

issued by an FCC listed Laboratory Reg. no. 93866. The test site complies with RSS-Gen, file no: IC 3482A Contact person **Tomas Isbring** Electronics

+46 10 516 59 16 Tomas.Isbring@sp.se

Reference Date 2013-11-01 3P06723-MPE Page 1 (2)

Ericsson AB Camilla Karlsson PDU HW Lindholmspiren11 417 56 Göteborg

MPE test on Ericsson mRRUS 12 B2

(3 appendices)

Test object

Product name: mRRUS 12 B2 Product number: KRC 161 328/X, see appendix 1 for details.

See appendix 1 for the tested hardware configuration and general information. See appendix 3 for photos.

Summary

Standard	Compliant	Appendix	Remarks
FCC 47 CFR 2.1091 Radiofrequency radiation exposure evaluation: mobile devices	Yes	-	-
RSS-102 Radio Frequency Exposure compliance of Radio communication Apparatus, Issue 4	Yes	2	-
OET Bulletin 65/KDB447498 ver 05 rev 1	Yes	2	-

SP Technical Research Institute of Sweden **Electronics - EMC**

Performed by

Tomos belong

Tomas Isbring

Examined by Anders Nordlö

SP Technical Research Institute of Sweden Office location

Postal address SP Sweden

Phone / Fax / E-mail +46 10 516 50 00 +46 33 13 55 02 info@sp.se

This document may not be reproduced other than in full, except with the prior written approval of SP.

ence

Table of contents

Measurement equipment	Appendix 1
Uncertainties	Appendix 1
Purpose of test	Appendix 1
Description of the test object	Appendix 1
Delivery of test object	Appendix 1
Test facility	Appendix 1
Reservation	Appendix 1
Test engineers	Appendix 1
Test participant	Appendix 1
Tested configuration	Appendix 1
Operational test mode	Appendix 1
RF exposure evaluation	Appendix 2
Photos of test object	Appendix 3

Appendix 1

Measurement equipment

	Calibration Due	SP number
Test site Edison	2013-11	504 114
Measurement software: Antennkalibrering V1.20	-	-
Calculation software: EMF 1.0	-	-
Laser probe AR FL7006	2014-06	901 500
Testo 625 Temperature and humidity meter	2014-06	504 117

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The measurement uncertainties can be found in the table below. The uncertainties are calculated with a coverage factor k=2 (95% level of confidence).

Standard	Method	Uncertainty
FCC 47 CFR 2.1091	RF exposure evaluation	10 %, Note

Note: Stated uncertainty refers to the calculated distance.

Compliancy evaluation is based on a shared risk principle with respect to the measurement uncertainty.

Purpose of test

The tests were performed to verify that the radiofrequency exposure of the mRRUS meets the requirements of 47 CFR 2.1091 and RSS-102.

Description of the test object

The test object is a WCDMA/ LTE Multi Standard capable micro Remote Radio Unit configured in Single RAT mode for both WCDMA and LTE base stations and designed to provide mobile users with a connection to a mobile network.

The test scope covers the following models of test object:

Product number: KRC 161 328/1, 110-240 VAC internal antenna Product number: KRC 161 328/2, -48 VDC internal antenna Product number: KRC 161 328/3, 110-240 VAC no internal antenna Product number: KRC 161 328/4, -48 VDC no internal antenna

FCC ID TA8AKRC161328 IC 287AB-AS161328

IC model numbers: IC MODEL NO: AS1613281 IC MODEL NO: AS1613282 IC MODEL NO: AS1613283 IC MODEL NO: AS1613284

Appendix 1

Delivery of test object

The test object was delivered: 2013-10-21.

Test facility

The used test site (504 114) is compliant with the requirements of section 2.948 of the FCC rules and listed, registration number 93866, as a facility accepted for certification under parts 15 and 18. The site complies with RSS-Gen, Issue 3 and is accepted by Industry Canada for the performance of radiated measurements, file no: IC 3482A-2.

Reservation

The test results in this report apply only to the particular test objects as declared in the report.

Test engineers

Hyder Khalaf, Tomas Isbring and Andreas Johnson, SP.

Test participant

Mihai Simon, Ericsson AB.

Tested configuration

RF A configuration:	1x 37.0 dBm (1x 5 W)
RF B configuration:	1x 37.0 dBm (1x 5 W)
SFP module:	Delta, LCP-2488B4HDRT-E, s/n: 103606100011
	Delta, LCP-2488B4HDRT-E, s/n: 103506100558
OIL:	Opto fibre, single mode, 2.5 Gbit/s
Power configuration:	-48 VDC

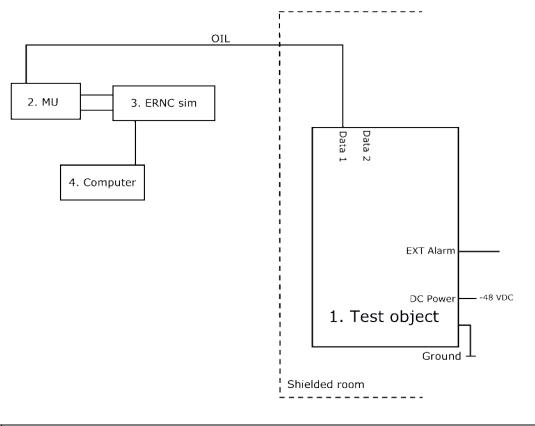
Operational test mode

For WCDMA the mRRUS unit was activated for maximum transmit power transmitting test model TM5 as defined in ETSI TS 125 141/ 3GPP TS 25.141. The channel type "3GPP Reference channel 12.2 ksps slotformat 10" was used in all cells with DPCH = 30.

The test object was configured in MIMO mode with both RF paths allocated to the following UARFCN:

UARFCN	Frequency	Symbolic	Comment
Downlink	[MHz]	name	
9662	1932.4	В	Single carrier TX bottom frequency
9800	1960.0	М	Single carrier TX mid frequency
9938	1987.6	Т	Single carrier TX top frequency

For LTE the mRRUS unit was activated for maximum transmit power transmitting test model E-TM1.1 as defined in ETSI TS 136 141/ 3GPP TS 36.141.


The test object was configured in MIMO mode with both RF paths allocated to the following EARFCN:

EARFCN	Frequency	Symbolic	Comment
Downlink	[MHz]	name	
700	1940.0	В	Single carrier TX bottom frequency in 20 MHz BW
700	1940.0	D	configuration
900	1960.0	М	Single carrier TX mid frequency in all BW
900	1900.0	IVI	configurations (1.4 MHz - 20 MHz)
1100	1980.0	Т	Single carrier TX top frequency in 20 MHz BW
1100	1100 1980.0 1		configuration

Appendix 1

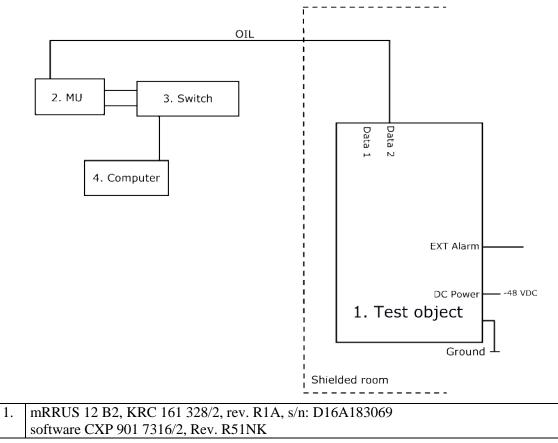
Test setup Configuration WCDMA:

1. mRRUS 12 B2, KRC 161 328/2, rev. R1A, s/n: D16A183069 software CXP 901 7316/2, Rev. R51NK

Functional test equipment:

2.	DUW 30 01, KDU 127 161/3, rev. R4E, s/n: TU8X621359,
	hosted in SUP 6601 1/BFL 901 009/4, rev. R1E, s/n. BR82081105
3.	ERNC-SIM 072, BAMS – 1000579045
	Netgear Switch GSM7212, BAMS – 1000517289
	Symmetricom SyncServer S250, BAMS – 1000690719
	Symmetricom 8040 Rubidium Frequency Standard, BAMS – 1001292861
4.	Computer I-ultra27-06 standalone, BAMS – 1000758439

Integrated antenna


Sector antenna, KRE 101 2141/1, rev. R1B, s/n: T89U100470 Representing version: KRC 161 328/2

Semi-integrated omni antenna

VPol Omni, KRE 101 2233/1, s/n: DEG2731605 VPol Omni, KRE 101 2233/1, s/n: DEG2731516 Representing version: KRC 161 328/4

Test setup Configuration LTE:

Functional test equipment:

2.	DUS 41 01 KDU 137 624/1 R5A, s/n: D168382143,
	hosted in SUP 6601 1/BFL 901 009/4, rev. R1E, s/n. BR88237597
3.	Netgear Switch GSM7212, BAMS – 1000517289
4.	Computer I-ultra27-06 standalone, BAMS – 1000758439

Integrated antenna

Sector antenna, KRE 101 2141/1, rev. R1B, s/n: T89U100470 Representing version: KRC 161 328/2

Semi-integrated omni antenna

VPol Omni, KRE 101 2233/1, s/n: DEG2731605 VPol Omni, KRE 101 2233/1, s/n: DEG2731516 Representing version: KRC 161 328/4

Interface:	Type of port:
Power: -48 VDC	DC Power
Data 1, optical interface	Signal
Data 2, optical interface	Signal
Ext Alarm, shielded multi wire Sign	
Ground wire	Ground

RBS software

WCDMA

	Software	Revision	
DUW 30 01	CXP 902 1719	R4G03	

LTE

	Software	Revision		
DUS 41 01	CXP 102 051/19	R28AT		

RF exposure evaluation: 2.1091 Mobile devices / RSS-102 4.2

Date	Temperature	Humidity
2013-10-25	$23 \ ^{\circ}C \pm 3 \ ^{\circ}C$	36 % ± 5 %
2013-10-26	$23 \ ^{\circ}C \pm 3 \ ^{\circ}C$	40 % ± 5 %
2013-10-27	23 °C ± 3 °C	44 % ± 5 %
2013-10-28	$24 \ ^{\circ}C \pm 3 \ ^{\circ}C$	43 % ± 5 %
2013-10-29	$23 \degree C \pm 3 \degree C$	42 % ± 5 %

Procedure

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

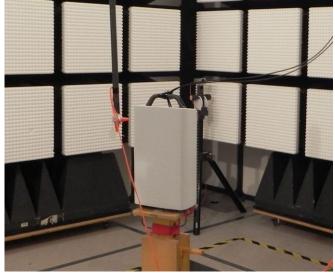
Test setup and procedure

- 1. The test object is measured in twelve directions (in 30° steps) with the field probe continuously scanning from 0.1 2 m in height.
- 2. Measuring distance was 20 cm from the centre of the test object, step 1 is repeated with a distance increment of 20 cm until the measured field strength is compliant.

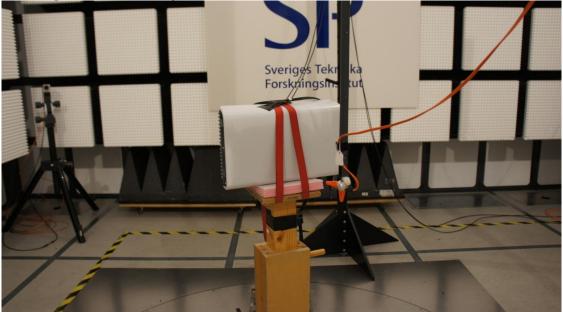
The distance for compliance for Adult is derived from spatial average over the full scan height. The distance for compliance for Child is derived from spatial average over \pm 45 cm from the height where the highest level was detected.

The nominal power stated by the manufacturer is 2x 5 W (2x 37 dBm), with a tolerance of \pm 1 dB.

For LTE the measured output power was 5.13 W (37.1 dBm). Therefore the calculation was adjusted by 0.9 dBm to cover the highest possible output power.


For WCDMA the measured output power was 5.13 W (37.1 dBm). Therefore the calculation was adjusted by 0.9 dBm to cover the highest possible output power.

The measurement were made with an Integrated antenna and a Semi-integrated omni antenna.



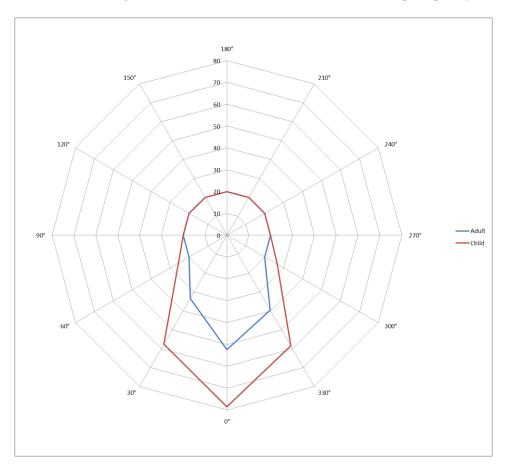
Appendix 2

Test setup orientation 1, Integrated antenna:

Test setup orientation 2, Integrated antenna:

Test setup orientation 1, Semi-integrated omni antenna:

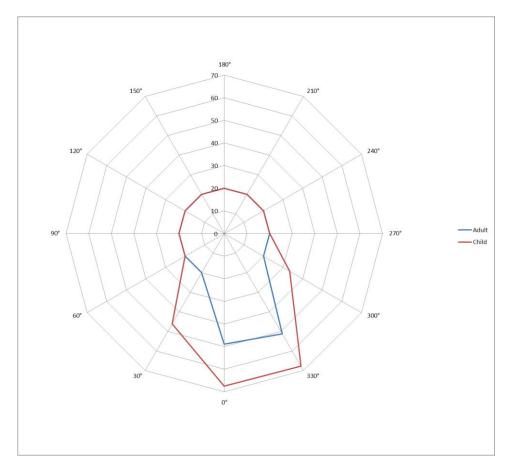
Test setup orientation 2, Semi-integrated omni antenna:



Appendix 2

Results

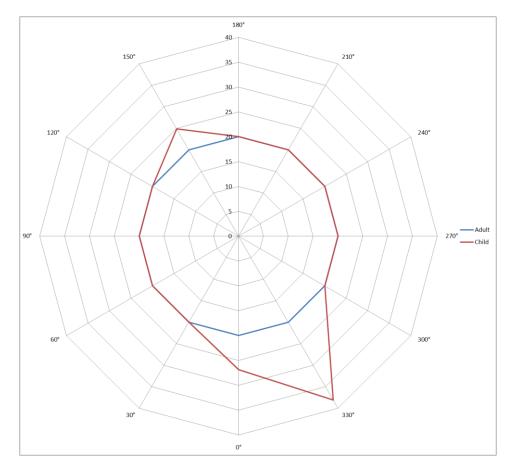
Orientation 1, Integrated antenna, worst case: LTE 20 MHz TX top frequency

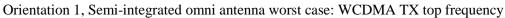


Note: The test object was placed with the front side facing 0° and the back side facing 180° as shown in the test setup photo.

	Distance for compliance (cm).		
Direction	Adult	Child	
0°	52.4	78.6	
30°	33.4	57.6	
60°	20.0	25.6	
90°	20.0	20.0	
120°	20.0	20.0	
150°	20.0	20.0	
180°	20.0	20.0	
210°	20.0	20.0	
240°	20.0	20.0	
270°	20.0	20.0	
300°	20.0	26.6	
330°	39.7	58.4	

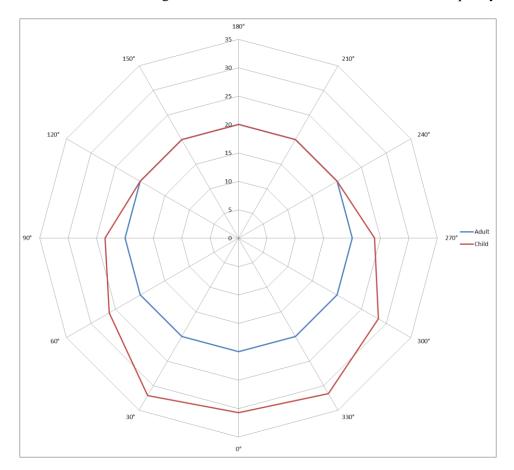
Appendix 2


Orientation 2, Integrated antenna worst case: LTE 20 MHz TX mid frequency


Note: The test object was placed with the front side facing 0° and the handle facing 90° as shown in the test setup photo.

	Distance for compliance (cm).			
Direction	Adult	Child		
0°	49.0	67.5		
30°	20.0	46.1		
60°	20.0	20.0		
90°	20.0	20.0		
120°	20.0	20.0		
150°	20.0	20.0		
180°	20.0	20.0		
210°	20.0	20.0		
240°	20.0	20.0		
270°	20.0	20.0		
300°	20.0	33.4		
330°	51.2	67.8		

Appendix 2



Note The test object was placed with the front facing 0° and the back side facing 180° as shown in the test setup photo.

	Distance for compliance (cm).		
Direction	Adult	Child	
0°	20.0	26.9	
30°	20.0	20.0	
60°	20.0	20.0	
90°	20.0	20.0	
120°	20.0	20.0	
150°	20.0	24.9	
180°	20.0	20.0	
210°	20.0	20.0	
240°	20.0	20.0	
270°	20.0	20.0	
300°	20.0	20.0	
330°	20.0	38.1	

Appendix 2

Orientation 2, Semi-integrated omni worst case: LTE 20 MHz TX mid frequency

Note: The test object was placed with the front side facing 0° and the handle facing 270° as shown in the test setup photo.

	Distance for compliance (cm).		
Direction	Adult	Child	
0°	20.0	30.7	
30°	20.0	32.0	
60°	20.0	26.3	
90°	20.0	23.5	
120°	20.0	20.0	
150°	20.0	20.0	
180°	20.0	20.0	
210°	20.0	20.0	
240°	20.0	20.0	
270°	20.0	23.9	
300°	20.0	28.4	
330°	20.0	31.6	

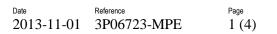
Appendix 2

Limits

According to 47 CFR 1.1310.

(B) Limits for General Population/Uncontrolled Exposure

Frequency range	Electric field	Magnetic field	Power density	Averaging time	
(MHz)			$[S] (mW/cm^2)$	$ E ^2$. $ H ^2$ or S	
	[E] (V/m)	[H] (A/m)		(minutes)	
1500-100.000	-	-	1.0	(Note 1)	


According to RSS-102 4.2

RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency range (MHz)	Electric field strength	Magnetic field strength	Power density $[S] (W/m^2)$	Averaging time $ \mathbf{E} ^2$. $ \mathbf{H} ^2$ or S
	[E] (V/m)	[H] (A/m)		(minutes)
1500-15000	-	-	10	(Note 1)

Note 1: The test was executed with the test object configured for maximum output power to represent worst case. Therefore no averaging time measurement was made.

Complies? Yes

Appendix 3

Photos of test object

Front side with cover:

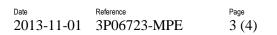
Front side without Integrated antenna:

Front side without cover:

Left side without Integrated antenna:

Right side without Integrated antenna:

REPORT


Front side with Semi-integrated omni antenna in vertical orientation

Front side with Semi-integrated omni antenna in horisontal orientation

Appendix 3

Labels:

mRRUS 12 B2:

SFP module:

Data port 1:

Data port 2:

Integrated antenna:

Appendix 3

Semi-integrated omni antennas

Antenna 1

DE - 83004	THRE Rosenheim 80010847		signed in Ger ade in Germa	any IIII
Type Serial no.	VPol Omni DEG2731605			(Q) 1
(1P)KR	E 101 2233/1	(S)DE0	G2731605	

Antenna 2

DE - 83004	THRE ⁴ Rosenheim 80010847	IN	Mac	igned in Gern de in German	ny II
Type Serial no.	VPol Omni DEG2731516				(Q) 1
(1P)KF	RE 101 2233/1			2731516	