Channel Position T - QPSK - 18GHz-20GHz

Configuration L-MIMO-MC 1 (2C)
Maximum Output Power 46.0dBm per port, LTE Bandwidth 5.0MHz

Channel Position	Channel Frequencies
Channel Position $\mathrm{M}_{\text {RFBw }}$	$1942.5 \mathrm{MHz}+1977.5 \mathrm{MHz}$

Channel Position MRFBw - QPSK
No emissions were detected within 20 dB of the limit.

Configuration L-MIMO-MC 2 (3C)
Maximum Output Power 46.0dBm per port, LTE Bandwidth 5.0MHz

Channel Position	Channel Frequencies
Channel Position $\mathrm{M}_{\text {RFBw }}$	$1942.5 \mathrm{MHz}+1972.5 \mathrm{MHz}+1977.5 \mathrm{MHz}$

Channel Position MrFbw - QPSK

No emissions were detected within 20dB of the limit.

Configuration G+W-MIMO-MC 1 (1G+1W)

Maximum Output Power 46.0dBm per port, WCDMA Bandwidth 5.0MHz

Channel Position	Channel Frequencies
Channel Position $M_{\text {RFBw }}$	(G) $1940.2 \mathrm{MHz}+$ (W) 1977.6 MHz

Channel Position MRFBw - GSM GMSK / WCDMA 16QAM
No emissions were detected within 20dB of the limit.

Configuration G+L-MIMO-MC 1 (1G+1L)
Maximum Output Power 46.0 dBm per port, LTE Bandwidth 5.0 MHz

Channel Position	Channel Frequencies
Channel Position $M_{\text {RFBw }}$	(G) $1940.2 \mathrm{MHz}+$ (L) 1977.5 MHz

Channel Position MRFBW - GSM GMSK / LTE QPSK
No emissions were detected within 20 dB of the limit.

Configuration W+L-MIMO-MC 1 (1W+1L)
Maximum Output Power 46.0dBm per port, WCDMA Bandwidth 5.0MHz, LTE Bandwidth 5.0 MHz

Channel Position	Channel Frequencies
Channel Position MRFBW	(W) $1942.4 \mathrm{MHz}+(\mathrm{L}) 1977.5 \mathrm{MHz}$

Channel Position MrFBw - WCDMA 16QAM / LTE QPSK
No emissions were detected within 20dB of the limit.
\square
Remarks
The EUT does not exceed $-13 \mathrm{dBm} / 84.4 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ at the measured frequencies.

2.5 CONDUCTED SPURIOUS EMISSIONS

2.5.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051
FCC CFR 47 Part 24, Clause 24.238 (a)
Industry Canada RSS-133, Clause 6.5

2.5.2 Equipment Under Test

RRUS 32 B2, KRC 161 414/1, S/N: D16Q673439

2.5.3 Date of Test and Modification State

17 September to 16 October 2015 - Modification State 0

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Environmental Conditions

Ambient Temperature $\quad 23.5-25.5^{\circ} \mathrm{C}$
Relative Humidity 39.0-53.0\%

2.5.6 Test Method

The test was applied in accordance with test method requirements of FCC Part 24 and RSS133.

In accordance with FCC CFR 47 Part 24, Clause 24.238 (a), any emissions outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43+10 \log (P) d B$, and the measurement should be performed with a resolution bandwidth of 1 MHz .

The spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using an attenuator and the frequency spectrum investigated from 9 kHz to 20 GHz . The resolution bandwidth of 1 MHz was employed for frequency band 9 kHz to 20 GHz . The spectrum analyzer detector was set to RMS.

For MIMO mode configurations, the limit was adjusted with a correction of -6.02 dB [10Log4] by using the Measure and Add 10Log(N) dB technique according to FCC KDB 662911 D01 Multiple Transmitter Output v02r01 accounting for simultaneous transmission from antenna ports RF A , B, C and RF D. Then the limit was adjust to -19.02 dBm .

The measurements were performed on the output connector RF A. Limited complementary measurement were done at output conector RF B to RF D to verify identical performance for both transmitter chains in MIMO mode.

The maximum path loss across the measurement band was used as the reference level offset to ensure worst case.

The worst results are shown in the plots below.

2.5.7 Test Results

Remark:
The emissions at 9 kHz on the plots was not generated by the test object.

Configuration G-SC
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position B	250 kHz	1930.4 MHz
Channel Position M	250 kHz	1960.0 MHz
Channel Position T	250 kHz	1989.6 MHz

Channel Position B - GMSK - 9kHz - 3GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position B - GMSK - 3GHz - 10GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position B - GMSK - 10GHz - 20GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position M - GMSK - 9kHz - 3GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position M - GMSK - 3GHz - 10GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position M - GMSK - 10GHz - 20GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position T - GMSK - 9kHz - 3GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position T - GMSK - 3GHz-10GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position T - GMSK - 10GHz - 20GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Configuration G-MC

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $\mathrm{B}_{\text {RFBW }}$	250 kHz	$1930.4 \mathrm{MHz}+1949.8 \mathrm{MHz}$
Channel Position $\mathrm{M}_{\text {RFBW }}$	250 kHz	$1950.2 \mathrm{MHz}+1969.8 \mathrm{MHz}$
Channel Position $\mathrm{T}_{\text {RFBW }}$	250 kHz	$1970.2 \mathrm{MHz}+1989.6 \mathrm{MHz}$

Channel Position Brfbw - GMSK - 9kHz - 3GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position Brfbw - GMSK - 3GHz - 10GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position BrFBw - GMSK - 10GHz - 20GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position Mrfbw - GMSK - 9kHz - 3GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position MRFBW - GMSK - 3GHz - 10GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position MRFBW - GMSK - 10GHz-20GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position TRFBw - GMSK - 9kHz - 3GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .
Channel Position TrfBw - GMSK - 3GHz - 10GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Channel Position TRFBW - GMSK - 10GHz-20GHz

Note: The limit was changed to -16.01 dBm which is more stringent than -13 dBm .

Configuration W-SC
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position B	5.0 MHz	1932.4 MHz
Channel Position M	5.0 MHz	1960.0 MHz
Channel Position T	5.0 MHz	1987.6 MHz

Channel Position B - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Channel Position B - QPSK / Bandwidth 5.0MHz - 3GHz - 10GHz

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Channel Position B - QPSK / Bandwidth 5.0MHz - 10GHz - 20GHz

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .
Channel Position M - QPSK / Bandwidth 5.0 MHz - 9 kHz - 3 GHz

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Channel Position M - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .
Channel Position M - QPSK / Bandwidth 5.0MHz - 10GHz - 20GHz

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Channel Position T - QPSK / Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Channel Position T - QPSK / Bandwidth 5.0MHz - 3GHz - 10GHz

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Channel Position T - QPSK / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Note: The limit was changed to -19.02 dBm which is more stringent than -13 dBm .

Configuration W-MIMO-SC

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position B	5.0 MHz	1932.4 MHz
Channel Position M	5.0 MHz	1960.0 MHz
Channel Position T	5.0 MHz	1987.6 MHz

Channel Position B-16QAM / Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position B - 16QAM / Bandwidth 5.0MHz - 3GHz - 10GHz

Channel Position B - 16QAM / Bandwidth 5.0MHz - 10GHz - 20GHz

Channel Position M - 16QAM / Bandwidth 5.0MHz - 9kHz - 3GHz

TOV

SUD

Product Service
Channel Position M - 16QAM / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position M - 16QAM / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position T - 16QAM / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position T - 16QAM / Bandwidth 5.0MHz - 3GHz - 10GHz

Channel Position T - 16QAM / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration W-MIMO-MC (2C)
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $\mathrm{B}_{\text {RFBW }}$	5.0 MHz	$1932.4 \mathrm{MHz}+1967.6 \mathrm{MHz}$
Channel Position $\mathrm{M}_{\text {RFBW }}$	5.0 MHz	$1942.4 \mathrm{MHz}+1977.6 \mathrm{MHz}$
Channel Position $\mathrm{T}_{\text {RFBW }}$	5.0 MHz	$1952.4 \mathrm{MHz}+1987.6 \mathrm{MHz}$

TOV

SUD

Product Service
Channel Position BRFBw - 16QAM / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position Brfbw - 16QAM / Bandwidth 5.0MHz - 3GHz - 10GHz

TUV

Channel Position Brfbw - 16QAM / Bandwidth 5.0MHz - 10GHz - 20GHz

Channel Position Mrfbw - 16QAM / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position Mresw - 16QAM / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MRFBw - 16QAM / Bandwidth 5.0MHz - 10GHz - 20GHz

TOV

SUD

Channel Position TRFBW - 16QAM / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position Trfew - 16QAM / Bandwidth 5.0MHz - 3GHz - 10GHz

TUV
SUD

Product Service
Channel Position TrFBw - 16QAM / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration L-MIMO-SC

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position B	5.0 MHz	1932.5 MHz
Channel Position M	5.0 MHz	1960.0 MHz
Channel Position T	5.0 MHz	1987.5 MHz

Channel Position	Bandwidth	Channel Frequency
Channel Position B	20.0 MHz	1940.0 MHz
Channel Position M	20.0 MHz	1960.0 MHz
Channel Position T	20.0 MHz	1980.0 MHz

TUV
 SUD

Product Service
Channel Position B - QPSK / Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position B - QPSK / Bandwidth 5.0MHz - 3GHz - 10GHz

TOV

SUD

Product Service
Channel Position B - QPSK / Bandwidth 5.0MHz - 10GHz - 20GHz

Channel Position M - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

TOV

SUD

Channel Position M - QPSK / Bandwidth 5.0MHz - 3GHz - 10GHz

Channel Position M - QPSK / Bandwidth 5.0MHz - 10GHz - 20GHz

TOV

SUD

Product Service
Channel Position T - QPSK / Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position T - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}$ - 10GHz

Channel Position T - QPSK / Bandwidth 5.0MHz - 10GHz-20GHz

Channel Position B - QPSK / Bandwidth 20.0MHz - 9kHz - 3GHz

Channel Position B - QPSK / Bandwidth 20.0MHz - 3GHz - 10GHz

Channel Position B - QPSK / Bandwidth 20.0MHz - 10GHz - 20GHz

TOV

SUD

Product Service
Channel Position M - QPSK / Bandwidth 20.0MHz - 9kHz - 3GHz

Channel Position M - QPSK / Bandwidth 20.0MHz - 3GHz - 10GHz

Channel Position M - QPSK / Bandwidth 20.0MHz - 10GHz - 20GHz

Channel Position T - QPSK / Bandwidth 20.0MHz - 9kHz - 3GHz

Channel Position T - QPSK / Bandwidth 20.0MHz - 3GHz - 10GHz

Channel Position T - QPSK / Bandwidth $20.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration L-MIMO-MC 1 (2C)
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $B_{\text {RFBW }}$	5.0 MHz	$1932.5 \mathrm{MHz}+1967.5 \mathrm{MHz}$
Channel Position $\mathrm{M}_{\text {RFBW }}$	5.0 MHz	$1942.5 \mathrm{MHz}+1977.5 \mathrm{MHz}$
Channel Position $\mathrm{T}_{\text {RFBW }}$	5.0 MHz	$1952.5 \mathrm{MHz}+1987.5 \mathrm{MHz}$

Channel Position	Bandwidth	Channel Frequency
Channel Position $B_{\text {RFBW }}$	20.0 MHz	$1940.0 \mathrm{MHz}+1960.0 \mathrm{MHz}$
Channel Position $\mathrm{M}_{\text {RFB }}$	20.0 MHz	$1950.0 \mathrm{MHz}+1970.0 \mathrm{MHz}$
Channel Position $\mathrm{T}_{\text {RFBW }}$	20.0 MHz	$1960.0 \mathrm{MHz}+1980.0 \mathrm{MHz}$

TOV

SUD

Channel Position BRFBw - QPSK / Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position BRFBw - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

TUV
SUD

Product Service
Channel Position BrFBw - QPSK / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position Mrfbw - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

TOV

SUD

Product Service
Channel Position MRFBw - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MrFBw - QPSK / Bandwidth 5.0MHz - 10GHz - 20GHz

TOV

SUD

Product Service
Channel Position TrFBw - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position Trfbw - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TRFBW - QPSK / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position BRFBw - QPSK / Bandwidth 20.0MHz - 9kHz - 3GHz

Channel Position BrFBw - QPSK / Bandwidth $20.0 \mathrm{MHz}-3 \mathrm{GHz}$ - 10 GHz

Channel Position Brfbw - QPSK / Bandwidth 20.0MHz - 10GHz - 20GHz

TOV

SUD

Product Service
Channel Position Mrfbw - QPSK / Bandwidth 20.0MHz - 9kHz - 3GHz

Channel Position MrFBw - QPSK / Bandwidth 20.0MHz - 3GHz - 10GHz

TUV

Channel Position MrFBw - QPSK / Bandwidth 20.0MHz - 10GHz - 20GHz

Channel Position Trfbw - QPSK / Bandwidth 20.0MHz - 9kHz - 3GHz

Channel Position TrFBw - QPSK / Bandwidth 20.0MHz - $3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TrFBw - QPSK / Bandwidth 20.0MHz - 10GHz - 20GHz

Configuration L-MIMO-MC 2 (3C)

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $B_{\text {RFBW }}$	5.0 MHz	$1932.5 \mathrm{MHz}+1962.5 \mathrm{MHz}+1967.5 \mathrm{MHz}$
Channel Position $\mathrm{M}_{\text {RFBW }}$	5.0 MHz	$1942.5 \mathrm{MHz}+1972.5 \mathrm{MHz}+1977.5 \mathrm{MHz}$
Channel Position $\mathrm{T}_{\text {RFBw }}$	5.0 MHz	$1952.5 \mathrm{MHz}+1982.5 \mathrm{MHz}+1987.5 \mathrm{MHz}$

Channel Position	Bandwidth	Channel Frequency
Channel Position $B_{\text {RFBW }}$	10.0 MHz	$1935.0 \mathrm{MHz}+1955.0 \mathrm{MHz}+1965.0 \mathrm{MHz}$
Channel Position $\mathrm{M}_{\text {RFBw }}$	10.0 MHz	$1945.0 \mathrm{MHz}+1965.0 \mathrm{MHz}+1975.0 \mathrm{MHz}$
Channel Position $\mathrm{T}_{\text {RFBw }}$	10.0 MHz	$1955.0 \mathrm{MHz}+1975.0 \mathrm{MHz}+1985.0 \mathrm{MHz}$

TOV

SUD

Product Service
Channel Position BrFBw - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position Brfsw - QPSK / Bandwidth 5.0MHz - 3GHz - 10GHz

TUV
SUD

Product Service
Channel Position BrFBw - QPSK / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position Mrfbw - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position MRFBw - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MrFBw - QPSK / Bandwidth 5.0MHz - 10GHz - 20GHz

TOV

SUD

Product Service
Channel Position TrFBw - QPSK / Bandwidth 5.0MHz - 9kHz - 3GHz

Channel Position Trfbw - QPSK / Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TRFBW - QPSK / Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position BRFBw - QPSK / Bandwidth $10.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position BRFBw - QPSK / Bandwidth $10.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position Brfbw - QPSK / Bandwidth $10.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

TOV

SUD

Product Service
Channel Position Mrfbw - QPSK / Bandwidth $10.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position MrFBw - QPSK / Bandwidth $10.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

TUV

Channel Position Mrfbw - QPSK / Bandwidth 10.0MHz - 10GHz - 20GHz

Channel Position Trfbw - QPSK / Bandwidth $10.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position TrFBw - QPSK / Bandwidth $10.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TrFBw - QPSK / Bandwidth $10.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration G+W-MIMO-MC 1 (1G+1W)

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position B RFBw	G: 250 kHz W: 5.0 MHz	(G) $1930.4 \mathrm{MHz}+$ (W) 1967.6 MHz
Channel Position M $_{\text {RFBw }}$	G: 250 kHz W: 5.0 MHz	(G) $1940.2 \mathrm{MHz}+$ (W) 1977.6 MHz
Channel Position $\mathrm{T}_{\text {RFBw }}$	G: 250 kHz W: 5.0 MHz	(G) $1950.2 \mathrm{MHz}+$ (W) 1987.6 MHz

Channel Position BRFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position BrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

TOV
 SUD

Product Service
Channel Position Brfbw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position MrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth 5.0 MHz - 9kHz - 3GHz

Channel Position MrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position Mrfbw - GSM GMSK / WCDMA 16QAM: Bandwidth 5.0 MHz - 10GHz $\underline{20 \mathrm{GHz}}$

Channel Position TRFBW - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position TrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TRFBW - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration G+W-MIMO-MC 3 (2G+1W)

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $\mathrm{B}_{\text {RFB }}$ w	G: 250 kHz W: 5.0 MHz	$\begin{aligned} & \text { (G) } 1930.4 \mathrm{MHz}+(\mathrm{G}) 1935.8 \mathrm{MHz}+(\mathrm{W}) \\ & 1967.6 \mathrm{MHz} \end{aligned}$
Channel Position $\mathrm{M}_{\text {RFBW }}$	G: 250 kHz W: 5.0 MHz	$\begin{aligned} & \text { (G) } 1940.2 \mathrm{MHz}+(\mathrm{G}) 1945.8 \mathrm{MHz}+(\mathrm{W}) \\ & 1977.6 \mathrm{MHz} \end{aligned}$
Channel Position $\mathrm{T}_{\text {RFBW }}$	G: 250 kHz W: 5.0 MHz	$\begin{aligned} & \text { (G) } 1950.2 \mathrm{MHz}+\text { (G) } 1955.8 \mathrm{MHz}+(\mathrm{W}) \\ & 1987.6 \mathrm{MHz} \end{aligned}$

Channel Position BRFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position BrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

TUV
 SUD

Product Service
Channel Position Brfbw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position MrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth 5.0 MHz - 9kHz - 3GHz

Channel Position MrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position Mrfbw - GSM GMSK / WCDMA 16QAM: Bandwidth 5.0 MHz - 10GHz $\underline{20 \mathrm{GHz}}$

TUV
 SUD

Product Service
Channel Position Trfbw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position TrFBw - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TRFBW - GSM GMSK / WCDMA 16QAM: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration G+L-MIMO-MC 1 (1G+1L)
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $\mathrm{B}_{\text {RFB }}$	G: 250 kHz L: 5.0 MHz	(G) $1930.4 \mathrm{MHz}+$ (L) 1967.5 MHz
Channel Position M $_{\text {RFBw }}$	G: 250 kHz L: 5.0 MHz	(G) $1940.2 \mathrm{MHz}+$ (L) 1977.5 MHz
Channel Position $\mathrm{T}_{\text {RFBw }}$	G: 250 kHz L: 5.0 MHz	(G) $1950.2 \mathrm{MHz}+$ (L) 1987.5 MHz

Channel Position BrFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position BRFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}$ - 10 GHz

Channel Position BRFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position Mrfsw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

TOV

SUD

Product Service
Channel Position MRFBW - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MrFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position Trfew - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position Trfbw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TrFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration G+L-MIMO-MC 4 (2G+1L)

Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $\mathrm{B}_{\text {RFBW }}$	G: 250 kHz	(G) $1930.4 \mathrm{MHz}+(\mathrm{G}) 1935.8 \mathrm{MHz}+(\mathrm{W})$
	L: 5.0 MHz	1967.5 MHz

Channel Position BrfBw - GSM GMSK / LTE QPSK: Bandwidth 5.0 MHz - 9kHz - 3GHz

Channel Position BRFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}$ - 10 GHz

Channel Position BRFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position Mrfsw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position MRFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MrFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position TrFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position Trfbw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TrFBw - GSM GMSK / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration W+L-MIMO-MC 1 (1W+1L)
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position B $_{\text {RFBW }}$	W: $5.0 ~ M H z$ L: $5.0 ~ M H z$	(W) $1932.4 \mathrm{MHz}+$ (L) 1967.5 MHz
Channel Position M $_{\text {RFBw }}$	W: 5.0 MHz L: 5.0 MHz	(W) $1942.4 \mathrm{MHz}+$ (L) 1977.5 MHz
Channel Position $\mathrm{T}_{\text {RFBw }}$	W: 5.0 MHz L: 5.0 MHz	(W) $1952.4 \mathrm{MHz}+$ (L) 1987.5 MHz

TUV
SUD

Product Service
Channel Position Brfbw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position Brfew - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position BrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position Mrfbw - WCDMA 16QAM / LTE QPSK: Bandwidth 5.0 MHz - 9kHz - 3GHz

Channel Position MrFbw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MrfBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

TUV
SUD

Product Service
Channel Position TrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position Trfbw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Configuration W+L-MIMO-MC $4(2 \mathrm{~W}+1 \mathrm{~L})$
Maximum Output Power 46.0dBm per port

Channel Position	Bandwidth	Channel Frequency
Channel Position $\mathrm{B}_{\text {RFB }}$	W: 5.0 MHz L: 5.0 MHz	(W) $1932.4 \mathrm{MHz}+$ (W) $1937.4 \mathrm{MHz}+(\mathrm{L})$ 1967.5 MHz
Channel Position $\mathrm{M}_{\text {RFBw }}$	W: 5.0 MHz L: 5.0 MHz	(W) $1942.4 \mathrm{MHz}+$ (W) $1947.4 \mathrm{MHz}+$ (L) 1977.5 MHz
Channel Position $\mathrm{T}_{\text {RFBw }}$	W: 5.0 MHz L: 5.0 MHz	(W) $1952.4 \mathrm{MHz}+$ (W) $1957.4 \mathrm{MHz}+$ (L) 1987.5 MHz

Channel Position BrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position BRFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position BrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position MRFBw - WCDMA 16QAM / LTE QPSK: Bandwidth 5.0 MHz - 9kHz - 3GHz

Channel Position MRFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position MrfBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Channel Position TrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-9 \mathrm{kHz}-3 \mathrm{GHz}$

Channel Position TRFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-3 \mathrm{GHz}-10 \mathrm{GHz}$

Channel Position TrFBw - WCDMA 16QAM / LTE QPSK: Bandwidth $5.0 \mathrm{MHz}-10 \mathrm{GHz}-20 \mathrm{GHz}$

Limit	-13dBm for outside a licensee's frequency band(s) of operation

Remarks

All the unwanted emissions of EUT does not exceed the limitations at the frequency range of 9 kHz to 20 GHz .

2.6 FREQUENCY STABILITY

2.6.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1055
FCC CFR 47 Part 24, Clause 24.235
Industry Canada RSS-133, Clause 6.3

2.6.2 Equipment Under Test

RRUS 32 B2, KRC 161 414/1, S/N: D16Q673439

2.6.3 Date of Test and Modification State

28, 29 and 30 September 2015 - Modification State 0

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Environmental Conditions

Ambient Temperature $\quad 20.2-24.5^{\circ} \mathrm{C}$
Relative Humidity $\quad 41.0-56.0 \%$

2.6.6 Test Method

The test was applied in accordance with test method requirements of FCC Part 24 and RSS-133.

Frequency Error - Temperature Variation

The EUT was tested over the temperature range $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ steps with -48 VDC Power Supply. At each temperature step, the Base Station was configured to transmit an [RAT]* at maximum power on the middle channel of the operating band. After achieving thermal balance, the averages of 200 transmission bursts were measured and the result recorded.

Frequency Error - Voltage Variation

The EUT was tested at the supplied voltages varied from 85 to 115 percent of the nominal values of -48 VDC . At $+20^{\circ} \mathrm{C}$, the Base Station was configured to transmit an [RAT]* at maximum power on the bottom, middle and top channel of the operating band. The average of 200 transmission bursts was measured and the result recorded.
[RAT]*: GSM - GSM Single Carrier with all timeslots active with GMSK modulation WCDMA - Test Model 1 Single Carrier with QPSK modulation LTE (5.0 MHz OBW) - Test Model E-TM1.1 Single Carrier with QPSK modulation

2.6.7 Test Results

Frequency Error - Temperature Variation
Configuration G-SC
Maximum Output Power 46.0dBm per port, Channel Bandwidth 250kHz

Supply Voltage DC (V)	Temperature	Frequency Stability (Hz)		
		Channel Position B (1930.4MHz)	Channel Position M (1960.0MHz)	$\begin{gathered} \hline \text { Channel Position T } \\ (1989.6 \mathrm{MHz}) \\ \hline \end{gathered}$
-48.0	$-30^{\circ} \mathrm{C}$	-11.72	-12.62	13.62
	$-20^{\circ} \mathrm{C}$	10.95	12.01	14.67
	$-10^{\circ} \mathrm{C}$	10.57	14.28	13.02
	$0^{\circ} \mathrm{C}$	-11.60	-11.45	-14.17
	$+10^{\circ} \mathrm{C}$	-14.61	12.51	14.28
	$+20^{\circ} \mathrm{C}$	10.21	12.02	14.00
	$+30^{\circ} \mathrm{C}$	10.99	10.10	12.99
	$+40^{\circ} \mathrm{C}$	13.43	-14.93	-12.69
	$+50^{\circ} \mathrm{C}$	12.40	-15.34	11.82

Configuration W-SC

Maximum Output Power 46.0dBm per port, Channel Bandwidth 5MHz

Supply Voltage DC (V)	Temperature	Frequency Stability (Hz)		
		Channel Position B (1932.4 MHz)	Channel Position M (1960.0MHz)	Channel Position T (1987.6MHz)
-48.0	$-30^{\circ} \mathrm{C}$	4.89	6.21	7.01
	$-20^{\circ} \mathrm{C}$	5.56	6.85	6.94
	$-10^{\circ} \mathrm{C}$	-5.42	-6.02	7.42
	$0^{\circ} \mathrm{C}$	-4.76	5.10	7.67
	$+10^{\circ} \mathrm{C}$	4.77	5.51	6.07
	$+20^{\circ} \mathrm{C}$	5.80	-7.12	6.01
	$+30^{\circ} \mathrm{C}$	5.89	5.67	5.97
	$+40^{\circ} \mathrm{C}$	5.21	-5.43	6.18
	$+50^{\circ} \mathrm{C}$	4.48	-4.68	5.36

Configuration L-MIMO-SC

Maximum Output Power 46.0dBm per port, Channel Bandwidth 5MHz

Supply Voltage DC (V)	Temperature	Frequency Stability (Hz)		
		Channel Position B (1932.5MHz)	Channel Position M (1960.0MHz)	$\begin{gathered} \hline \text { Channel Position T } \\ (1987.5 \mathrm{MHz}) \\ \hline \end{gathered}$
-48.0	$-30^{\circ} \mathrm{C}$	3.92	-4.32	4.46
	$-20^{\circ} \mathrm{C}$	-4.19	-4.43	4.40
	$-10^{\circ} \mathrm{C}$	4.34	3.97	4.11
	$0^{\circ} \mathrm{C}$	3.59	-4.51	-4.40
	$+10^{\circ} \mathrm{C}$	-3.91	3.78	-4.43
	$+20^{\circ} \mathrm{C}$	-4.12	-3.80	3.80
	$+30^{\circ} \mathrm{C}$	3.94	-3.86	4.13
	$+40^{\circ} \mathrm{C}$	3.10	3.81	3.72
	$+50^{\circ} \mathrm{C}$	3.72	-4.19	3.79

Frequency Error - Voltage Variation

Configuration G-SC

Maximum Output Power 46.0dBm per port, Channel Bandwidth 250kHz

Supply Voltage DC (V)	Temperature	Frequency Stability (Hz)		
		Channel Position B $(1930.4 \mathrm{MHz})$	Channel Position M $(1960.0 \mathrm{MHz})$	Channel Position T $(1989.6 \mathrm{MHz})$
-40.8		10.31	-13.49	-11.88
-48.0		10.21	12.02	14.00
-55.2		11.77	13.83	15.40

Configuration W-SC
Maximum Output Power 46.0dBm per port, Channel Bandwidth 5MHz

Supply Voltage $\mathrm{DC}(\mathrm{V})$	Temperature	Frequency Stability (Hz)		
		Channel Position B $(1932.4 \mathrm{MHz})$	Channel Position M $(1960.0 \mathrm{MHz})$	Channel Position T $(1987.6 \mathrm{MHz})$
-40.8		-5.35	5.94	7.14
-48.0	5.80	-7.12	6.01	
		5.67	-6.81	6.89

Configuration L-MIMO-SC

Maximum Output Power 46.0dBm per port, Channel Bandwidth 5MHz

Supply Voltage $\mathrm{DC}(\mathrm{V})$	Temperature	Frequency Stability (Hz)		
		Channel Position B $(1932.5 \mathrm{MHz})$	Channel Position M $(1960.0 \mathrm{MHz})$	Channel Position T $(1987.5 \mathrm{MHz})$
-40.8		-4.11	3.59	3.92
		-4.12	-3.80	3.80
		3.31	3.57	3.48

Limit	FCC: The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized frequency block.
	IC: $\pm 1.0 \mathrm{ppm}$

Remarks

The frequency stablity of the EUT is sufficient to keep it within limit at any temperature and voltage interval across the measured range.

SECTION 3

TEST EQUIPMENT USED

Product Service

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due	
Maximum Output Power and Peak to Average Ratio - Conducted	MY46105235	12				
Network Analyzer	Agilent	5071C	104221	12	11-Aug-2016	
Power Meter	Rohde \& Schwarz	NRP2	121216	12	20-Mar-2016	
Power Sensor	Rohde \& Schwarz	NRP-Z11	102309	12	17-Mar-2016	
Power Sensor	Rohde \& Schwarz	NRP-Z51	N9030A	MY54490502	12	27-Apr-2016
Spectrum Analyser	Keysight	CD4016	-	O/P MON		
40dB Attenuator	Aeroflex / Weinschel	$66-40-33$	09032343	-	O/P MON	
Load	Shanghai Huaxiang	TF150	11081905	-	O/P MON	
Load	Shanghai Huaxiang	TF150	06081410	-	O/P MON	
Load	Shanghai Huaxiang	TF150	PSU AC 08	BR83767592	-	O/P MON
DC Power Supply	Ericsson	179	91820401	12	14-Dec-2015	
Digital Multi-meter	FLUKE	9151665	12	10-Dec-2015		
Thermo-hygrometer	AZ Instruments	8705				

Occupied Bandwidth

Network Analyzer	Agilent	5071C	MY46105235	12	11-Aug-2016
Spectrum Analyser	Keysight	N9030A	MY54490502	12	27-Apr-2016
40dB Attenuator	Aeroflex / Weinschel	$66-40-33$	CD4016	-	O/P MON
Load	Shanghai Huaxiang	TF150	09032343	-	O/P MON
Load	Shanghai Huaxiang	TF150	11081905	-	O/P MON
Load	Shanghai Huaxiang	TF150	06081410	-	O/P MON
DC Power Supply	Ericsson	PSU AC 08	BR83767592	-	O/P MON
Digital Multi-meter	FLUKE	179	91820401	12	14-Dec-2015
Thermo-hygrometer	AZ Instruments	8705	9151665	12	10-Dec-2015

Band Edge

Network Analyzer	Agilent	5071 C	MY46105235	12	11-Aug-2016
Spectrum Analyser	Keysight	N9030A	MY54490502	12	27-Apr-2016
40dB Attenuator	Aeroflex / Weinschel	$66-40-33$	CD4016	-	O/P MON
Load	Shanghai Huaxiang	TF150	09032343	-	O/P MON
Load	Shanghai Huaxiang	TF150	11081905	-	O/P MON
Load	Shanghai Huaxiang	TF150	06081410	-	O/P MON
DC Power Supply	Ericsson	PSU AC 08	BR83767592	-	O/P MON
Digital Multi--meter	FLUKE	179	91820401	12	14-Dec-2015
Thermo-hygrometer	AZ Instruments	8705	9151665	12	10-Dec-2015

Conducted Spurious Emission

Network Analyzer	Agilent	5071 C	MY46105235	12	11-Aug-2016
Spectrum Analyser	Keysight	N9030A	MY54490502	12	27-Apr-2016
40dB Attenuator	Aeroflex / Weinschel	$66-40-33$	CD4016	-	O/P MON
Load	Shanghai Huaxiang	TF150	09032343	-	O/P MON
Load	Shanghai Huaxiang	TF150	11081905	-	O/P MON
Load	Shanghai Huaxiang	TF150	06081410	-	O/P MON
DC Power Supply	Ericsson	PSU AC 08	BR83767592	-	O/P MON
Digital Multi-meter	FLUKE	179	91820401	12	14-Dec-2015
Thermo-hygrometer	AZ Instruments	8705	9151665	12	10-Dec-2015

Product Service

Radiated Spurious Emissions					
Load	Shanghai Huaxiang	TF150	11081905	-	O/P MON
Load	Shanghai Huaxiang	TF150	11081910	-	O/P MON
Load	Shanghai Huaxiang	TF150	06081410	-	O/P MON
Load	Shanghai Huaxiang	TF150	05112214	-	O/P MON
EMI Receiver	Rohde \& Schwarz	ESI40	100015	12	20-Aug-2016
Ultra Log Test Antenna	Rohde \& Schwarz	HL562	100167	12	20-Aug-2016
Double-Ridge Waveguide Horn Antenna	Rohde \& Schwarz	HF 906	100030	12	20-Aug-2016
Pyramidal Horn Antenna	EMCO	3160-09	-	-	-
Semi Anechoic Chamber	Frankonia	$23.18 \mathrm{~m} \times 16.88 \mathrm{~m} \times 9.60 \mathrm{~m}$	-	12	20-Aug-2016
Antenna Master	Frankonia	MA 260	-	12	20-Aug-2016
Relay Switch Unit	Rohde \& Schwarz	331.1601 .31	338965002	-	TU
DC Power Supply	Ericsson	PSU AC 08	BR83767592	-	O/P MON
Digital Multi-meter	FLUKE	179	91820401	12	14-Dec-2015
Thermo-hygrometer	AZ Instruments	8705	9151665	12	10-Dec-2015
Frequency Stability					
Network Analyzer	Agilent	5071C	MY46105235	12	11-Aug-2016
Spectrum Analyser	Keysight	N9030A	MY54490502	12	27-Apr-2016
40dB Attenuator	Aeroflex / Weinschel	66-40-33	CD4016	-	O/P MON
Load	Shanghai Huaxiang	TF150	09032343	-	O/P MON
Load	Shanghai Huaxiang	TF150	11081905	-	O/P MON
Load	Shanghai Huaxiang	TF150	06081410	-	O/P MON
Climate Chamber	Shang Hai Zengda	ZTH100U	10080003	-	O/P MON
DC Power Supply	Ericsson	PSU AC 08	BR83767592	-	O/P MON
Digital Multi-meter	FLUKE	179	91820401	12	14-Dec-2015
Thermo-hygrometer	AZ Instruments	8705	9151665	12	10-Dec-2015

N/A - Not Applicable
OP MON - Output Monitored with Calibrated Equipment

3.2 MEASUREMENT UNCERTAINTY

For a 95\% confidence level, the measurement uncertainties for defined systems are:

Test Discipline	Frequency / Parameter	MU
Conducted Maximum Peak Output Power	30 MHz to 10 GHz Amplitude	$0.5 \mathrm{~dB}^{*}$
Conducted Emissions	30 MHz to 40 GHz Amplitude	$3.0 \mathrm{~dB}^{*}$
Frequency stability	30 MHz to 2 GHz	$< \pm 1 \times 10^{-7}$
Radiated Emissions, Bilog Antenna, AOATS	30 MHz to 1 GHz Amplitude	$5.1 \mathrm{~dB}^{*}$
Radiated Emissions, Horn Antenna, AOATS	1 GHz to 40 GHz Amplitude	$6.3 \mathrm{~dB}^{*}$
Worst case error for both Time and Frequency measurement 12 parts in 10^{6}		

* In accordance with CISPR 16-4

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.
Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).
© 2015 TÜV SÜD Product Service

