

Contact person
Tomas Lennhager
Electronics
+46 10 516 54 09
Tomas.Lennhager@sp.se

Date Reference Page 2016-01-19 5P06895-F27 L+W 1 (2)

Ericsson AB Mats Falk PDU HW Lindholmspiren11

417 56 Göteborg

Radio measurements on Radio 2203 B66A 1700/2100 MHz radio equipment with FCC ID: TA8AKRC161553-1 and IC: 287AB-

AS1615531 (5 appendices)

Test object

Product name: Radio 2203 B66A. Product number: KRC 161 553/1.

Summary

Standard		Compliant	Appendix
FCC CFR 47 part 2 and 27 / IC RSS-139 Issue 3			
2.1046 / RSS-139 6.5	RF power output	Yes	2
2.1051 / RSS-139 6.6	Spurious emission at antenna terminals	Yes	3
2.1053 / RSS-139 6.6	Field strength of spurious radiation	Yes	4

SP Technical Research Institute of Sweden Electronics - EMC

Performed by Examined by

Tomas Lennhager Krister Kilbrandt

Table of contents

Description of the test object	Appendix 1
Operation mode during measurements	Appendix 1
Test setups	Appendix 1
Purpose of test	Appendix 1
RF power output	Appendix 2
Spurious emission at antenna terminals	Appendix 3
Field strength of spurious radiation	Appendix 4
External photos	Appendix 5

Description of the test object

Equipment: Product name: Radio 2203 B66A

Product number: KRC 161 553/1

FCC ID: FCC ID TA8AKRC161553-1

IC ID: IC 287AB-AS1615531

HVIN: AS1615531

Hardware revision state: R1B

FVIN: CXP 901 7316/2 rev. R62CC

Tested configuration: Multi standard radio (MSR) WCDMA+LTE

Frequency bands: TX: 2110 – 2180 MHz

RX: 1710 - 1780 MHz

Note: WCDMA carriers limited to: 2110-2155/ 1710-1755 MHz.

LTE no limitation.

IBW WCDMA: 45 MHz, Valid for all power classes in both contiguous and nor

contiguous operation.

IBW LTE: 45 MHz for 5, 10, 15 and 20 MHz Bandwidth

25 MHz for 1.4 and 3 MHz Bandwidth

Antenna ports: 2 TX/RX ports, (internally connected to integrated Cross-

Polarized antenna elements)

RF configuration: WCDMA+LTE MIMO:

LTE: 1-3 carriers (1.4, 3, 5, 10 and 15 MHz BW), 2 carriers

(20 MHz)

WCDMA: 1-4 carriers
Total numbers of carriers: 5

RF power tolerance + 0.6 / - 2.0 dB

Nominal output power 2 x 34 dBm (5W) per antenna port: 3 x 32.5 dBm (5W)

4 x 31 dBm (5W) 5 x 30 dBm (5W)

Frequency stability tolerance: ± 0.05 PPM

Optional internal antenna type: Integrated wide sector antenna, cross polarized antenna

elements for indoor and outdoor use.

Product no KRE 101 2249/1, Antenna gain 10.1 dBi

Tested external antenna types: Semi-Integrated Omni Antenna for indoor and outdoor use.

Product no KRE 101 2233/1, antenna gain 2 dBi Product no KRE 101 2245/1, antenna gain 2 dBi

Channel bandwidths LTE: 1.4, 3, 5 MHz, 10 MHz, 15 MHz and 20 MHz

Channel bandwidths WCDMA: 4.2 to 5 MHz (configurable in steps of 100/200 kHz)

Channel spacing WCDMA: 4.4 to 5 MHz (configurable in steps of 100/200 kHz)

Nominal supply voltage: 36 VDC

Operation mode during measurements

MSR, WCDMA + LTE

REPORT

WCDMA measurements were performed with the test object transmitting test models as defined in 3GPP TS 37.141. Test model 1 (TM1) was used to represent QPSK. Test model 5 (TM5) to represent 16QAM modulation and Test model 6 (TM6) to represent 64QAM modulation.

LTE measurements were performed with the test object transmitting test models as defined in 3GPP TS 37.141. Test model E-TM1.1 was used to represent QPSK, test model E-TM3.2 to represent 16QAM, test model E-TM3.1 to represent 64QAM and E-TM3.1A to represent 256QAM modulation.

The settings below were deemed representative for all traffic scenarios when settings with different modulations, channel bandwidths, number of carriers and RF configurations has been tested to find the worst case setting. The settings below were used for all measurements if not otherwise noted.

MIMO mode one WCDMA carrier TM1: 64 DPCH:s at 30 ksps (SF=128)

MIMO mode, two WCDMA carriers TM1: 32 DPCH:s at 30 ksps (SF=128)

Channel bandwidth 5 MHz

LTE MIMO mode E-TM1.1 Channel bandwidth 5 MHz.

Measurements were performed with the test object configured for the maximum transmit power applicable for the tested configuration.

Conducted measurements

The test object was supplied with 36 VDC via the PSU 48 05 if not noted otherwise. Additional connections are documented in the setup drawings below. Complete measurements were made on the RF port representing worst case for each measurement.

Radiated measurements

The test object was tested stand-alone and powered with 36 VDC. All measurements were performed with the test object configured for maximum transmit power. Additional connections are documented in the test setup drawings.

Purpose of test

REPORT

The purpose of the tests is to verify compliance to the performance characteristics specified in applicable items of FCC CFR 47 and Industry Canada RSS-139 and RSS-Gen.

References

Measurements were done according to relevant parts of the following standards:

ANSI 63.4-2009 ANSI/TIA/EIA-603-C-2004 3GPP TS 37.141, version 11.9.0 CFR 47 part 2, October 1st, 2014 CFR 47 part 27, October 1st, 2014 RSS-Gen Issue 4 RSS-139 Issue 3 KDB 662911 Multiple transmitter output v02r01 KDB 971168 D01 Power Meas Licens, v02r02

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor k=2 (95% level of confidence).

Compliance evaluation is based on a shared risk principle with respect to the measurement uncertainty.

Reservation

The test results in this report apply only to the particular test object as declared in the report.

Delivery of test object

The test object was delivered 2015-10-22.

Manufacturer's representative

Ove Nilsson, Ericsson AB.

Test engineers

Tomas Lennhager, Tomas Isbring, Jörgen Wassholm, Patric Augustsson and Rolf Kühn, SP.

Test participants

Magnus Gyllenhammar and Erik Nilsson.

Measurement equipment

	Calibration Due	SP number
Test site Tesla	2017-01	503 881
R&S ESU 40	2016-07	901 385
R&S FSW 43	2016-07	902 073
R&S ESI 26	2016-07	503 292
R&S FSQ 40	2016-07	504 143
Control computer with	-	503 899
R&S software EMC32 version 9.15.0		
High pass filter	2016-07	504 200
High pass filter	2015-12	BX40074
RF attenuator	2016-10	900 691
RF attenuator	2016-10	902 282
Directional coupler	2016-10	901 496
Chase Bilog Antenna CBL 6111A	2017-10	503 182
EMCO Horn Antenna 3115	2016-09	502 175
μComp Nordic, Low Noise Amplifier	2016-01	901 545
Flann STD Gain Horn Antenna 20240-20	-	503 674
Miteq, Low Noise Amplifier	2016-08	503 278
Temperature and humidity meter, Testo 635	2016-04	504 203
Temperature Chamber	-	503 360
Multimeter Fluke 87	2016-08	502 190

Test configurations during conducted and radiated measurements measurements

1W1L5M-Rspr:

REPORT

T THE PROPERTY OF THE PERSON NAMED IN		
	WCDMA	LTE
Power at RF port	(1x 2.5W)	(1x 2.5W)
Downlink	1612	66861
	(2127.4 MHz)	(2152.5 MHz)
Test model	TM1	E-TM1.1
Bandwidth	5 MHz	5 MHz

2W1L5M-Rspr:

	WCDMA	LTE
Power at RF port	(2x 1.25W)	(1x 2.5W)
Downlink	1663	67111
	(2137.6 MHz)	(2177.5 MHz)
Downlink	1738	-
	(2152.6 MHz)	
Test model	TM1	E-TM1.1
Bandwidth	5 MHz	5 MHz

REPORT

Appendix 1

4W1L5M -Rspr:

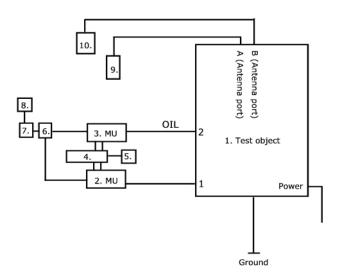
•	WCDMA	LTE
Power at RF port	(4x 0.625W)	(1x 2.5 W)
Downlink	1537	66861
	(2112.4 MHz)	(2152.5 MHz)
Downlink	1562	-
	(2117.4 MHz)	
Downlink	1587	-
	(2122.4 MHz)	
Downlink	1612	-
	(2127.4 MHz)	
Test model	TM1	E-TM1.1
Bandwidth	5 MHz	5 MHz

1W2L20M:

- · ·		
	WCDMA	LTE
Power at RF port	(1x 2.5W)	(2x 1.25 W)
Downlink	1663	66836
	(2137.6 MHz)	(2150.0 MHz)
Downlink	-	67036
		(2170.0 MHz)
Test model	TM1	E-TM1.1
Bandwidth	5 MHz	20 MHz

1W2L1.4M:

	WCDMA	LTE
Power at RF port	(1x 2.5W)	(2x 1.25 W)
Downlink	1738	66443
	(2152.6 MHz)	(2110.7 MHz)
Downlink	-	66543
		(2120.7 MHz)
Test model	TM1	E-TM1.1
Bandwidth	5 MHz	1.4 MHz


All RX frequencies were configured 400 MHz below the corresponding TX frequency according the applicable duplex offset for the operating band.

REPORT

Appendix 1

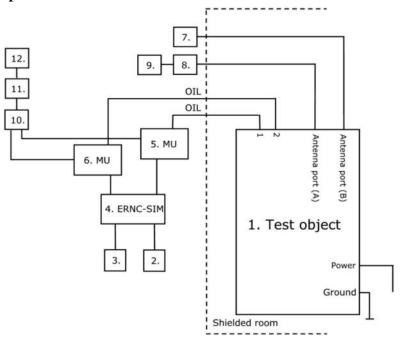
Test set-up conducted measurements

Test object:

1. Radio 2203 B66A, KRC 161 553/1, rev. R1B, s/n: C82A095765 With Radio Software: CXP 901 7316/2, Rev. R62CC FCC ID TA8AKRC161553-1 and IC 287AB-AS1615531

Associated equipment:

2.	RBS 6601 Main Unit:
	SUP 6601, 1/BFL 901 009/4, rev. R1E, s/n: BR81844332
	DUW 41 01, KDU 127 174/4, rev. R2E, s/n: TU8XQ62907
	SW: CXP 902 2391, R5MB46
3.	RBS 6601 Main Unit:
	SUP 6601, 1/BFL 901 009/4, rev. R1A, s/n: BR88258944
	DUS 41 01, KDU 137 624/1, rev. R3C, s/n: C826307257
	SW: CXP 102 051/24, Rev. R13SN
6.	GPS 02 01, NCD 901 41/1, rev. R1D, s/n: TU8K474887
8.	GPS Active Antenna, KRE 101 2082/1


Functional test equipment

	·
4.	ERNC-SIM 065, BAMS – 1000579038
	Switch, Netgear ProSafe GSM 7224, BAMS - 1000850751
5.	HP Z230 Workstation, BAMS – 1001561278
7.	1x4 GPS SPLITTER, KRY 101 1946/1, s/n: FG1017916
9.	SP Test Instrumentation according to measurement equipment list
	The signal analyzer was connected to the SP 10 MHz reference standard during the
	measurements.
10.	Attenuator/ terminator 50 ohm

Test set-up radiated measurements

REPORT

Test object:

1. Radio 2203 B66A, KRC 161 553/1, rev. R1B, S/N: C82A095788
With radio software CXP 901 7316/2, rev. R62CC
FCC ID TA8AKRC161553-1 and IC 287AB-AS1615531

Associated equipment:

5.	RBS 6601 Main Unit:
	SUP 6601, 1/BFL 901 009/4, rev. R1E, s/n: BA88186222
	DUW 41 01, KDU 127 174/4, rev. R2E, S/N: TU8XQ61965
	SW: CXP 902 3291, Rev. R5MB46
6.	RBS 6601 Main Unit:
	SUP 6601, 1/BFL 901 009/4, rev. R1E, s/n: BR82182832
	DUS 41 01, KDU 137 624/1, rev. R3C, s/n: SC826307253
	SW: CXP 102 051/24, Rev. R13SN
10.	GPS 02 01, NCD 901 41/1, rev. R1D, s/n: TU8KH75515
12.	GPS Active Antenna, KRE 101 2082/1

Functional test equipment:

2.	HP Z230 Workstation, BAMS – 1001561277 (DUW)
3.	HP Z230 Workstation, BAMS – 1001561287 (DUS)
4.	ERNC-SIM 065, BAMS-1000579038
	Switch Neatgear ProSafe GSM7224, BAMS – 1000850754
7.	Attenuator/ terminator 50 ohm
8.	Attenuator
9.	R&S ESIB 26 SP 503 292, for supervision only
11.	1x4 GPS SPLITTER, KRY 101 1946/1

Interfaces: Type of port:

Power: 36 VDC	DC Power
RF port A, N connector, combined TX/RX	Antenna
RF port B, N connector, combined TX/RX	Antenna
1, optical interface	Signal
2, optical interface	Signal
Ground wire	Ground

RF power output measurements according to CFR 47 §27.50 / IC RSS-139 6.5

Date	Temperature	Humidity
2015-10-30	23 °C ± 3 °C	21 % ± 5 %
2015-11-02	23 °C ± 3 °C	23 % ± 5 %
2015-11-23	23 °C ± 3 °C	25 % ± 5 %

Test set-up and procedure

The test object was connected to a signal analyzer measuring peak and RMS output power in CDF mode. A resolution bandwidth of 80 MHz was used.

Measurement equipment	SP number
R&S FSW 43	902 073
RF attenuator	900 691
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 1.1 dB

Results

MSR, WCDMA + LTE:

Rated output power level at RF connector 37 dBm.

	Output power CCDF [RMS dBm/ PAR dB]		
BW and symbolic name	Port RF A	Port RF B	Total power ¹⁾
1W1L5M-Rspr	36.9/7.1	36.8/7.2	39.86
2W1L5M-Rspr	36.7/7.4	36.6/7.5	39.66
1W2L20M	36.9/7.4	37.0/ 7.4	39.96
4W1L5M -Rspr	36.6/7.4	36.5/7.4	39.56
1W2L1.4M	36.4/ 7.5	36.4/ 7.5	39.40

^{1):} Summed output power according to FCC KDB662911 D01 Multiple transmitter output.

Note: The PAR value is the 0.1 % Peak to Average Ratio

Limits

§27.50 (d)

The power of each base station transmitting in the 2110-2180 MHz band and located in any county with population density of 100 or fewer persons per square mile is limited to an EIRP of 3280 W/MHz, when transmitting with an emission bandwidth greater than 1 MHz.

The power of each base station transmitting in the 2110-2180 MHz band and situated in any geographic location other than that described above is limited to an EIRP of 1640 W/MHz, when transmitting with an emission bandwidth greater than 1 MHz.

A licensee operating a base station in the 2110-2180 MHz band utilizing a power greater than 1640 watts/MHz EIRP must coordinate such operations in advance with all parties addressed in the rules.

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

RSS-139 6.5:

There is no power limit specified for base station equipment in the RSS-139. EIRP compliance is addressed at the time of licensing, as required by the responsible IC Bureau. Licensee's are required to take into account the antenna gain to get the maximum usable power settings to prevent the radiated output power to exceed the ERP/EIRP limits specified in SRSP-513

When the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

Complies?	Yes

Conducted spurious emission measurements according to CFR 47 §27.53(h)/ IC RSS-139 6.6

Date	Temperature	Humidity
2015-10-30	23 °C ± 3 °C	21 % ± 5 %
2015-11-02	23 °C ± 3 °C	23 % ± 5 %
2015-11-23	23 °C ± 3 °C	25 % ± 5 %

Test set-up and procedure

The measurements were made per definition in §27.53(h) and IC RSS-139.6.6. The output was connected to a spectrum analyzer with a RBW setting of 1 MHz and RMS detector activated.

Before comparing the results to the limit, 3 dB [10 log (2)] should be added according to method 2 "measure and add $10 \log(N_{ANT})$ " of FCC KDB662911 D01 Multiple Transmitter Output.

Measurement equipment	SP number
R&S FSW 43	902 073
RF attenuator	900 691
High pass filter	BX40074
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 3.7 dB

Results

MSR, WCDMA + LTE:

Diagram	Symbolic name	Tested Port
1 a+b+c+d+e	1W1L5M-Rspr	RF A
2 a+b+c+d+e	2W1L5M-Rspr	RF A
3 a+b+c+d+e	1W2L20M	RF A
4 a+b+c+d+e	4W1L5M -Rspr	RF A
5 a+b+c+d+e	1W2L1.4M	RF A

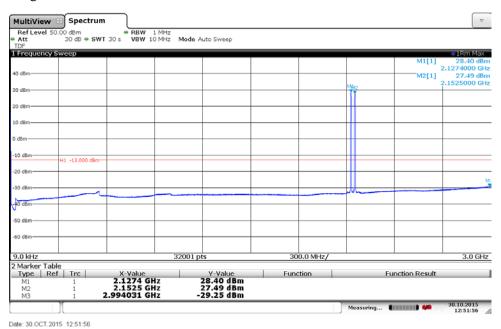
Remark

The emission at 9 kHz on the plots was not generated by the test object. A complementary measurement with a smaller RBW showed that it was related to the LO feed-through.

The highest fundamental frequency is 2.180 GHz. The measurements were made up to 22 GHz (10x2.180 GHz = 21.80 GHz).

Appendix 3

Limits


§27.53(h) and RSS-139 6.6

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, resulting in a limit of -13 dBm per 1 MHz RBW.

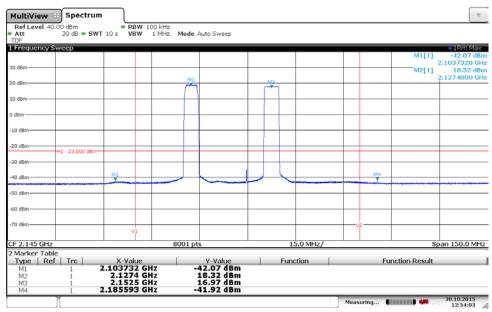
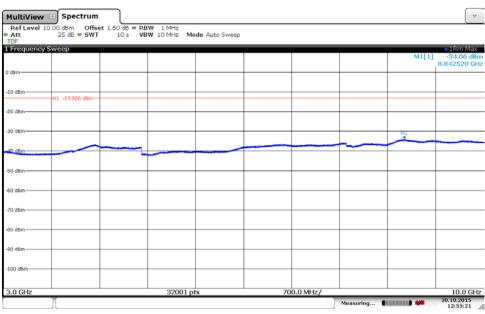

Complies?	Yes
Compiles:	103

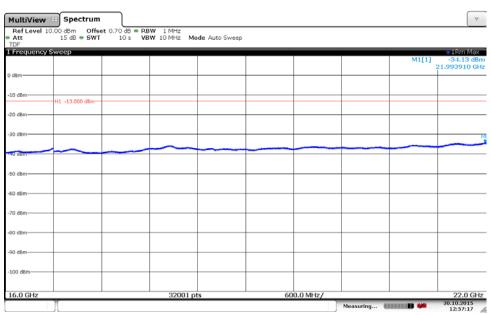
Diagram 1a:


Diagram 1b:

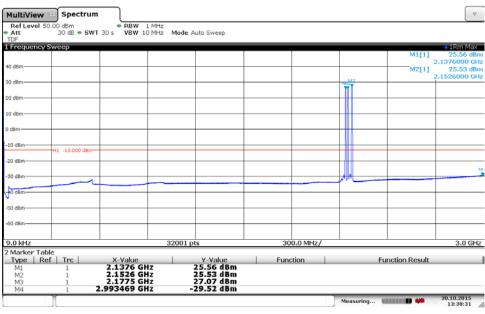
Date: 30.OCT.2015 12:54:04

Diagram 1c:

Date: 30.OCT.2015 12:55:20


Diagram 1d:

Date: 30.OCT.2015 12:56:15


Diagram 1e:

Date: 30.OCT.2015 12:57:17

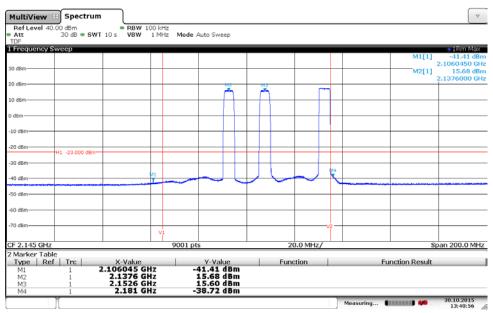
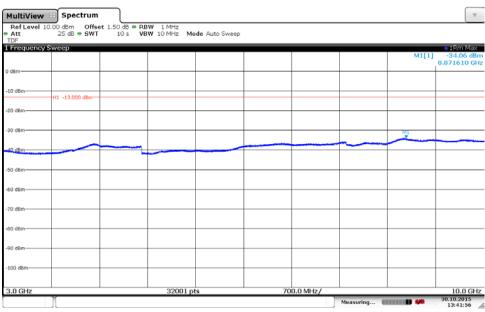


Diagram 2a:

Date: 30.OCT.2015 13:38:31


Diagram 2b:

Date: 30.OCT.2015 13:40:56

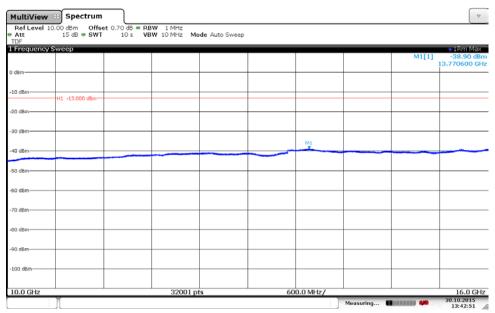
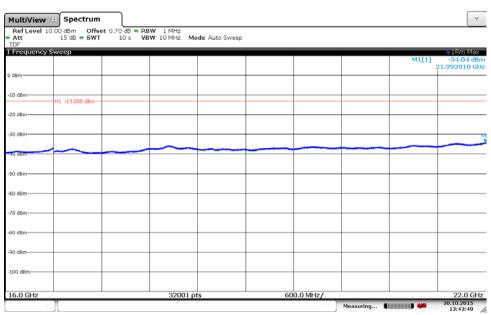


Diagram 2c:

Date: 30.OCT.2015 13:41:56


Diagram 2d:

Date: 30.OCT.2015 13:42:50

Diagram 2e:

Date: 30.OCT.2015 13:43:39

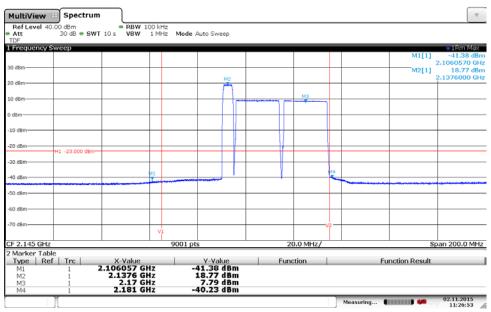
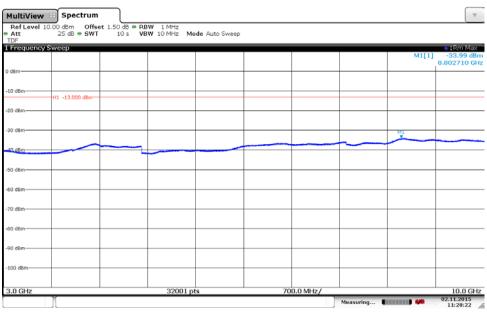


Diagram 3a:

Date: 2.NOV.2015 11:23:47


Diagram 3b:

Date: 2.NOV.2015 11:26:52

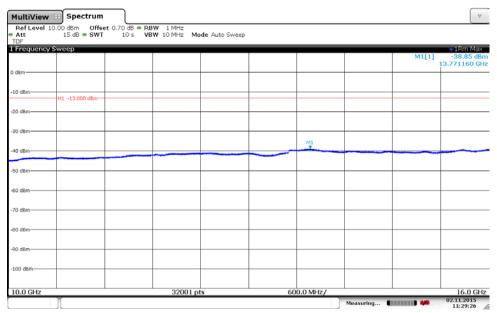
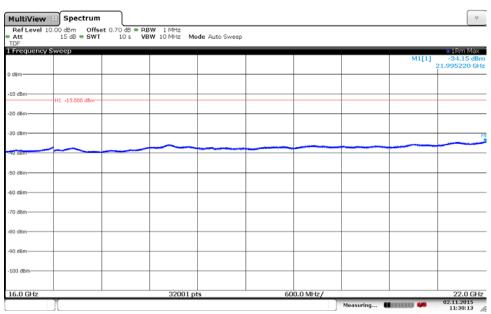
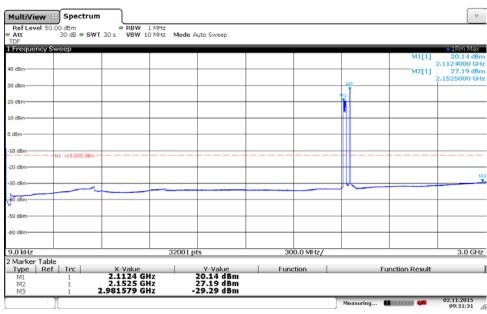


Diagram 3c:

Date: 2.NOV.2015 11:28:22


Diagram 3d:

Date: 2.NOV.2015 11:29:26


Diagram 3e:

Date: 2.NOV.2015 11:30:13

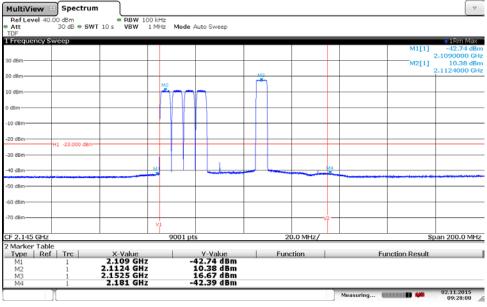
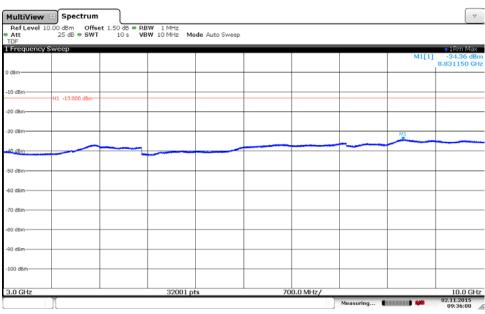


Diagram 4a:

Date: 2.NOV.2015 09:31:30


Diagram 4b:

Date: 2.NOV.2015 09:28:00

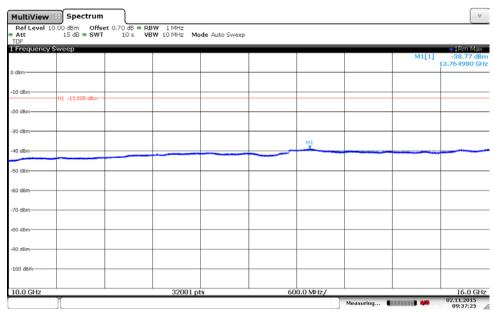
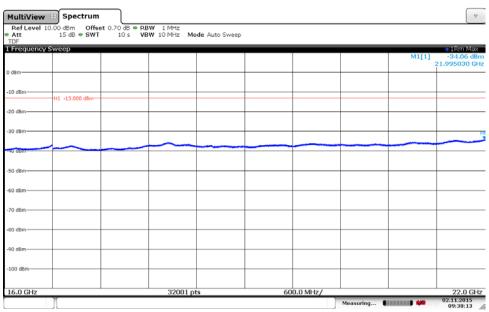
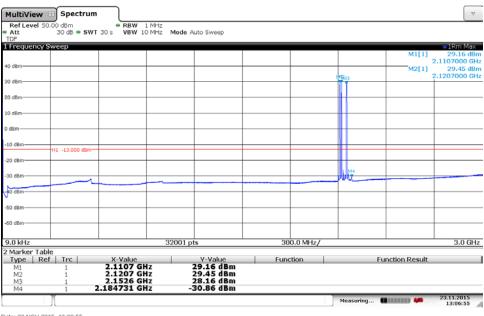


Diagram 4c:

Date: 2.NOV.2015 09:35:59


Diagram 4d:

Date: 2.NOV.2015 09:37:24


Diagram 4e:

Date: 2.NOV.2015 09:38:12

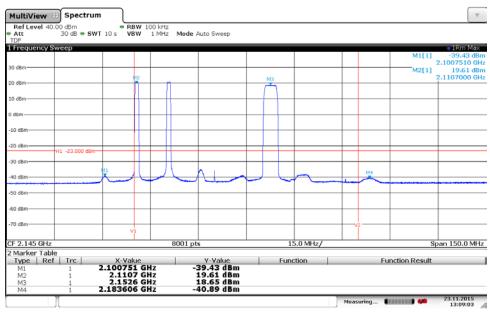
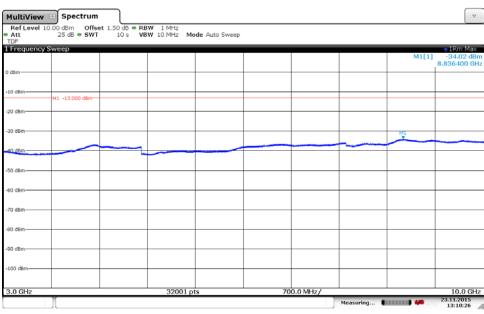


Diagram 5a:

Date: 23.NOV.2015 13:06:55


Diagram 5b:

Date: 23.NOV.2015 13:09:03

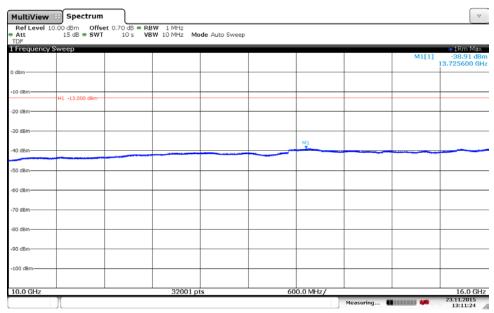
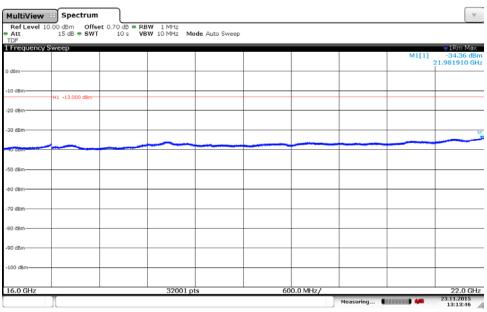


Diagram 5c:

Date: 23.NOV.2015 13:10:25


Diagram 5d:

Date: 23.NOV.2015 13:11:24

Diagram 5e:

Date: 23.NOV.2015 13:13:46

REPORT

Appendix 4

Field strength of spurious radiation measurements according to 47 CFR 27.53 (h) / IC RSS-139 6.6

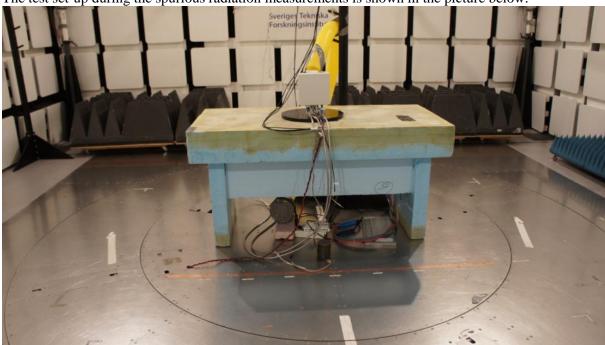
Date	Temperature	Humidity
2015-10-29	$23^{\circ}\text{C} \pm 3^{\circ}\text{C}$	33 % ± 5 %
2015-10-30	$23^{\circ}\text{C} \pm 3^{\circ}\text{C}$	32 % ± 5 %

Test set-up and procedure

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarization of the antenna. The antenna distance was 3 m in the frequency range 30~MHz - 18~GHz and 1m in the frequency range 18 - 22~GHz.

In the frequency range 30 MHz - 22 GHz the measurement was performed in power with a RBW of 1 MHz. A propagation loss in free space was calculated. The used formula was


$$\gamma = 20 \log \left(\frac{4\pi D}{\lambda} \right)$$
, γ is the propagation loss and D is the antenna distance.

The measurement procedure was as the following:

- 1. The pre-measurement was first performed with peak detector. For measurement < 1 GHz the test object was measured in eight directions with the antenna at three heights, 1.0 m, 1.5 m and 2.0 m. For measurements > 1 GHz the test object was measured in seventeen directions with the antenna height 1.0 m.
- 2. Spurious radiation on frequencies closer than 20 dB to the limit in the pre-measurement is scanned 0-360 degrees and the antenna is scanned 1-4 m for maximum response. The emission is then measured with the RMS detector and the RMS value is reported. Frequencies closer than 10 dB to the limit when measured with the RMS detector were measured with the substitution method according to the standard.

The test set-up during the spurious radiation measurements is shown in the picture below:

Measurement equipment

Measurement equipment	SP number
Semi anechoic chamber	503 881
R&S ESU40	901 385
EMC 32 ver. 9.15.0	503 899
Chase Bilog Antenna CBL 6111A	503 182
EMCO Horn Antenna 3115	502 175
FLANN 20240-20, Std gain horn antenna	503 674
High pass filter	504 200
Miteq, Low Noise Amplifier	503 278
μComp Nordic, Low Noise Amplifier	901 545
Testo 625 temperature and humidity meter	504 188

3(7)

Tested configurations:

1W1L5M-Rspr
2W1L5M-Rspr
4W1L5M-Rspr
1W2L1.4M

Results, representing worst case

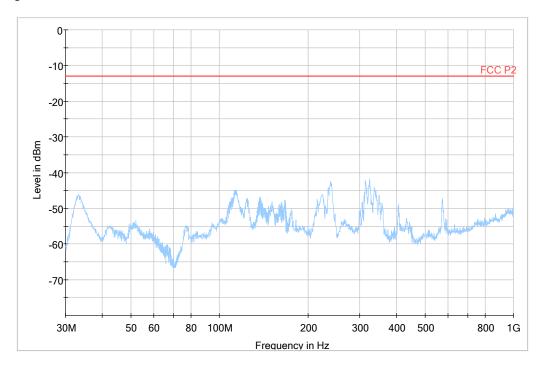
1W2L1.4M: Diagram 1 a-d

	Spurious emission level (dBm)				
Frequency (MHz)	Vertical	Horizontal			
30-22 000	All emission > 20 dB below limit	All emission > 20 dB below limit			

Measurement uncertainty:

3.2 dB up to 18 GHz, 3.6 dB above 18 GHz

Limits


§27.53(h) and RSS-139 6.6

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm per 1 MHz RBW.

Complies?	Vec
Compues:	1 5

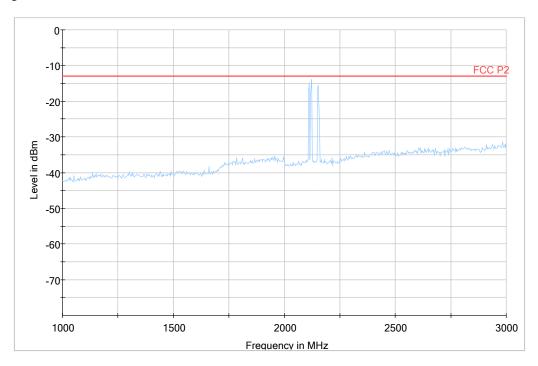
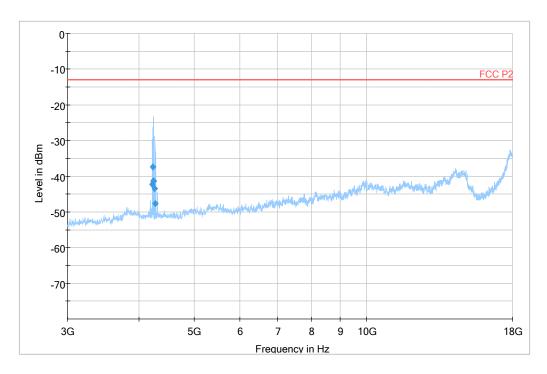


Diagram 1a:

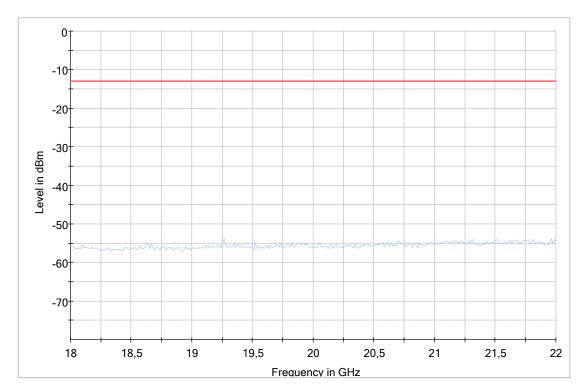
Diagram 1b:



Note: The emission between 2110 and 2180 MHz are the carrier frequencies and shall be ignored in the context.

Diagram 1c:

REPORT

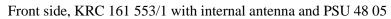


Final RMS Result

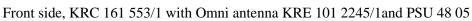
Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4221.442	-42.26	-13.00	29.26	5000.0	1000.000	100.0	٧	11.0	-103.6
4231.378	-37.35	-13.00	24.35	5000.0	1000.000	100.0	V	17.0	-103.6
4241.362	-41.35	-13.00	28.35	5000.0	1000.000	102.0	V	16.0	-103.6
4241.378	-41.28	-13.00	28.28	5000.0	1000.000	102.0	V	16.0	-103.6
4262.756	-43.43	-13.00	30.43	5000.0	1000.000	100.0	V	17.0	-103.7
4272.580	-47.59	-13.00	34.59	5000.0	1000.000	102.0	V	17.0	-103.7

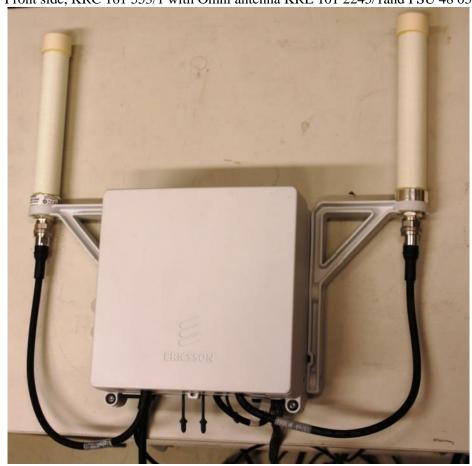
Diagram 1d:

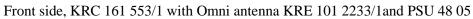
External photos

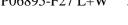

Front side of Radio 2203 B66A

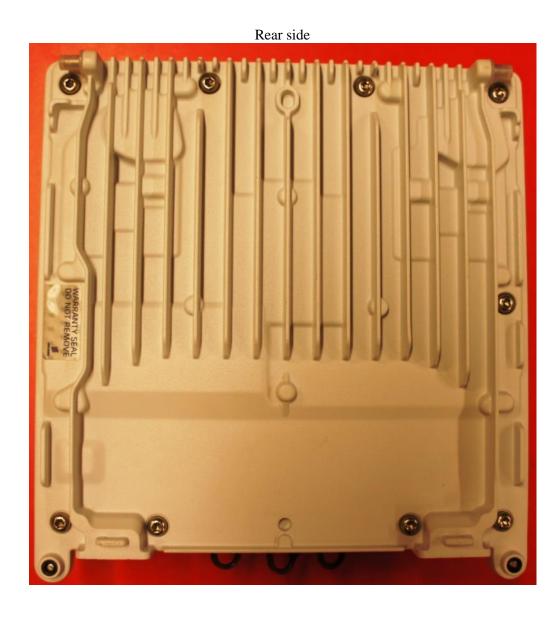
FCC ID: TA8AKRC161553-1


REPORT




Page 3 (6)





Right side

Bottom side

Top side

