

Keysight S	pectrum Analyzer - Occupied	BW									
RL	RF 50 Ω DC			S	ENSE:INT	AL	IGN AUTO			03:33:4 Radio Std: N	7 PM Sep 22, 201
enter			#IFGain:Low		Trig: Free #Atten: 24	Run dB	Avg Hold: 2	200/2	200	Radio Devic	e: BTS
IO dB/div	Ref 51.35 dB	m									
41.4				\rightarrow				\square			
31.4			manna	- Ala	www.	mmmm	hann				
21.4		{		\rightarrow				F	\		
11.4			_	-				\vdash	<u>\</u>		
1.35				\rightarrow				\vdash	1		
3.65			_	\rightarrow				\vdash	\rightarrow		
8.7				\rightarrow				\vdash			
38.7 M	nousehown	my						$\left \right $	470.04N	Man Manter	annogen.
38.7				+				\vdash			
enter	874.5 MHz									Sp	an 10 MH
Res BV	V 51 kHz				#VE	3W 160 kHz	Z			S	veep 5 m
Occi	upied Bandwid	lth			Total P	ower	53.2 di	Зm			
	4	.4804	4 MHz								
Trans	smit Freq Error	-3	.775 kHz		% of O	BW Power	99.00	%			
x dB	Bandwidth	4.	.781 MHz		x dB		-26.00	dB			
G							STATUS				

Antenna B - LTE Modulation QPSK - LTE Carrier Bandwidth 5.0 MHz - Channel Position M

Keysight Spectrur	m Analyzer - Occupied	BW									0 0 0
RL	RF 50 Ω DC			SENSE:IN	T	ALI	GN AUTO			10:25:3	7 AM Sep 25, 201
Center Freq	874.500000	MHz		Trig	Free Run	1.500000 N	AvalHold:	200/20	0	Radio Std:	None
			#IFGain:Low	#Att	en: 24 dB				5.0	Radio Devie	e: BTS
10 10 11	Dof 54 44 dE										
Loa	Rel 51.11 de	5111								-	r
41.1								++			
31.1			man	mm	mound	renhand	man	my			
		1						A			
21.1		1									
11.1		ſ			_			++			
1.11	-			-				++	1	-	
-8.89	-			-				++	1		
-18.9								\vdash	1		
28.9	monorm	MAM							mon	mannon	manne
28.0											
-30.9											
Center 874.	5 MHz			_						S	an 10 MH
#Res BW 51	kHz				#VBW 1	60 kHz				S	weep 5 ms
Occupie	d Bandwig	lth		То	tal Powe	r	53.2 d	Bm			
occupie	a Banama	404									
	4	.481	3 MHZ								
Transmit	Freq Error	-4	1.560 kHz	%	of OBW I	Power	99.0	0 %			
x dB Ban	dwidth	4	807 MHz	xd	B		-26.00	dB			
A ab ban		-		~ ~ ~	-		20.00				
ISG							STATUS				

A = L = M = L = M = L = M = L = U = L = U = U = U = U = U = U = U

Keysight Spe	ectrum Analyzer - Occupied BW	/										
RL Contor Er	RF 50 Ω DC			S	ENSE:INT	a: 877,500000	IGN AUTO				03:42:2	3 PM Sep 22, 2017
venter Fr			#IFGain:Low	- - -	Trig: Free #Atten: 24	Run dB	Avg Hold: 2	200/2	200		Radio Devic	e: BTS
10 dB/div	Ref 51.31 dBm	<u>،</u>										
41.3			_	+				\square				
31.3		f	mmmm	m.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	hanne topen	h-1				
21.3		A	_	+				\square	Ĺ			
11.3		[]	_	\rightarrow					ł			
1.31				\rightarrow					1			
8.69		-+	_	\rightarrow				\square				
18.7			_	\rightarrow					1			
28.7	man approximation	1000	_							mm	mannenna	WHIME'S S
-38.7				\rightarrow								Contraction of the second seco
Center 87 #Res BW	77.5 MHz 51 kHz				#VE	W 160 kHz	z				Sp Sv	oan 10 MHz veep 5 ms
Occup	pied Bandwidt	h			Total P	ower	53.2 di	Bm				
	4.4	4784	4 MHz									
Transn	nit Freq Error	-6	.161 kHz		% of O	3W Power	99.00) %	,			
x dB B	andwidth	4.	776 MHz		x dB		-26.00	dB	•			
ISG							STATUS					

Antenna B - LTE Modulation QPSK - LTE Carrier Bandwidth 5.0 MHz - Channel Position T

Keysight Spectrum Analyzer - Occupied BW	E							00
RL RF 50 Ω DC			SENSE:INT	ALIGN AL	ITO		10:43:2	6 AM Sep 25, 20
enter Freq 877.500000 M	MHz		Trig: Free Run	SUUUUU MHZ Av	alHold: 200	/200	Radio Std: I	None
	#15	FGain:Low	#Atten: 24 dB			10 C 10 C 10	Radio Devic	e: BTS
Didity Dof 51 12 dBm								
a Rei 51.12 ubii	<u> </u>			-		1		-
1								
1	- ma	mann	monormound	manna	mun	-		
1	1					N		
	/					1		
	1					1		0
2						++		
3						++		1
						+		
annon months and	w					man	mehring	Same a
9						<u> </u>		- vrm
nter 877.5 MHz							Sp	oan 10 M
es BW 51 kHz			#VBW 10	60 kHz			S	weep 5 r
Occupied Rendwidt	h		Total Power		3 1 dBr	n		
Occupied Bandwidt			i otari i ower		0.1 001			
4.4	4794	MHz						
Fransmit Freq Error	-7.0	18 kHz	% of OBW P	ower	99.00 9	6		
dB Bandwidth	4 70		x dB		26 00 d	R		
	4.10	4 11112	A GD		20.00 a	-		

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 10.0 MHz - Channel Position B

Keysight Spe	ctrum Analyzer - Occupied B	N								- 6
enter Fi	RF 50 Ω DC	MHz		SENSE:INT	req: 874.000000	IGN AUTO			03:50:1 Radio Std: N	8 PM Sep 22, 2017 Ione
			#IFGain:Low	#Atten: 2	e Run 6 dB	Avg Hold: 20	0/200)	Radio Devic	e: BTS
0 dB/div	Ref 51.64 dBr	n								
.og										
31.6			man	-	mannan mar	mmmm	m			
21.6							N.			
11.6		}					X			
1.64							1	L		
3.36										
8.4								1		
8.4 wmmhn	warmen when the	waav/		_				lbore	mon	mour
38.4							_			
L anter 8	74 MHz								Cr	an 20 MH
Res BW	100 kHz			#V	'BW 300 kHz	<u>.</u>			Sweep	o 1.933 m
Occup	pied Bandwid	th		Total	Power	53.6 dB	m			
	8.	9411	1 MHz							
Transr	nit Freq Error	3	.559 kHz	% of C	BW Power	99.00	%			
x dB B	andwidth	9.	599 MHz	x dB		-26.00 d	в			
G						STATUS				

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 10.0 MHz - Channel Position M

Keysight Spectr	rum Analyzer - Occupied BV	V.:										0
RL Fro	RF 50 Ω DC		_	SE	Center Fre	AL	IGN AUTO				Dadio Std:	29 PM Sep 22, 21
nter Fre	eq 874.500000 i		#IFGain:Low	•••	Trig: Free #Atten: 24	Run dB	Avg Hold:	200/	200		Radio Devi	ce: BTS
dB/div	Ref 51.67 dBn	n					v.					
7												
7			mon	mon	mound	manne	man	m	1			
		A							1			
		1			i i i i i i i i i i i i i i i i i i i				1			
					l.				1			
		1					-		1			
hann	mommen	m							1	nm	mm	
											- W.y	man
,												
nter 874 es BW 1	4.5 MHz 100 kHz				#VE	300 kHz	2				S Swee	pan 20 M p 1.933
Occupi	ied Bandwidt	h			Total P	ower	53.7 d	Bm	1			
	8.	9578	B MHz									
ransmi	it Freq Error	2	.250 kHz		% of O	BW Power	99.0	0 %	b			
dB Ba	ndwidth	9.	572 MHz		x dB		-26.00	dE	3			
							STATUS					

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 10.0 MHz - Channel Position T

Keysight Spectrum Analyzer - Occupied BW				- 6
enter Freq 875.000000 M	IHz	Center Freq: 875.000000 Trig: Free Run	MHz Avg Hold: 200/200	03:58:19 PM Sep 22, 201 Radio Std: None
	#IFGain:Low	#Atten: 26 dB		Radio Device: BTS
0 dB/div Ref 51.63 dBm				
og				
1.6	manne	Anna and and and and and and and and and	monne	
1.6				
1.6	1			
1.6				
63				
3/				
	~			warman .
2.4				a north and a start of the second sec
.4				
enter 875 MHz Res BW 100 kHz		#VBW 300 kH	z	Span 20 MH Sweep 1.933 n
Occupied Bandwidth	<u>וווווווווווווווווווווווווווווווווווו</u>	Total Power	53.7 dBm	
8.9	358 MHz			
Transmit Freq Error	4.678 kHz	% of OBW Power	r 99.00 %	
x dB Bandwidth	9.647 MHz	x dB	-26.00 dB	
3			STATUS	

Configuration B

			Result	(KHz)
Antenna	LIE	LIE Carrier Bandwidth	Channel F	Position M
	Woddiation	Banawiath	Occupied Bandwidth	-26 dB Bandwidth
A	QPSK	1.4 MHz	10,701.32	10,887.08
А	QPSK	3.0 MHz	10,680.28	10,924.34
A	QPSK	5.0 MHz	10,431.79	10,822.59

Reysight Spectrum Analyzer - Occupied BW		CENCE INT AL		04:06:18 DM See 22
nter Freg 874 500000 M	AH _Z	Center Freq: 874.500000	MHz	Radio Std: None
		Trig: Free Run	Avg Hold: 200/200	
	#IFGain:Low	#Atten: 22 dB		Radio Device: BTS
B/div Ref 48.37 dBm	1			
	1			
4			4	
۱ <u> </u>				
4				
,	1			
	- Marchart Marchart		Ar m	
Manum nanador marsh	where a	and make may an a head of any south	we we	many marcenter barrenter
nter 874.5 MHz				Span 27.5 l
es BW 15 kHz		#VBW 43 kHz		Sweep 117.3
Desuried Bandwidt	h	Total Power	53.3 dBm	
Jecupieu Balluwiul			00.0 00.0	
10	.701 MHz			
ransmit Freg Error	-8.204 kHz	% of OBW Power	99.00 %	
dB Bandwidth	40.00 MU-	v dD	26.00 dB	
	10.69 MHZ	Xub	-20.00 dB	
			STATUS	

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 1.4 MHz - Channel Position M

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 3.0 MHz - Channel Position M

KF 2032 DC		SENSE:INT	AL	IGN AUTO		04:11:	24 PM Sep 22, 2
nter Freq 874.500000 N	Hz #IFGain:Low	Center Free Trig: Free #Atten: 22	q: 874.500000 Run dB	MHz Avg Hold:	200/200	Radio Std: Radio Devi	None ce: BTS
B/div Ref 47.85 dBm							
3	netronywerth			the market			
				-			
		Trees .	ent		.		-
have all the second and the second	NRUN CHAN	- marine	Li gollow Paralle		"how me	Monderman	mannen
							n 27.5 M
es BW 30 kHz		#VE	3W 91 kHz			Swe	ep 29.2
Secupied Bandwidth	<u>ו</u>	#VE Total P	3W 91 kHz ower	53.2 d	Bm	Swe	ep 29.2
es BW 30 kHz Occupied Bandwidth 10	י .680 MHz	#VE Total P	ower	53.2 d	Bm	Spa Swe	ep 29.2
CCUPIED Bandwidth CCCUPIED Bandwidth 10 Transmit Freq Error	1 .680 MHz -5.329 kHz	#VE Total P % of Ol	BW 91 kHz ower BW Power	53.2 d	Bm 0 %	Spa Swe	ep 29.2
Ccupied Bandwidth	n . 680 MHz -5.329 kHz 10.92 MHz	#VE Total P % of Ol x dB	W 91 kHz ower BW Power	53.2 d 99.00 -26.00	Bm) % dB	Spa Swe	ep 29.2
Ccupied Bandwidth	n . 680 MHz -5.329 kHz 10.92 MHz	#VE Total P % of Ol x dB	8W 91 kHz ower BW Power	53.2 d 99.00 -26.00	Bm) % dB	Spa Swe	ep 29.2

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 5.0 MHz - Channel Position M

Keysight Spectrum Analyzer - Occupi	ed BW							
enter Freg 874.50000	DO MHz		Center Fre	q: 874.500000	MHz		Radio Std: N	S PM Sep 22, 201 Ione
·	#IFG	ain:Low	Trig: Free #Atten: 24	Run dB	Avg Hold:	200/200	Radio Devic	e: BTS
0 dB/div Ref 48.77 d	1Bm							
18.8								
8.8	- ł	man and	mannen	menter	gnwonneter			
8.8	4			1				
.77	1		+					
23			+					
1.2				}		1		
1.2			- La	W		hursen a		
1.2 minute and and and a second second						1 Martin Maker	mulalmon	wheethour
1.2	+							-
enter 874.5 MHz							Spa	n 27.5 MH
Res BW 51 kHz			#VE	3W 150 kH	z		Sweep	o 10.13 m
Occupied Bandw	idth		Total P	ower	53.5 d	Bm		
	10.432 N	/Hz						
Transmit Freq Error	- 31	88 Hz	% of O	BW Power	99.0	0 %		
x dB Bandwidth	10.82	MHz	x dB		-26.00	dB		
G					STATUS			

Configuration C

Antenna			Result (KHz)				
	LTE Modulation	LTE Carrier Bandwidth	Channel Position M				
		Danowidin	Occupied Bandwidth	-26 dB Bandwidth			
A	QPSK	1.4 MHz	10,680.47	10,887.68			
А	QPSK	3.0 MHz	10,645.48	10,924.75			

Antenna A - LIE Modulation QPSK - LIE Carrier Bandwidth 1.4 MHZ - Channel Position M
--

😐 Ke	ysight Spectrum A	Analyzer - Occupied	BW									
XI R	L RF	50 Ω DC	D MLI-			SENSE:INT	AL	IGN AUT	0		04:25:39 Radio Std: N	PM Sep 22, 2017
Cer	iter Freq a	374.50000	J IVIAZ #IF	Gain:L	.ow 🔶	Trig: Free #Atten: 22	Run dB	Avg	Hold:	200/200	Radio Devic	e: BTS
10 d	B/div F	tef 46.53 dl	Зm									
36.5												
26.5				any				ma	preven			
16.5												
6.53					ł				1			
0.55									í	1		
-3.47					t				•	1		
-13.5												
-23.5	distant.			-	hours					h.,		
-33.5	Same in the Second	canage and the	adren all a forth			and the second	-			Theldygy		
-43.5				-						-		1.
Cer	ter 874.5	MH7		-							Sna	n 27 5 MHz
#Re	s BW 15 k	Hz				#VE	SW 43 kHz				Sweep	117.3 ms
c	Occupied	Bandwi	dth			Total P	ower	53	3.4 d	Bm		
		1	0.680	MH	z							
т	ransmit F	req Error	-4.5	07 kl	Hz	% of O	BW Power		99.0	0 %		
x	dB Band	width	10.8	9 MI	Hz	x dB		-2	6.00	dB		
ISG								STA	TUS			

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 3.0 MHz - Channel Position M

Keysight Sp	ectrum Analyzer - Occupied BW								0
RL	RF 50 Ω DC			SENSE:INT	A	LIGN AUTO		04:32:1	PM Sep 22, 201
Center F	req 874.500000 N	IHZ	_	Trig: Free	eq: 8/4.500000	AvalHold:	200/200	Radio Std: P	lone
		#IFG	ain:Low	#Atten: 2	4 dB			Radio Devic	e: BTS
10 dB/div	Ref 45 94 dBm								
Log		<u> </u>			1	1	<u> </u>		
35.9							-		
25.9		r	mulantica		and muching	mounder			
15.9		1							-
5.04		1			1 1/		1		
0.34					1				
4.06		1			1				-
-14.1									-
-24.1		enthrout		humbe			Halan	-	
34.1 -	S/Paparana						- Multu	mound	والمرادية والمرادية
-44.1									
Center 8	74.5 MHZ			#V				Spa	n 27.5 MH: n 20.2 m
FRES DW	JU KHZ			#*	DW 91KHZ			Swee	p 29.2 m
Occu	pied Bandwidth	1		Total I	Power	53.2 d	Bm		
	10	645 N	/Hz						
	10	.040 1							
Transi	nit Freq Error	-9.15 ′	1 kHz	% of C	BW Powe	r 99.00	0 %		
x dB B	andwidth	10.92	MHz	x dB		-26.00	dB		
ISG						STATUS			

2.3 BAND EDGE

2.3.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 22, Clause 22.917

2.3.2 Date of Test and Modification State

22, 26 and 27 September 2017 - Modification State 0

2.3.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.4 Environmental Conditions

Ambient Temperature	21.2 - 22.5°C
Relative Humidity	53.8 - 55.2%

2.3.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01 Clause 6.

The EUT was connected to a Spectrum Analyser via 40 dB of attenuation. The path loss between the EUT and the Spectrum Analyser was measured using a Network Analyser. The measured path loss was entered as a Reference Level Offset in the Spectrum Analyser. All measurements were made using a RBW of <1 % of the 26 dB Bandwidth in conjunction with the Band Power function of the Spectrum Analyser. The Band Power span was configured to be at least 1 % of the 26 dB Bandwidth and was positioned in the 1MHz region above/below the band edge which gave the worst-case result. The result was an integration of the power giving the result as a value which was at least 1 % of the 26 dB Bandwidth. The display line was set to the worst case accounting for 2 Port MIMO operation in accordance with KDB 662911 D01. This equated to 43 + 10log(P) – 10log(2) = -16dBm.

Additional plots were shown for measurements from 1 - 5 MHz away from the Band Edge. A RBW of 51 kHz was used with the limit line corrected by $10\log(100 \text{ kHz} / 51 \text{ kHz}) = 3 \text{ db}$. Therefore, the limit line accounting for MIMO and the reduced RBW was set at -19 dBm.

2.3.6 Test Results

Configuration A

Antenna			Band Edge (MHz)			
	LIE MODULATION	LIE Carner Bandwidth	Channel Position B	Channel Position T		
A	QPSK	1.4 MHz	869.7	879.3		
A	QPSK	3.0 MHz	870.5	878.5		
A	QPSK	5.0 MHz	871.5	877.5		
В	QPSK	5.0 MHz	871.5	877.5		
А	QPSK	10.0 MHz	874.0	875.0		

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 1.4 MHz - Channel Position B

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC Center Freq 880.000000 MHz 10:43:50 AM Sep 25, 2017 TRACE 1 2 3 4 5 6 TYPE WWWWW DET A NNNNN ALIG AVg Type: RMS Trig: Free Run #Atten: 18 dB PNO: Wide IFGain:Lov ----n:Low Mkr1 880.026 MHz Band Power -32.10 dBm Ref Offset 40.5 dB Ref 42.50 dBm 10 dB/div 32. 22 for share be and the second mar with 12. 2.50 -7.50 DL1 -16.01 dB -17.5 -27.5 -37.5 2 unw. *** Y WONTH IN -47.5 Center 880.000 MHz #Res BW 5.1 kHz Span 2.000 MHz #Sweep 5.000 s (1001 pts) #VBW 16 kHz* MSG STATUS Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC Center Freq 883.500000 MHz 10:44:04 AM Sep 25, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNN Avg Type: RMS Avg|Hold: 1/1 Trig: Free Run #Atten: 18 dB PNO: Wide IFGain:Low -Mkr1 881.050 MHz -35.699 dBm Ref Offset 40.5 dB Ref 25.98 dBm 10 dB/div 16.0 5.9 -4.02 -14.0

Antenna B - LTE Modulation QPSK - LTE Carrier Bandwidth 5.0 MHz - Channel Position T

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 10.0 MHz - Channel Position B

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 10.0 MHz - Channel Position T

Configuration B

Antonno		LTE Carrier	Band Edge (MHz)			
Antenna	LIE Modulation	Bandwidth	Channel Position B	Channel Position T		
А	QPSK	1.4 MHz	869.7+871.1	877.9+879.3		
A	QPSK	3.0 MHz	870.5+873.5	875.5+878.5		
A	QPSK	5.0 MHz	871.5+876.5	872.5+877.5		

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 1.4 MHz - Channel Position B

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 1.4 MHz - Channel Position T

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 3.0 MHz - Channel Position B

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 5.0 MHz - Channel Position T

Configuration C

Antenna LTE Modulation		LTE Carrier	Band Edge (MHz)			
	LIE Modulation	Bandwidth	Channel Position B	Channel Position T		
A	QPSK	1.4 MHz	869.7+871.1+872.5	876.5+877.9+879.3		
A	QPSK	3.0 MHz	870.5+873.5+876.5	871.5+874.5+877.5		

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 1.4 MHz - Channel Position B

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 1.4 MHz - Channel Position T

Antenna A - LTE Modulation QPSK - LTE Carrier Bandwidth 3.0 MHz - Channel Position T

Limit -13 dBm