

issued by an FCC listed Laboratory Reg. no. 93866 The test site complies with RSS-Gen, IC file no: 3482A-1

Jörgen Wassholm Electronics +46 10 516 57 06

jorgen.wassholm@sp.se

Reference 2013-09-04

3P04068-06-F22

Page 1(2)

Ericsson AB Klaes Holm PDU HW 164 80 Stockholm

Radio measurements on RRUS 12 B5 850 MHz radio equipment with FCC ID TA8AKRC161321-2 and IC 287AB-AS1613212

(5 appendices)

Test object

Product name: RRUS 12 B5

Product number: KRC 161 321/2, R1B

Summary

See appendix 1 for details.

Standard	Compliant	Appendix	
FCC CFR 47 / IC RS	SS-132		
2.1046 / RSS-132 5.4	RF power output	Yes	2
2.1051 / RSS-132 5.5	Spurious emission at antenna terminals	Yes	3
2.1053 / RSS-132 5.5	Field strength of spurious radiation	Yes	4

Note: Above RSS-132 items are given as cross-reference only. Measurements were performed according to ANSI procedures referenced by FCC and covered by SP's accreditation.

SP Technical Research Institute of Sweden

Electronics – EMC

Prepared by

Examined by

Jörgen Wassholm

Bengt Andersson

Sweden

Table of contents

Description of the test object	Appendix 1
Purpose of test	Appendix 1
Operation modes during measurements	Appendix 1
RF power output	Appendix 2
Spurious emission at antenna terminals	Appendix 3
Field strength of spurious radiation	Appendix 4
External photos	Appendix 5

Description of the test object

Equipment: Product name: RRUS 12 B5, supporting mixed mode

LTE and GSM

Product number KRC 161 321/2 FCC ID TA8AKRC161321-2 IC: 287AB-AS1613212 IC MODEL NO: AS1613212

TX: 869 - 894 MHz Frequency range:

RX: 824 - 849 MHz

Antenna ports: 2 TX/RX ports

RF configurations: Single carrier, multi carrier, TX diversity and MIMO 2x2

(TX diversity and MIMO LTE only)

Maximum nominal RF

output power per antenna

port:

1-2 LTE + 1-3 GSM (Total power 47.8dBm, 60W)

Total number of carriers 5

No dedicated antenna, handled during licensing Antenna:

GSM Modulations: GMSK, 16QAM, 32QAM, AQPSK and 8PSK

LTE Modulations: QPSK, 16QAM and 64QAM

LTE Channel bandwidths: 1.4 MHz, 3 MHz, 5 MHz and 10 MHz

Nominal supply voltage: -48VDC

Purpose of test

The purpose of the tests is to verify compliance to the performance characteristics specified in applicable items of FCC CFR 47 and Industry Canada RSS-132 and RSS-Gen.

Operation modes during measurements

LTE measurements were performed with the test object transmitting test models as defined in 3GPP TS 36.141. Test model E-TM1.1 was used to represent QPSK, test model E-TM3.2 to represent 16QAM and test model E-TM3.1 to represent 64QAM modulation.

The settings below were deemed representative for all traffic scenarios when settings with different modulations, channel bandwidths, number of carriers and RF configurations has been tested to find the worst case setting. The settings below were used for all measurements if not otherwise noted.

One carrier: E-TM1.1

All measurements were performed with the test object configured for the maximum transmit power applicable for the tested configuration.

GSM measurements were performed with the test object transmitting following modulations: GMSK, AQPSK, 8-PSK, 16QAM and 32QAM.

Unless otherwise stated, all measurements were performed with the test object transmitting pseudorandom data in all timeslots and settings for maximum transmitter output power applicable for each configuration.

The settings below were deemed representative for all traffic scenarios when settings with different modulations and number of carriers has been tested to find the worst case setting. The settings below were used for all measurements if not otherwise noted.

Two GSM carriers, GMSK modulation

Conducted measurements

The test object was supplied with -48 VDC by an external power supply. Additional connections are documented in the set-up drawings below.

All measurements were made on RF A and additional measurements on RF B to verify that the ports were electrical identical, as declared by the client.

Radiated measurements

The test object was powered with -48 VDC. All measurements were performed with the test object configured for maximum transmit power

Purpose of test

The purpose of the tests is to verify compliance to the performance characteristics specified in applicable items of FCC CFR 47 and Industry Canada RSS-132 and RSS-Gen.

3(7)

References

Measurements were done according to relevant parts of the following standards: ANSI 63.4-2009
ANSI/TIA/EIA-603-C-2004
CFR 47 part 2, October 1st, 2012
CFR 47 part 22, October 1st, 2012
3GPP TS 36.141, version 11.4.0
3GPP TS 37.141, version 11.3.0
RSS-Gen Issue 3
RSS-132 Issue 3

Measurement equipment

	Calibration Due	SP number
Test site Tesla	2014-01	503 881
R&S ESU 26	2013-07	901 553
R&S FSQ 40	2014-03	504 143
Control computer with	-	503 745
R&S software EMC32 version 8.52.0		
High pass filter	2013-07	901 501
High pass filter	2013-07	504 199
High pass filter	2013-08	901 373
High pass filter	2014-08	503 739
High pass filter	2013-07	503 740
RF attenuator	2013-12	901 508
Chase Bilog Antenna CBL 6111A	2014-10	503 182
EMCO Horn Antenna 3115	2014-01	502 175
μComp Nordic, Low Noise Amplifier	2014-04	901 545
Temperature and humidity meter, Testo 635	2014-06	504 203
Temperature and humidity meter, Testo 625	2014-06	504 188

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor k=2 (95% level of confidence). Compliance evaluation is based on a shared risk principle with respect to the measurement uncertainty.

Reservation

The test results in this report apply only to the particular test object as declared in the report.

Delivery of test object

The test object was delivered 2013-05-22.

4(7)

Manufacturer's representative

Christer Gustavsson

Test engineers

Andreas Johnson, Tomas Lennhager, Tomas Isbring, Kexin Chen, Jörgen Wassholm and Martin Theorin, SP

Test participant

Adam Skoglund, Ericsson AB (partially)

Test frequencies used for conducted measurements

MSR, LTE + GSM TX test frequencies

	LTE 1x30W			GSM 2x15V	V
EARFCN	Frequency	Bandwidth	ARFCN	Frequency	
Downlink	[MHz]	[MHz]	Downlink	[MHz]	
			Carrrier 1/2	Carrrier 1/2	
2550	884.0	10	129/ 137	869.4/871.0	Configuration 1
2515	880.5	10	242/250	892.0/893.6	Configuration 2
2485	877.5	1.4	140/ 199	871.6/883.4	Configuration 3

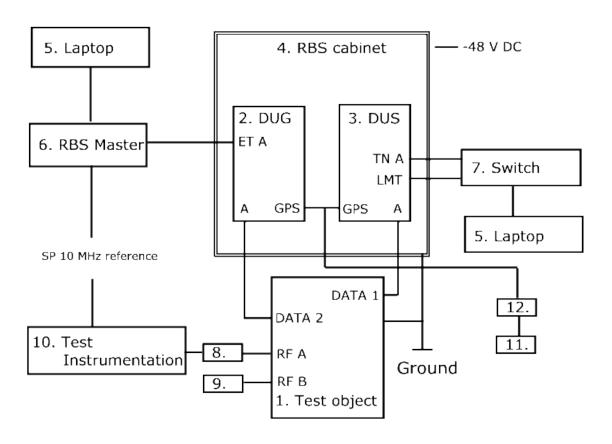
Test frequencies used for radiated measurements

MSR, LTE + GSM TX test frequencies

Port RFA:

LTE 1x30W			GSM 2x15W		
EARFCN	Frequency	Bandwidth	ARFCN	Frequency	
Downlink	[MHz]	[MHz]	Downlink	[MHz]	
2550	884.0	1.4	129/ 137	869.4/871.0	Configuration 4
2515	880.5	1.4	239/ 247	891.4/893.0	Configuration 5

Port RFB:


LTE 1x30W				GSM 2x	15W
EARFCN	Frequency	Bandwidth	ARFCN	Frequency	
Downlink	[MHz]	[MHz]	Downlink	[MHz]	
2550	884.0	1.4	132/ 140	870.0/871.6	Configuration 4
2515	880.5	1.4	242/250	892.0 /893.6	Configuration 5

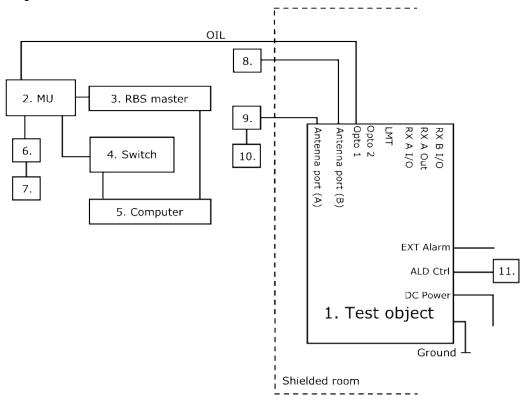
All RX frequencies were configured 45 MHz below the corresponding TX frequency according the applicable duplex offset for the operating band.

5(7)

Test set-up conducted measurements

Note: Unconnected interfaces were omitted in the picture for simplicity, but are listed in the interface table on page 7.

Test object:


1.	RRUS 12 B5, KRC 161321/2, rev. R1B, s/n: C827002288
	working software PIS CXP 901 7316/2, rev. R49DU with
	FCC ID TA8AKRC161321-2 and IC: 287AB-AS1613212

Functional test equipment:

2.	DUG 2001 KDU 137 569/1, R3D, A402019156				
3.	DUS 40 01, KDU 137 624/1, rev:R3C, s/n: C826152153				
4.	RBS 6202 BAMS 1000961945				
5.	Controlling computer HP EliteBook 8560 w, BAMS 1001236850				
6.	RBS Master LPY 107 1007/3 rev. R1C. BAMS 1001195170				
7.	Fast Ethernet switch, Netgear FS726T				
8.	Attenuator				
9.	Terminator, 50 ohm				
10.	SP Test Instrumentation according to measurement equipment list				
11.	GPS Active Antenna, KRE 101 2082/1				
12.	GPS 02 01, NCD 901 41/1, rev. R1D, s/n: TU8K474887				

Test setup radiated measurements

Test object:

1. RRUS 12 B5, KRC 161 321/2, rev. R1B, s/n: C827002289 working software: CXP 901 7316/2, rev. R49DU with FCC ID TA8AKRC161321-2 and IC: 287AB-AS1613212

Functional test equipment:

2.	Main Unit			
	SUP 6601, 1/BFL 901 009/4, rev. R1E, s/n: BR82081105			
	DUS 41 01, KDU 137 624/1, rev. R3C, s/n: C826152153			
	SUP 6601, 1/BFL 901 009/4, rev. R1E, s/n: BR82691785			
	DUG 20 01, KDU 137 569/1, rev. R3D, s/n: A402019155			
3.	RBS master 2E, LPY 107 1007/3, BAMS-1001195172			
4.	Switch Netgear FS726T			
5.	Computer, EliteBook 8560w, BAMS – 1001236854			
6.	GPS 02 01, NCD 901 41/1, rev. R1D, s/n: TU8K356490			
7.	GPS Active Antenna, KRE 101 2082/1			
8.	Terminator			
9.	Attenuator			
10.	Signal Analyzer FSIQ 40 for supervision purpose only			
11.	RET – Remote Electrical Tilt unit, KRY 121 67/2, rev. R1N			

Interfaces:	Type of port:
Power: -48 VDC	DC Power
Antenna port (A), 7/16 connector, terminated	Antenna
Antenna port (B), 7/16 connector, terminated	Antenna
Opto 1, Optical Interface Link, single mode opto fibre	Telecom
Opto 2, Optical Interface Link, single mode opto fibre	Telecom
LMT, for maintenance use only, no cable attached	Telecom
RX A Out, no cable attached	Antenna
RX A I/O, no cable attached	Antenna
RX B I/O, no cable attached	Antenna
EXT Alarm, shielded multi-wire	Signal
ALD Ctrl, shielded multi-wire	Signal
Ground wire	Ground

RBS software:

RAT	Software	Revision
LTE	CXP 102 051/18	R27X
GSM	G13AG7	R71L

RF power output measurements according to CFR 47 2.1046 / IC RSS-132 5.4

Date	Temperature	Humidity
2013-06-10	$23 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	31% ± 5 %
2013-06-11	$23 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	33% ± 5 %

Test set-up and procedure

REPORT

The test object was connected to a signal analyzer measuring peak and RMS output power in CDF mode. A RBW of 50 MHz was used.

Measurement equipment	SP number
Rohde & Schwarz signal analyzer FSQ40	504 143
RF attenuator	901 508
Testo 635 temperature and humidity meter	504 203

Measurement uncertainty: 1.1 dB

Results

Rated output power level at RF connector 46.8 dBm

Tested configuration	Transmitter power Port RFA [RMS dBm/ dB PAR]
Configuration1	46.65/ 7.19
Configuration 2	46.67/ 7.28
Configuration 3	46.58/ 7.36

Remark

This unit is tested without antenna. ERP/EIRP compliance is addressed at the time of licensing, as required by the responsible FCC/IC Bureau(s). Licensee's are required to take into account maximum allowed antenna gain used in combination with above power settings to prevent the radiated output power to exceed the limits.

Limits

CFR47 § 22.913: The effective radiated power ERP shall not exceed 1000 W.

RSS-132 5.4: The average equivalent isotropically radiated power (e.i.r.p.) limits in

SRSP-503 apply, resulting in a maximum EIRP of 1640 W.

The PAPR (0.1%) shall not exceed 13 dB.

Complies? Yes

REPORT

Appendix 3

Conducted spurious emission measurements according to CFR 47 2.1051 / IC RSS-132 5.5

Date	Temperature	Humidity
2013-06-10	23 °C ± 3 °C	31% ± 5 %
2013-06-11	$23 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	33% ± 5 %

Test set-up and procedure

The measurements were made per definition in § 22.917, but with a conservative 1 MHz RBW. The output was connected to a spectrum analyzer with the RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

Before comparing the results to the limit, 3 dB [10 log (2)] should be added according to method c "measure and add 10 log(N_{ANT})" of FCC KDB662911 D01 Multiple Transmitter Output v02

Measurement equipment	SP number
Rohde & Schwarz signal analyzer FSQ40	504 143
RF attenuator	901 508
High pass filter	901 501
Testo 635 temperature and humidity meter	504 203

Measurement uncertainty: 3.7 dB

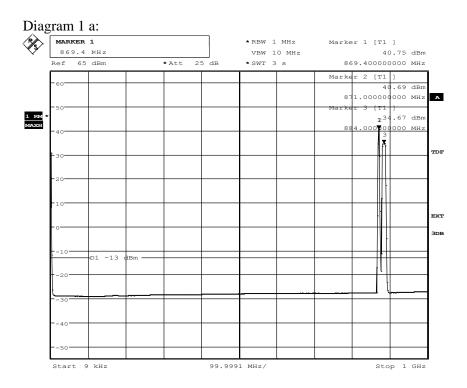
Results

Diagram	Tested configuration	Tested Port
1 a+b+c	Configuration 1	RFA
2 a+b+c	Configuration 2	RFA
3 a+b+c	Configuration 3	RFA

Remarks

The emission at 9 kHz on some of the plots was not generated by the test object. A complementary measurement with a smaller RBW showed that it was related to the LO feed-through.

The upper frequency boundary covers 10x the highest TX fundamental frequency. The highest fundamental frequency is 894MHz. The measurements were made up to 9~GHz (10x894~MHz = 8.94~GHz).


Limits

CFR 47 § 22.917: Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm per 100 kHz RBW.

IC RSS-132 5.5.1.2: Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB per any 100 kHz RBW.

Complies?	Yes
-----------	-----

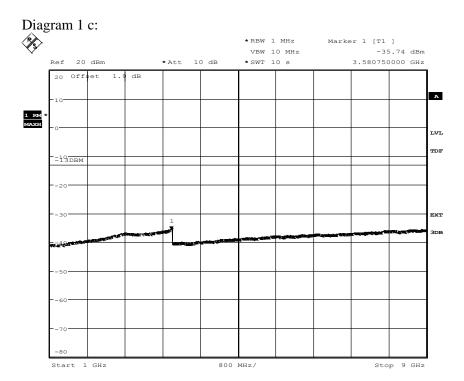
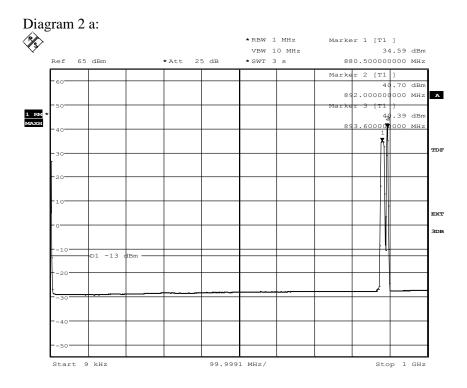
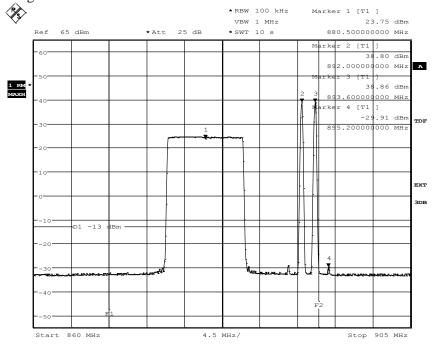

Date: 10.JUN.2013 18:19:45

Diagram 1 b:


Date: 10.JUN.2013 18:17:10


Date: 10.JUN.2013 18:21:46

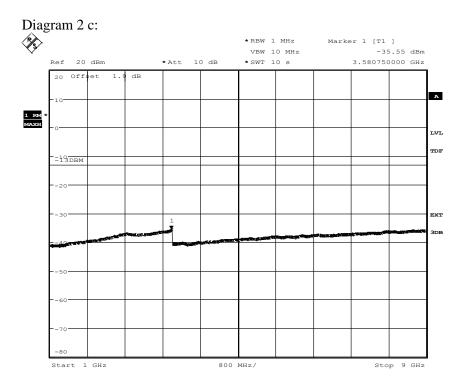
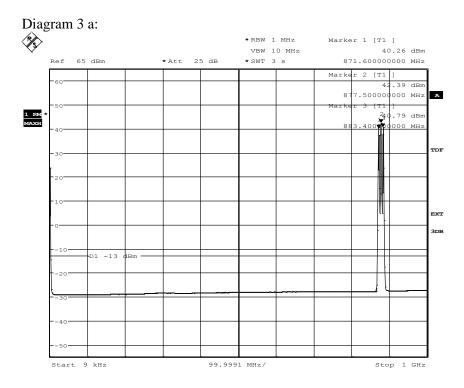
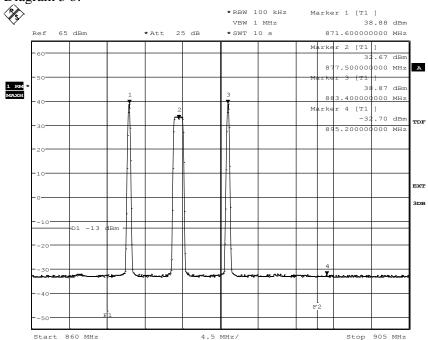

Date: 11.JUN.2013 06:59:05

Diagram 2 b:


Date: 11.JUN.2013 06:57:56


Date: 11.JUN.2013 07:00:31

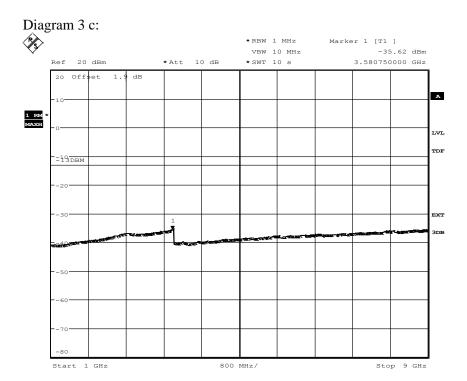

Date: 11.JUN.2013 07:53:12

Diagram 3 b:

Date: 11.JUN.2013 07:48:34

Date: 11.JUN.2013 07:54:44

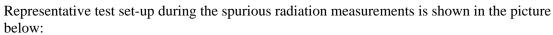
Field strength of spurious radiation measurements according to 47 CFR 2.1053 / IC RSS-132 5.5

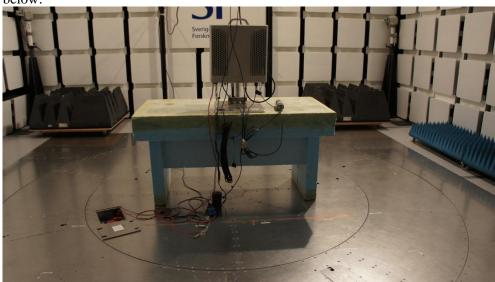
Date	Temperature	Humidity
2013-05-30	$23^{\circ}\text{C} \pm 3^{\circ}\text{C}$	$41 \% \pm 5 \%$

Test set-up and procedure

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarization of the antenna. The antenna distance was 3 m in the frequency range 30 MHz – 9 GHz. The upper frequency boundary was chosen to comprise 10x the highest fundamental TX frequency.


In the frequency range 30 MHz - 9 GHz the measurement was performed in power with a RBW of 1 MHz. A propagation loss in free space was calculated. The used formula was


$$\gamma = 20 \log \left(\frac{4\pi D}{\lambda} \right)$$
, γ is the propagation loss and D is the antenna distance.

The measurement procedure was as the following:

- 1. A pre-measurement was first performed with peak detector. The Test object was measured in eight directions and with the antenna at three heights, 1.0 m, 1.5 m and 2.0 m.
- 2. Spurious radiation on frequencies closer than 20 dB to the limit in the pre-measurement is scanned 0-360 degrees and the antenna is scanned 1-4 m for maximum response. The emission is then measured with the RMS detector and the RMS value is reported. Frequencies closer than 10 dB to the limit when measured with the RMS detector were with the substitution method according to the standard.

Measurement equipment

Measurement equipment	SP number
Semi anechoic chamber	503 881
R&S ESU 26	901 553
EMC 32 ver. 8.52.0	503 745
Chase Bilog Antenna CBL 6111A	502 182
EMCO Horn Antenna 3115	502 175
μComp Nordic, Low Noise Amplifier	901 545
High pass filter	901 373
Temperature and humidity meter, Testo 625	504 188

Tested configurations

Configuration 4	
Configuration 5	

Results, representing worst case

Diagram	Configuration
1 a+b	Configuration 4

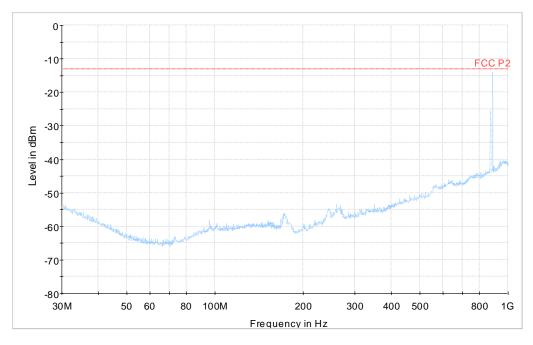
Frequency	Spurious emission level (dBm)	
(MHz) Vertical	Horizontal	
30 - 9 000	All emissions > 20 dB below limit	All emissions > 20 dB below limit

Measurement uncertainty: 3.2 dB

Remarks

The upper frequency bound for verification was chosen as 9 GHz in order to cover 10 x the maximum fundamental TX frequency.

Limits


CFR 47 § 22.917 and IC RSS-132 5.5

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, resulting in a limit of -13 dBm per any 100 kHz bandwidth.

Complies?	Yes

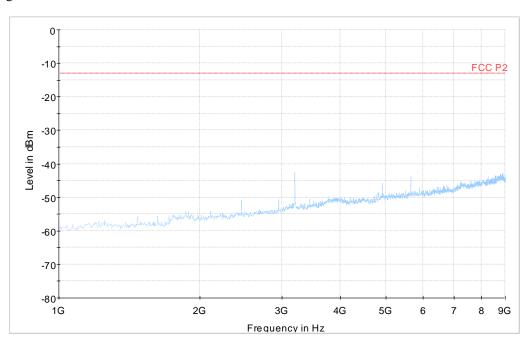
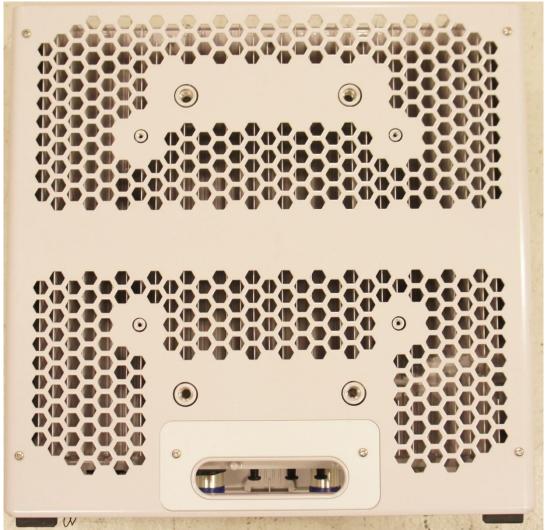


Diagram 1 a:

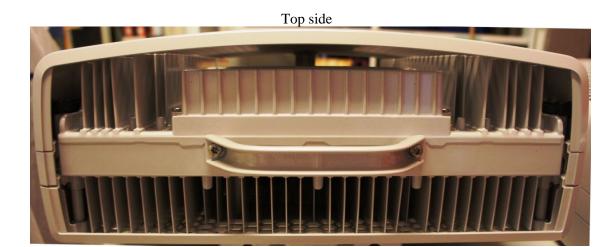
Note: The emission between 869 MHz and 894 MHz is the carrier frequency and shall be ignored in this context.

Diagram 1 b:

External photos



Product label



Page 4 (4)

Appendix 5

