REF 3 68

TEST REPORT

MultiView 🖶	Spectrum	× Spectrum	2 X Spectro	um 3 🛛 🗙	Spectrum 4	×			
Ref Level -6.	20 dBm Offset	4.00 dB • RBW 1							
RG:EXT1		15 - VDVV 3	MHz Mode Auto Sw	eep					
Frequency S	weep								 1Rm Clrw M1[1] -55.07 dBr
10 dBm									7.493 60 GH
-20 dBm									
-30 dBm									
40 dBm									
-50 dBm		M1							
	m								
60 dBm		Lumm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				·····	
-70 dBm									
-80 dBm									
-90 dBm									
-100 dBm									
						s 100			
6.0 GHz			1001 pts		6	75.0 MHz/			12.75 GH
MultiView	• Spectrum						→ Measuring.		
Ref Level 36.	Spectrum	t 36.40 dB 🗢 RBW	1 MHz				→ Measuring.		
Ref Level 36. Att	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW		weep			→ Measuring.		EXT 2023-07-4 REF 4 06:29:4
Ref Level 36. Att Frequency St	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			- Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36. Att Frequency St	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			- Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36. Att Frequency St	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36. Att Frequency St	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36. Att I Frequency So 30 dBm 20 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-0 REF • 2023-07-0 06-29-0 • 18m Clrw 11[1] -33.12 dBr
Ref Level 36, Att Frequency So 30 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36, Att Frequency So Trequency So Control of the solution of the	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-0 REF • 2023-07-0 06-29-0 • 18m Clrw 11[1] -33.12 dBr
Ref Level 36, Att Frequency So d dBm 20 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-0 REF • 2023-07-0 06-29-0 • 18m Clrw 11[1] -33.12 dBr
Ref Level 36, Att Frequency S 30 dBm 20 dBm 10 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-0 REF • 2023-07-0 06-29-0 • 18m Clrw 11[1] -33.12 dBr
Ref Level 36, Att Frequency So d dBm 20 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36. Att Frequency St 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-4 REF • 2006-23-4 06-23-4 • 1Rm Clrw 11[1] -33.12 dBi
Ref Level 36. Att Frequency S 30 dBm 20 dBm 10 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		2023-07-0 REF • 2023-07-0 06-29-0 • 18m Clrw 11[1] -33.12 dBr
Ref Level 36. Att Frequency State 30 dBm 20 dBm 10 dBm 10 dBm 20 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		• 1Rm Clrw 11[1] -33.12 dB 15.972 40 Gł
Ref Level 36. Att I Frequency St 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		• 1Rm Clrw 11[1] -33.12 dBr 15.972 40 GH
Ref Level 36. Att I Frequency State 30 dBm 20 dBm 0 dBm 10 dBm 20 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		• 1Rm Claw 11[1] -33.12 dB 15.972 40 G
Ref Level 36. Att I Frequency State 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		• 1Rm Claw 11[1] -33.12 dB 15.972 40 G
Ref Level 36. Att I Frequency State 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		
Ref Level 36. Att Frequency State 30 dBm 20 dBm 10 dBm 10 dBm 20 dBm 30 dBm 50 dBm	Spectrum 40 dBm Offse 20 dB • SWT	t 36.40 dB 🗢 RBW	1 MHz	weep			Measuring.		• 1Rm Claw 11[1] -33.12 dB 15.972 40 G
Ref Level 36. Att Frequency State 30 dBm 20 dBm 10 dBm 20 dBm 30 dBm 40 dBm	Spectrum Offse 20 dB • SWT weep	t 36.40 dB 🗢 RBW	1 MHz	weep		25.0 MHz/	Measuring.		• 1Rm Clrw 11[1] -33.12 dBr 15.972 40 GH

TEST REPORT

MultiView 📰 Spectru	im							•
Ref Level 46.10 dBm Of Att 10 dB • SW	fset 46.10 dB ● RBW 1 MH /T 1 s ● VBW 3 MH		Swoon					
Frequency Sweep		12 mode Auto	Sweep					• 1Rm Clrw
							M1[1]	-25.42 dB
40 dBm								21.632 90 G
30 dBm								
20 dBm								
l0 dBm								
) dBm								
10 dBm								
20 dBm								
							M1	
30 dBm		and a second						
40 dBm								
50 dBm								
		1001			0.0.1411-/			23.0 G
16.0 GHz		1001 pts		/	00.0 MHz/	→ Measuring		

Channel Position T

	2.30 dB • RBW 1 MHz			
Att 30 dB • SWT Frequency Sweep	10 s 🗢 VBW 3 MHz Mode	Auto Sweep		• 1Rm Clrv
dBm				M1[1] -53.93 di
				1.923 939 0
0 dBm				
0 dBm				
0 dBm				
0 dBm				
0 dBm				
0 dBm		******	 	
'0 dBm				
0 dBm				
0 dBm				

MultiView 🎫 Spectrum	× Spectrum 2 ×			
Ref Level 3.30 dBm Offset 3.3 Att 30 dB SWT	30 dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto S	ween		
Frequency Sweep				• 1Rm Clrw
0 dBm				M1[1] -30.22 dB
				1.999 380 GH
-10 dBm				
20 dBm				
-20 dBm				
11				
-30 dBm				
40 dBm				
-50 dBm				
				a an
-60 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
CF 2.998 GHz	8000 pts		200.4 MHz/	Span 2.004 GH

IultiView 🎟 Spectrum	× Spectrum 2		×	
Ref Level 42.60 dBm Offset 42				
Att 20 dB © SWT Frequency Sweep	10 s 🗢 VBW 3 MHz	Mode Auto Sweep		• 1Rm Cl
) dBm				M1[1]24.19
				5.963 750
) dBm				
) dBm				
) dBm				
) dBm				
5.0 GHz		4000	200.0 MHz/	Span 2.0
510 5112		4000 pts	200.0 WH2/	→ Measuring EXT + 2023

Span 3.25 GHz

Measuring... EXT # 2023-07-05

intertek Total Quality. Assured.

TEST REPORT

lultiView 📰 Spectrum	× Spectrum 2	× Spectru	n 3 🗙	Spectrum 4	×		
	tt 4.00 dB ⊂ RBW 1 N						
Att 25 dB = SWT G:EXT1	1 s = VBW 3 N	1Hz Mode Auto Swe	ep				
Frequency Sweep							• 1Rm Clr M1[1] -54.82 c
0 dBm							7.493 60
) dBm							
	M1						
dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·····		
0 dBm							
GHz		1001 pts		67	75.0 MHz/		12.75
						→ Measuring.	 REF 06
ultiView == Spectrum Ref Level 36.40 dBm Offso	n et 36.40 dB • RBW 1	MHz					ner C La Ub
ef Level 36.40 dBm Offse .tt 20 dB • SWT	et 36.40 dB = RBW 1	MHz MHz Mode Auto Sw	reep				
ef Level 36.40 dBm Offse .tt 20 dB • SWT	et 36.40 dB = RBW 1		eep				• 1Rm C
ef Level 36.40 dBm Offse tt 20 dB © SWT equency Sweep	et 36.40 dB = RBW 1		eep				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offse tt 20 dB © SWT equency Sweep	et 36.40 dB = RBW 1		eep				• 1Rm C M1[1] -33.00
ef Level 36.40 dBm Offse tt 20 dB © SWT equency Sweep 18m	et 36.40 dB = RBW 1		еер				• 1Rm C M1[1] -33.00
ef Level 36.40 dBm Offse tt 20 dB © SWT equency Sweep 18m	et 36.40 dB = RBW 1		eep				• 1Rm C M1[1] -33.00
ef Level 36.40 dBm Offse tt 20 dB © SWT equency Sweep 18m	et 36.40 dB = RBW 1		еер				• 1Rm C M1[1] -33.00
ef Level 36.40 dBm Offso tt 20 dB © SWT equency Sweep dBm JBm	et 36.40 dB = RBW 1		reep				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offso tt 20 dB © SWT equency Sweep dBm JBm	et 36.40 dB = RBW 1		reep				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offso tt 20 dB © SWT equency Sweep dBm dBm	et 36.40 dB = RBW 1		еер				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offso tt 20 dB © SWT equency Sweep dBm dBm	et 36.40 dB = RBW 1		еер				• 1Rm C M1[1] -33.00
ef Level 36.40 dBm Offse tt 20 dB • SWT equency Sweep dBm dBm dBm	et 36.40 dB = RBW 1		eep				• 1Rm C M1[1] -33.00
ef Level 36.40 dBm Offso tt 20 dB S SWT equency Sweep dBm dBm dBm dBm	et 36.40 dB = RBW 1		eep				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offs tt 20 dB S SWT requency Sweep dBm dBm dBm dBm	et 36.40 dB = RBW 1		eep				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offs tt 20 dB S SWT requency Sweep dBm dBm dBm dBm	et 36.40 dB = RBW 1		reep				• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offse	et 36.40 dB = RBW 1		leep				• 1Rm Cl M1[1] -33.00 15.995 10
ef Level 36.40 dBm Offs tt 20 dB • SWT requency Sweep dBm dBm dBm dBm dBm	et 36.40 dB = RBW 1						• 1Rm Cl M1[1] -33.00
ef Level 36.40 dBm Offs tt 20 dB S SWT requency Sweep dBm dBm dBm dBm	et 36.40 dB = RBW 1						• 1Rm Cl M1[1] -33.00

CF 14.375 GHz

1001 pts

325.0 MHz/

TEST REPORT

Att Frequency S	10 dB ◎ SWT	15 - 4044 3	MHz Mode Auto	эмсер				• 1Rm Clrv
rrequency 5	weep	1	ľ –		í –	ľ –	M1[1]	-25.42 dB
0 dBm								21.660 80 GI
9 dBm								
) dBm								
) dBm								
d8m								
0 dBm								
0 dBm							M1	
							 *	
0 dBm	1.0.0							
0 dBm								
0 dBm								
6.0 GHz			1001 pts		-	00.0 MHz/		23.0 G

NR-1C-B66

Antenna Port	Channel Position	Modulation	Carrier BW (MHz)	RBW (kHz)	Limit (dBm)
B-2	В	QPSK	35	1000	-19.02
B-2	М	QPSK	35	1000	-19.02
B-2	Т	QPSK	35	1000	-19.02

Channel Position B

MultiView 📰 Spectrum 🗙	Spectrum 2 X	Spectrum 3 ×		
Ref Level 7.50 dBm Offset 7.50 dB				
Att 30 dB SWT 10 s Frequency Sweep	VBW 3 MHz Mode Auto Sv	veep		• 1Rm Clrv
requeity sweep				M1[1] -38.68 d
d8m				2.105 739 0
10 dBm				
0 dBm				
i0 dBm				
l0 dBm				
0 dBm				
A second se			and the second	
0 dBm				
/0 dBm				
i0 dBm				
0 dBm				
1.054 504 5 GHz	4200 pts	2	10.9 MHz/	Span 2.108 991 G

MultiView 📰 Spect	rum 🗙	Spectrum 2	× Spectrun	n 3 🗙			
Ref Level 4.10 dBm							
● Att 30 dB ● S I Frequency Sweep	owi 10 s ♥	VBW 3 MHz Mode	Auto Sweep				• 1Rm Clrw
0 dBm	1					M1	[1] -50.92 dB
							3.209 900 GF
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm				M1			
					1 January		
60 dBm							
-70 dBm							
-80 dBm							
-90 dBm							
2.201 GHz			3000 pts		179.9 MHz/		4.0 GH

Ref Level 42.60 dBm	Offset 42.60 dB . RB	W 1 MHz						
Att 20 dB •		W 3 MHz Mode Auto	Sweep					
Frequency Sweep								O 1Rm Clr
0 dBm							M1	[1] -24.15 c
								5.908 250
) dBm								
dBm								
dBm								
) dBm								M1
		*****		······				
) dBm								
) dBm								
) dBm								
5.0 GHz		4000 pts		20	00.0 MHz/			Span 2.0
						- Measuring		EF 2023

IultiView 🏪 Spectrum	× Spectrum 2		Spectrum 4	Spectrum 3	×			
	et 4.00 dB = RBW 17							
Att 25 dB © SWT Frequency Sweep	1 s ● VBW 3 i	VIHZ WOOLE /	auto Sweep					• 1Rm C
0 dBm								W1[1] -54.84
								7.493 60
) dBm								
) dBm								
	M1							
dBm								
	human			· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- marine - m
dBm								
dBm								
dBm								
0 dBm								
.375 GHz		100)1 pts		575.0 MHz/			Span 6.75
						 Measuring. 		EXT 🕤 📫 202
ultiView 📰 Spectrum	n							
ef Level 36.40 dBm Offs	et 36.40 dB • RBW							
tef Level 36.40 dBm Offs	et 36.40 dB • RBW	1 MHz 3 MHz Mode	Auto Sweep					1 1Pm (
ef Level 36.40 dBm Offs tt 20 dB © SWT	et 36.40 dB • RBW		Auto Sweep				M	
ef Level 36.40 dBm Offs tt 20 dB SWT requency Sweep	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB SWT requency Sweep	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB = SWT equency Sweep dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB = SWT equency Sweep dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm	et 36.40 dB • RBW		Auto Sweep				Μ	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm	et 36.40 dB • RBW		Auto Sweep				Μ	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm dBm Bm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm dBm Bm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm dBm Bm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT equency Sweep dBm dBm Bm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB © SWT requency Sweep dBm dBm dBm dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs tut 20 dB • SWT requency Sweep dBm dBm dBm dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
ef Level 36.40 dBm Offs ttt 20 dB • SWT requency Sweep dBm dBm dBm dBm dBm	et 36.40 dB • RBW		Auto Sweep				M	1[1] -33.06
Ref Level 36.40 dBm Offs Att 20 dB • SWT requency Sweep dBm dBm dBm dBm	et 36.40 dB • RBW		Auto Sweep					1[1] -33.06
Ref Level 36.40 dBm Offs Statt 20 dB • SWT requency Sweep 3000000000000000000000000000000000000	et 36.40 dB • RBW		Auto Sweep					1[1] -33.06
Ref Level 36.40 dBm Offs	et 36.40 dB • RBW		Auto Sweep					• 1Rm (1[1] -33.06 15.965 9(
ef Level 36.40 dBm Offs ttt 20 dB • SWT requency Sweep dBm dBm dBm dBm dBm dBm dBm dBm	et 36.40 dB • RBW		Auto Sweep					1[1] -33.06
ef Level 36.40 dBm Offs tt 20 dB S SWT requency Sweep dBm dBm dBm dBm dBm dBm	et 36.40 dB • RBW	3 MHz Mode	Auto Sweep		325.0 MHz/			1[1] -33.06

TEST REPORT

Ref Level 46.10 dBm O Att 10 dB 51	ffset 46.10 dB = RBW 1 M	1Hz 1Hz Mode Auto Sweep			
Frequency Sweep		And Auto Sweep			• 1Rm Clrv
					M1[1] -25.40 d
0 dBm					21.646 90
) dBm					
) dBm					
dBm					
) dBm					
) dBm					
				M1	
) dBm					
) dBm					
) dBm					
i.0 GHz		1001 pts	700.0 MHz/		23.0

Channel Position M

Ref Level 7.50 dBm Offset 7.50 dB	• RBW 1 MHz			
	• VBW 3 MHz Mode Auto	Sweep		
Frequency Sweep		-	i i i i i i i i i i i i i i i i i i i	• 1Rm Clrv
				M1[1] -44.35 dl
dBm				2.105 739 (
0 dBm				
20 dBm				
30 dBm				
40 dBm				
tu abm				
50 dBm				
50 dBm				
70 dBm				
30 dBm				
00 dBm				
F 1.054 504 5 GHz	4200 p	**	210.9 MHz/	Span 2.108 991 G

MultiView 💶 Spectr	um 🗙 Spectru	ım 2 🗙 Spectrun	13 X		Ť
Ref Level 4.10 dBm Of Att 30 dB SV	ffset 4.10 dB ● RBW 1 MH	z z Mode Auto Sweep			
1 Frequency Sweep					• 1Rm Clrw
0 dBm					M1[1] -50.95 dBr
					3.210 010 GH
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
		**************************************		and an analyzed and an an and an a	
-60 d8m					
-70 dBm					
-80 dBm					
-90 dBm					
CF 3.100 5 GHz		4000 pts	179.9 MHz/		Span 1.799 GH:
÷					EXT 2023-07-0

AultiView 📰 🛛	Spectrum	× Spe	trum 2 🗙	Spectrum 3	×				
Ref Level 42.60 dE									
Att 20 (Frequency Sweep	dB 🗢 SWT	10 s 🗢 VBW	3 MHz Mode Au	ito Sweep					• 1Rm Cli
) dBm	цо 								V1[1] -24.15 c
									5.938 750
) dBm									
dBm									
18m									
) dBm									
) dBm									M
									and a second
) dBm									
) dBm									
) dBm									
5.0 GHz			4000 p	ots	2	00.0 MHz/		2008 Sc 2008 S	Span 2.0
							👻 Measuring.		EXT 2023- REF 09:

lultiView == Spectrum Ref Level -6.20 dBm O	ffset 4.00 dB • F	ectrum 2 RBW 1 MHz	× Spe		Spectrum 3	×		
Att 25 dB = 51			Mode Auto	Sweep				
Frequency Sweep								• 1Rm Cl
0 dBm								 W1[1] -54.80
								7.493 60
) dBm								
) dBm								
dBm								
dBm	M1							
many many								
dBm	Lunara	~~~~~						
dBm								
0 dBm								
9.375 GHz			1001 pt	ts	6	75.0 MHz/		Span 6.75
ultiView 〓 Specti	rum						 Measuring. 	 REF T
ef Level 36.40 dBm C	Offset 36.40 dB 🗢						→ Measuring.	 REF
tef Level 36.40 dBm C	Offset 36.40 dB 🗢		z z Mode Aut	o Sweep				 REF
ef Level 36.40 dBm C .tt 20 dB © S	Offset 36.40 dB 🗢			o Sweep				• 1Rm (
ef Level 36.40 dBm C tt 20 dB S requency Sweep	Offset 36.40 dB 🗢			o Sweep			• Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S requency Sweep	Offset 36.40 dB 🗢			o Sweep			• Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S requency Sweep	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S equency Sweep	Offset 36.40 dB 🗢			o Sweep			• Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S equency Sweep dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S equency Sweep dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S requency Sweep dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S requency Sweep dBm dBm	Offset 36.40 dB 🗢			io Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S requency Sweep dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S equency Sweep dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S equency Sweep dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S equency Sweep dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
tef Level 36.40 dBm C tut 20 dB S S requency Sweep dBm dBm Bm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
dBm dBm dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
dBm dBm dBm dBm	Offset 36.40 dB 🗢			o Sweep			Measuring.	• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tut 20 dB S S requency Sweep dBm dBm dBm dBm dBm	Offset 36.40 dB 🗢			o Sweep				• 1Rm (1[1] -32.87
	Offset 36.40 dB 🗢			o Sweep				• 1Rm (1[1] -32.87
kef Level 36.40 dBm C Att 20 dB • S requency Sweep dBm dBm dBm dBm dBm dBm dBm	Offset 36.40 dB 🗢			o Sweep				• 1Rm (1[1] -32.87
kef Level 36.40 dBm C Att 20 dB • S requency Sweep dBm dBm dBm dBm dBm dBm dBm	Offset 36.40 dB 🗢			o Sweep				• 1Rm (1[1] -32.87
ef Level 36.40 dBm C tt 20 dB S S requency Sweep dBm dBm dBm dBm dBm dBm dBm dBm	Offset 36.40 dB 🗢			o Sweep				• 1Rm (1[1] -32.87
kef Level 36.40 dBm C Att 20 dB © S requency Sweep dBm dBm dBm dBm dBm dBm	Offset 36.40 dB 🗢					25.0 MHz/		• 1Rm (1[1] -32.87 15.995 1(

TEST REPORT

Ref Level 46.10 dBm	Offset 46.10 dB • RBW	1 MHz				
Att 10 dB 🗢 🗄	SWT 1 s • VBW	3 MHz Mode Auto Swe	≥p			
Frequency Sweep						O 1Rm Clr
					M1	[1] -25.46 d
0 dBm						21.681 80 (
0 dBm						
0 dBm						
0 dBm						
I0 dBm						
10 dBm						
					M1	
0 dBm				and the second s		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 dBm						
i0 dBm						
6.0 GHz		1001 pts		700.0 MHz/		23.0 (

Channel Position T

Att 30 dB SWT	10 s 🗢 VBW 3 MHz	Mode Auto Sweep		
Frequency Sweep				• 1Rm Clrv
				M1[1] -46.03 dl
dBm				2.105 739 0
0 dBm				
0 dBm				
i0 dBm				
10 dBm				
0 dBm				
o ubiii				
60 dBm				
/0 dBm				
0 dBm				
90 dBm				

MultiView 💶 Spect	rum 🗙	Spectrum 2 🗙	Spectrum 3	×				
Ref Level 4.10 dBm C								
Att 30 dB S 1 Frequency Sweep	•wi 10 s ⊂ v	BW 3 MHz Mode Auto S	weep					0 1Rm Clrw
	1						M	1[1] -45.33 dBm
0 dBm								2.213 370 GHz
10.10								
-10 dBm								
-20 dBm								
(1977) 1880								
-30 dBm								
-40 dBm								
Ň								
50 dBm				1 1				
/ L						·····		
-60 dBm								
-70 dBm								
-80 dBm								
-90 dBm								
CF 3.100 5 GHz		4000 pt:		1	79.9 MHz/			Span 1.799 GHz
er 5.1005 en 2		4000 pt.			/	✓ Measuring		EXT 2023-07-05 08:45:58

MultiView 📰 Spectru	m 🗙 Spect	rum 2 🗙	Spectrum 3	×			
	fset 42.60 dB • RBW						
Att 20 dB • SW Frequency Sweep	/T 10 s ⊂ VBW ∃	MHz Mode Auto	Sweep				• 1Rm Clrw
40 dBm						M1	[1] -24.18 dB
							5.922 250 G
IO dBm							
0 dBm							
0 dBm							
10 dBm							
20 dBm							
							.
30 dBm							
40 dBm							
50 dBm							
F 5.0 GHz		4000 pts		200.0 MHz/			Span 2.0 GH
					👻 Measuring	D	CT 2023-07-0

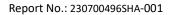
Ref Level -6.20 dBm Of	fset 4.00 dB • RBW	m 2 X Spec		Spectrum 3	×			
Att 25 dB = SV		3 MHz Mode Auto S	weep					
requency Sweep								• 1Rm C
) dBm							(W1[1] -54.80
								7.486 9
dBm								
	M1							
dBm			······································		Waran and and and and and and and and and a			
dBm								
0 dBm								
.375 GHz		1001 pts		67	5.0 MHz/			Span 6.75
↓ ultiView 📑 Spectr						→ Measuring.		EXT 202 REF :
ef Level 36.40 dBm O	ffset 36.40 dB 🗢 RBW	V 1 MHz				+ Measuring.		
ef Level 36.40 dBm O tt 20 dB © 51	ffset 36.40 dB 🗢 RBW					+ Measuring.		REF
ef Level 36.40 dBm O tt 20 dB © 51	ffset 36.40 dB 🗢 RBW	V 1 MHz				✓ Measuring.		REF 1Rm
ef Level 36.40 dBm O tt 20 dB = 5V equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				✓ Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB = 5V equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB S equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB S equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB S S equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB S S equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB S S equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB © SV equency Sweep dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB © SV equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB © SV equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB © SV equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB © SV equency Sweep	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB e SV equency Sweep dBm dBm dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB e SV equency Sweep dBm dBm dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB e SV requency Sweep dBm dBm dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB e SV requency Sweep dBm dBm dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		
ef Level 36.40 dBm O tt 20 dB e SV requency Sweep dBm dBm dBm dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04
ef Level 36.40 dBm O tt 20 dB e SV equency Sweep JBm JBm JBm dBm dBm dBm	ffset 36.40 dB 🗢 RBW	V 1 MHz				Measuring.		• 1Rm (1[1] -33.04

TEST REPORT

Ref Level 46.10 dBm O								
Att 10 dB • 5 Frequency Sweep	WT 1s SVBW	3 MHz Mode Auto	Sweep					• 1Rm Clr
inequency sweep	1		i de la companya de l				M1	[1] -25.69 d
0 dBm								21.625 90
) dBm								
dBm								
0 dBm								
0 dBm								
						M	11	
) dBm								
0 dBm								
0 dBm								
i.0 GHz		1001 pts		-70	0.0 MHz/			23.0

NR-2C-B66

Antenna Port	Channel Position	Modulation	Carrier BW (MHz)	RBW (kHz)	Limit (dBm)
B-2	М	QPSK	35	1000	-19.02


MultiView 🖴	_	Spectrum 2	×	Spectrum 3	×			
Ref Level 7.50 dBi		KBW 1MHz /BW 3MHz Mod	a Auto S					
Frequency Sweep	105 - 1		e Auto s	weep				• 1Rm Clrv
) dBm							M	11[1] -37.80 dB 2.105 739 Gł
10 dBm								
20 dBm								
40 dBm								
50 dBm								
50 dBm	A		19 a 19 ann 20 a 19 a 1		**************************************			
70 dBm								
80 dBm								
90 dBm								
F 1.054 504 5 GHz			4200 pt:	5		210.9 MHz/	Spa	an 2.108 991 GH

Channel Position M

MultiView 💶 Spectr	um X Spect	rum 2 🗙 Spec	trum 3 🗙			
	ffset 4.10 dB = RBW 1 N					
● Att 30 dB ● S\ 1 Frequency Sweep	WI 105 ♥ VBW 310	Hz Mode Auto Sweep				• 1Rm Clrw
0 dBm					M	1[1] -51.02 dBr
						3.210 010 GH
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm			M1			
	A			have been a second and the second		
-60 dBm						
-70 dBm						
-80 dBm						
-90 dBm						
CF 3.100 5 GHz		4000 pts		179.9 MHz/		Span 1.799 GH:
					Measuring	EXT 2023-07-0 REF 08:53:5

AultiView 🎫 S	pectrum	× Spec	trum 2 🗙	Spectrum 3	×				
Ref Level 42.60 dBr									
Att 20 d Frequency Sweep	B ⊜ SWT	10 s 🗢 VBW	3 MHz Mode Au	ito Sweep				0	1Rm Clr
0 dBm								M1[1]	
								5.9	926 250
) dBm									
) dBm									
18m									
0 dBm									
) dBm									M1
	۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ -								
) dBm									
) dBm									
) dBm									
5.0 GHz			4000 p	ots	20	00.0 MHz/		Spa	an 2.0
							👻 Measuring		2023-09

	× Spectrum		Spectrum 4	× Spectrum 3	×			
Ref Level -6.20 dBm Offs Att 25 dB = SW1	et 4.00 dB = RBW 1	MHz MHz Mode A	uto Euroop					
requency Sweep	1 S = VBW 3	MHZ WOODE A	uto Sweep					• 1Rm Cl
0 dBm							1	M1[1] -54.90 d
								7.493 60
0 dBm								
0 dBm								
0 dBm								
0 dBm								
	M1							
dBm Turner								
	L							
) dBm								
) dBm								
- up in								
) dBer								
) dBm								
90 dBm								
9.375 GHz		100	1 pts	6	75.0 MHz/			Span 6.75
• ultiView == Spectru	m					→ Measuring		
Ref Level 36.40 dBm Off	set 36.40 dB 🗢 RBW					- Measuring		
Ref Level 36.40 dBm Off Att 20 dB • SW	set 36.40 dB 🗢 RBW	1 MHz 3 MHz Mode	Auto Sweep			→ Measuring		REF U ETA d
Ref Level 36.40 dBm Off Att 20 dB • SW	set 36.40 dB 🗢 RBW		Auto Sweep			• Measuring		• 1Rm (
Ref Level 36.40 dBm Off Att 20 dB • SW requency Sweep	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Ref Level 36.40 dBm Off Att 20 dB • SW requency Sweep	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
tef Level 36.40 dBm Off tt 20 dB © SW requency Sweep dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Ref Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
kef Level 36.40 dBm Off ktt 20 dB © SW requency Sweep dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Kef Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Kef Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Kef Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Kef Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
kef Level 36.40 dBm Off ktt 20 dB © SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
kef Level 36.40 dBm Off ktt 20 dB © SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm (1[1] -33.10
Kef Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring.		• 1Rm C 1[1] -33.10
kef Level 36.40 dBm Off kt 20 dB © SW requency Sweep dBm dBm dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm (1[1] -33.10 15.936 7(
Ref Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm dBm dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm C 1[1] -33.10 15.936 7(
Ref Level 36.40 dBm Off Att 20 dB • SW requency Sweep dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm C 1[1] -33.10 15.936 70
	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm C 1[1] -33.10 15.936 7(
Ref Level 36.40 dBm Off Att 20 dB © SW requency Sweep dBm dBm dBm dBm dBm	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm C 1[1] -33.10 15.936 70
Ref Level 36.40 dBm Off Att 20 dB © SW requency Sweep	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm C 1[1] -33.10 15.936 70
Kef Level 36.40 dBm Off Att 20 dB © SW requency Sweep	set 36.40 dB 🗢 RBW		Auto Sweep			Measuring		• 1Rm C 1[1] -33.10 15.936 70

TEST REPORT

MultiView 📰 S	pectrum							+				
Ref Level 46.10 dBm Att 10 dB		 RBW 1 MHz VBW 3 MHz Mode A 	uto Sween									
Frequency Sweep • 1Rm Claw												
		l l					M	[1] -25.61 dBm				
40 dBm								21.597 90 GH				
30 dBm												
20 dBm												
10 dBm												
0 dBm												
-10 dBm												
-20 dBm						M						
						- mark						
-30 dBm					and the second							
	The second se											
-40 dBm												
-50 dBm												
16.0 GHz		1001	pts	70	00.0 MHz/			23.0 GHz				
						- Measuring.	E	EF 09:41:52				