

Choose certainty.
Add value.

Report On

FCC Testing of the Ericsson AB RRUS 11 B26A / KRC 161 287/2

COMMERCIAL-IN-CONFIDENCE

FCC ID: TA8AKRC161287-2

Document 75918306 Report 01 Issue 1

June 2012

TÜV SÜD Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL
Tel: +44 (0) 1489 558100. Website: www.tuvps.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON FCC Testing of the

Ericsson AB RRUS 11 B26A / KRC 161 287/2

Document 75918306 Report 01 Issue 1

June 2012

PREPARED FOR Ericsson AB

Torshamnsgatan 23

SE-164 80 Stockholm Sweden

PREPARED BY

Y He

Test Engineer

APPROVED BY

S Bennett

Authorised Signatory

DATED 29 June 2012

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate compliance with FCC CFR 47: Part 90. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

Y He

C Zhang

CONTENTS

Section		Page No
1	REPORT SUMMARY	3
1.1	Introduction	
1.2	Brief Summary of Results	
1.3	Declaration of Build Status	
1.4	Product Information	8
1.5	Test Conditions	
1.6	Deviations From the Standard	13
1.7	Modification Record	13
1.8	Alternative Test Site	13
2	TEST DETAILS	14
2.1	Maximum Peak Output Power - Conducted	15
2.2	Modulation Characteristics	
2.3	Occupied Bandwidth	
2.4	Emission Mask	
2.5	Radiated Spurious Emissions	31
2.6	Conducted Spurious Emissions	36
2.7	Frequency Stability Under Temperature Variations	
2.8	Frequency Stability Under Voltage Variations	49
3	TEST EQUIPMENT USED	51
3.1	Test Equipment Used	52
3.2	Measurement Uncertainty	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	55
4.1	Accreditation, Disclaimers and Copyright	56

SECTION 1

REPORT SUMMARY

FCC Testing of the Ericsson AB RRUS 11 B26A / KRC 161 287/2

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Ericsson AB RRUS 11 B26A / KRC 161 287/2 to the requirements of FCC CFR 47 Part 90.

Testing was carried out in support of an application for Grant of Equipment Authorisation in the name of RRUS 11 B26A / KRC 161 287/2.

Objective To perform FCC Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for

the series of tests carried out.

Manufacturer Ericsson AB

Product Name RRUS 11 B26A

Product Number KRC 161 287/2

Serial Number(s) C826062816, C826062817

Software Version CXP102051/14_R20AJ

PIS Software Version CXP 901 7316/1, R44GS

Hardware Version R1C

Number of Samples Tested 2

Test Specification/Issue/Date FCC CFR 47 Part 90: 2011

Incoming Release Declaration of Build Status

Date 01 June 2012

Order Number PTP

Date 02 June 2012

Start of Test 04 June 2012

Finish of Test 29 June 2012

Name of Engineer(s) X Zhang C Zhang

Related Document(s) ANSI C63.4: 2009

ANSI/TIA-603-C-2004 FCC CFR 47 Part 2: 2011

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of results in accordance with FCC CFR 47 Part 2 and 90, is shown below.

Configura	tion 1 – Radio Equipment					
	Spec Clause					
Section	FCC Part 2 and 90	Test Description	Mode	Mod State	Result	Comments
			862.90MHz		N/A	
	90.635		865.50MHz		N/A	
		Effective Radiated Power	868.10MHz		N/A	No integral antenna.
		Effective Nadiated Fower	862.90MHz + 864.15MHz		N/A	100 integral antenna.
			864.25MHz + 865.50MHz		N/A	
			866.85MHz + 868.10MHz		N/A	
			862.90MHz	0	Pass	
			865.50MHz	0	Pass	
2.1	2.1046,	Maximum Peak Output	868.10MHz	0	Pass	
2.1	90.635	Power - Conducted	862.90MHz + 864.15MHz	0	Pass	-
			864.25MHz + 865.50MHz	0	Pass	
			866.85MHz + 868.10MHz	0	Pass	
			862.90MHz		N/A	
	0.4047.41)		865.50MHz	0	Pass	
0.0		Mandadatian Obanasiatian	868.10MHz		N/A	
2.2	2.1047 (d)	Modulation Characteristics	862.90MHz + 864.15MHz		N/A	-
			864.25MHz + 865.50MHz		N/A	
			866.85MHz + 868.10MHz		N/A	
			862.90MHz	0	Pass	
			865.50MHz	0	Pass	
0.0	0.4040 (b)	On a series d. Dona de didital	868.10MHz	0	Pass	
2.3	2.1049 (h)	Occupied Bandwidth ¹	862.90MHz + 864.15MHz		N/A	-
			864.25MHz + 865.50MHz		N/A	
			866.85MHz + 868.10MHz		N/A	
			862.90MHz	0	Pass	
			865.50MHz		N/A	
	2.1051,	Fortacion Martin	868.10MHz	0	Pass	
2.4	90.210 (g),	Emission Masks	862.90MHz + 864.15MHz	0	Pass	-
	90.691		864.25MHz + 865.50MHz		N/A	
			866.85MHz + 868.10MHz	0	Pass	

Configura	tion 1 – Radio Equipment					
0 "	Spec Clause				D 1	
Section	FCC Part 2 and 90	Test Description	Mode	Mod State	Result	Comments
			862.90MHz	0	Pass	
			865.50MHz	0	Pass	
2.5	2.1053,	Radiated Spurious	868.10MHz	0	Pass	
2.5	90.691	Emissions	862.90MHz + 864.15MHz	0	Pass	<u> </u>
			864.25MHz + 865.50MHz	0	Pass	
			866.85MHz + 868.10MHz	0	Pass	
			862.90MHz	0	Pass	
		14054	865.50MHz	0	Pass	
2.6	2.1051,	Conducted Spurious	868.10MHz	0	Pass	
2.0	90.691	Emissions	862.90MHz + 864.15MHz	0	Pass	
			864.25MHz + 865.50MHz	0	Pass	
			866.85MHz + 868.10MHz	0	Pass	
			862.90MHz		N/A	
			865.50MHz	0	Pass	
0.7	2.1055,	Frequency Stability Under	868.10MHz		N/A	
2.7	90.213	Temperature Variations	862.90MHz + 864.15MHz		N/A	T -
			864.25MHz + 865.50MHz		N/A	
			866.85MHz + 868.10MHz		N/A	
			862.90MHz		N/A	
			865.50MHz	0	Pass	7
2.8	2.1055,	Frequency Stability Under	868.10MHz		N/A	
2.0	90.213	Voltage Variations	862.90MHz + 864.15MHz		N/A	
			864.25MHz + 865.50MHz		N/A	
			866.85MHz + 868.10MHz		N/A	

N/A - Not Applicable

Note1: See Sprint Nextel's Request for Waiver to permit the operation of Broadband CDMA Technology in the 817-824/862-869 MHz band.

1.3 DECLARATION OF BUILD STATUS

MAIN EUT			
MANUFACTURING DESCRIPTION	Radio Equipment		
MANUFACTURER	Ericsson AB		
PRODUCT NUMBER	RRUS 11 B26A		
PART NUMBER	KRC 161 287/2		
SERIAL NUMBER	C826062816, CB26062817		
HARDWARE VERSION	R1C		
SOFTWARE VERSION	CXP102051/14_R20AJ		
PIS SOFTWARE VERSION	CXP 901 7316/1, R44GS		
TRANSMITTER OPERATING RANGE	TX: 862MHz - 869MHz		
	RX: 817MHz - 824MHz		
MODULATIONS	BPSK, QPSK, 8PSK, 16QAM		
INTERMEDIATE FREQUENCIES			
ITU DESIGNATION OF EMISSION	1M25F9W		
CHANNEL BANDWIDTH	1.25MHz		
OUTPUT POWER (RMS) (W or dBm)	Single Carrier: 1 x 46dBm per port Multi Carrier (x 2): 2 x 43dBm per port		
OUTPTU POWER TOLERANCE	± 1.0dB		
NUMBER OF ANTENNA PORTS	2 TX/ RX ports		
SUPPORTED CONFIGUATION	Dual Single Carrier or Multi Carrier. Both RF chains are identical.		
FCC ID	TA8AKRC161287-2		
TECHNICAL DESCRIPTION (a brief description of the intended use and operation)	The equipment is the Radio Part of CDMA Base Station.		

Signature

Date
D of B S Serial No

10 June 2012 75918306 /01

No responsibility will be accepted by $T\ddot{U}V$ $S\ddot{U}D$ Product Service as to the accuracy of the information declared in this document by the manufacturer.

1.4 PRODUCT INFORMATION

1.4.1 Technical Description

The Equipment Under Test (EUT) RRUS 11 B26A / KRC 161 287/2 is an Ericsson AB Radio Equipment working in the public mobile service 800MHz band which provides communication connections to CDMA800 network. The RRUS 11 B26A / KRC 161 287/2 operates from a - 48V DC supply.

The Equipment Under Test (EUT) is shown in the photograph below. A full technical description can be found in the Manufacturers documentation.

Equipment Under Test

1.4.2 Test Configuration

Configuration 1: Radio Equipment

The EUT was configured in accordance with FCC CFR 47 Part 90.

The RRUS 11 B26A / KRC 161 287/2 supports CDMA with BPSK, QPSK, 8PSK and 16QAM modulations at 800MHz. The settings below were found to be representative for all traffic scenarios when the number of carriers were tested to find the worst case setting. These settings were used for all measurements if not otherwise noted:

Single carrier:

BPSK Modulation

Forward Traffic Channel using Spreading Rate 1 (1X), Voice

User Channels: 6 Channel rate: 9.6kbps

Channel bandwidth: 1.25MHz

This setting was found to be representative in Occupied Bandwidth¹, Emission Masks and Conducted Spurious Emissions tests.

Single carrier:

QPSK Modulation

Forward Traffic Channel using Spreading Rate 1 (1X), Voice

User Channels: 6 Channel rate: 9.6kbps

Channel bandwidth: 1.25MHz

This setting was found to be representative in Maximum Peak Output Power, Radiated Spurious Emissions and Frequency Stability tests.

For other modulations, the settings are as follows:

QPSK Modulation: High Rate Packet Data

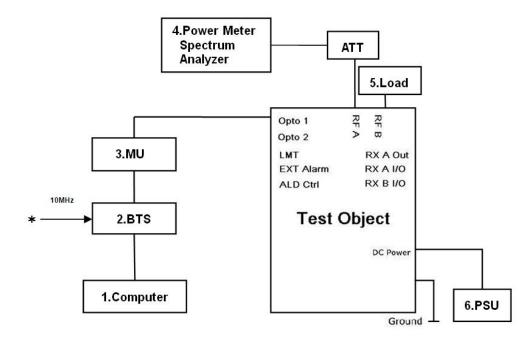
User Channels: 14 Channel rate: 614.4kbps

• 8PSK Modulation: High Rate Packet Data

User Channels: 14 Channel rate: 921.6kbps

16QAM Modulation: High Rate Packet Data

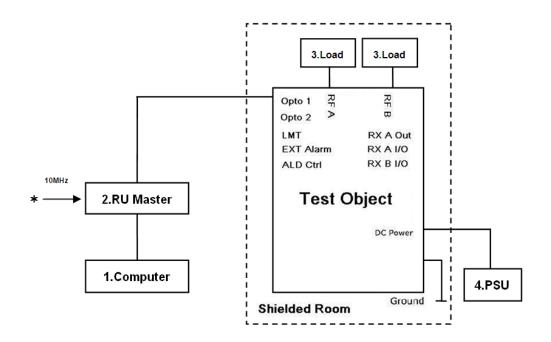
User Channels: 14 Channel rate: 2457.6kbps


Channel bandwidth: 1.25MHz

The EUT has two TX/RX ports and it can be configured to transmit with 800MHz single or multi carrier at both RF output connectors. All TX measurements were performed on the combined TX/RX output connector RF A. Limited complementary TX measurements were done at connector RF B to verify identical performance for both transmitter chains. The complete testing was performed with the EUT transmitting at maximum RF power unless otherwise stated.

The EUT was powered by a -48V DC Power supply.

Test Setup, Conducted Measurement:



Test Object	Part Number	Version	Serial Number
Radio Part	RRUS 11 B26A / KRC 161 287/2	R1C	C826062816

No.	Auxiliary Equipment	Part Number / Model Type	Version	Serial Number
1	Computer	HP DC5100SFF		CNG6510B8B
2	BTS 602			
	DBU	NTLK70AA	06	NNTMPX00M151
	XCEM-A	NTLK86AAE5	02	NNTMPX00MPRG
	XCEM-A	NTLK86AAE5	02	NNTMPX00LLDN
	AEM1302	NTLK85GAE5	07	NNTMPX00V5VV
	AEM1302	NTLK85GAE5	07	
	DUL20 01	KDU 137 533/4	R1D	CB4K440243
3.	XMU0201	KDU137 754/1	R1A	C824793854
	SUP 6601	BFL 901 009/1	R3B	BR81650806
	Power Meter	Agilent N1914A		MY50001665
4	Thermal Power Sensor	Agilent 8482A		MY45093513
4	Spectrum Analyzer	Agilent E4440A		MY48250517
	Spectrum Analyzer	Rohde & Schwarz FSQ26		200900
5	Load	MCLI TNN-15150		120
6	Power Supply	XFR 60-46		E00103273

Test Setup, Radiated Measurement:

Test Object	Part Number	Version	Serial Number
Radio Part	RRUS 11 B26A / KRC 161 287/2	R1C	C826062817

No.	Auxiliary Equipment	Part Number / Model Type	Version	Serial Number
1	Computer	ADVANTECH 610H		ATB5103888
2.	RU Master	LPC 102 400/5	R1B	Y01E368189
2	Load	TF100		09121631
3	Load	TF100		09121602
4	Power Supply	DH1716-5D		200360033

1.4.3 Modes of Operation

Modes of operation of each EUT during testing were as follows:

- Mode 1 Channel No. 476: 862.90MHz (Bottom Channel)
- Mode 2 Channel No. 580: 865.50MHz (Middle Channel)
- Mode 3 Channel No. 684: 868.10MHz (Top Channel)
- Mode 4 Channel No. 476 + 526: 862.90MHz + 864.15MHz (B and B+1.25MHz)
- Mode 5 Channel No. 530 + 580: 864.25MHz + 865.50MHz (M-1.25MHz and M)
- Mode 6 Channel No. 634 + 684: 866.85MHz + 868.10MHz (T-1.25MHz and T)

Information on the specific test modes utilised are detailed in the test procedure for each individual test.

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure, test laboratories or an open test area as appropriate.

The EUT was powered from a -48V DC supply.

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.7 MODIFICATION RECORD

No modifications were made to the EUT during testing.

1.8 ALTERNATIVE TEST SITE

Only Radiated Spurious Emissions has been performed under the following site registration:

FCC Accreditation 910917:

The State Radio Monitoring Centre, No.80 Beilishi Road Xicheng District Beijing, China.

SECTION 2

TEST DETAILS

FCC Testing of the Ericsson AB RRUS 11 B26A / KRC 161 287/2

2.1 MAXIMUM PEAK OUTPUT POWER - CONDUCTED

2.1.1 Specification Reference

FCC CFR 47 Part 2.1046 FCC CFR 47 Part 90, Clause 90.635

2.1.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.1.3 Date of Test and Modification State

04 June 2012 - Modification State 0

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2 and Part 90.

Using a power meter and attenuator(s), the output power of the EUT was measured at the antenna terminal. The carrier power was measured with all modulations.

The path loss was measured and entered as a reference level offset.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2
- Mode 3
- Mode 4
- Mode 5
- Mode 6

2.1.6 Environmental Conditions

04 June 2012

Ambient Temperature 25.7°C

Relative Humidity 49.5%

2.1.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90 for Maximum Peak Output Power.

The test results are shown below

Single Carrier

Configuration 1 - Mode 1, 2 and 3

BPSK

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	45.98	39.63
580 (Middle)	865.50	40.4	46.93	49.32
684 (Top)	868.10	40.4	46.88	48.75

QPSK

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	46.02	39.99
580 (Middle)	865.50	40.4	46.97	49.77
684 (Top)	868.10	40.4	46.89	48.87

8PSK

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	45.98	39.63
580 (Middle)	865.50	40.4	46.07	40.46
684 (Top)	868.10	40.4	45.98	39.63

<u>16QAM</u>

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	46.01	39.90
580 (Middle)	865.50	40.4	46.08	40.55
684 (Top)	868.10	40.4	46.02	39.99

Multi Carrier (1x2)

Configuration 1 - Mode 4, 5 and 6

BPSK

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	46.00	39.81
580 (Middle)	865.50	40.4	46.02	39.99
684 (Top)	868.10	40.4	45.99	39.71

<u>QPSK</u>

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	46.01	39.90
580 (Middle)	865.50	40.4	46.03	40.09
684 (Top)	868.10	40.4	46.04	40.18

8PSK

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	46.03	40.09
580 (Middle)	865.50	40.4	46.03	40.09
684 (Top)	868.10	40.4	46.06	40.36

<u>16QAM</u>

Channel No.	Frequency (MHz)	Path Loss (dB)	Result (dBm) RMS	Result (W) RMS
476 (Bottom)	862.90	40.4	46.03	40.09
580 (Middle)	865.50	40.4	46.06	40.36
684 (Top)	868.10	40.4	46.08	40.55

Limit	≤1000W or ≤+60dBm

Remarks

The EUT does not exceed 1000W or 60dBm at the measured frequencies.

2.2 MODULATION CHARACTERISTICS

2.2.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1047 (d)

2.2.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.2.3 Date of Test and Modification State

05, 06 and 29 June 2012 - Modification State 0

2.2.4 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2.

Connect the TX output connector RF A to a spectrum analyzer with an attenuator. The other connector RF B was connected to match load. The EUT was controlled to transmit maximum power. Measure and record the constellation of the EUT by the spectrum analyzer.

The EUT supports BPSK, QPSK, 8PSK and 16QAM modulations.

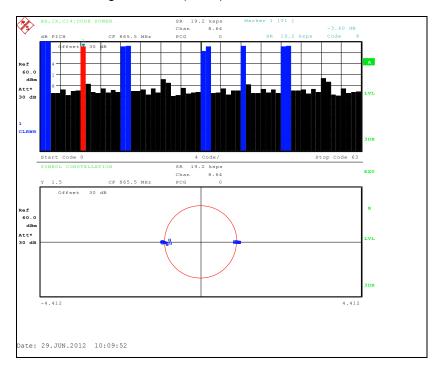
The test was performed with the EUT in the following configurations and mode of operation:

Configuration 1 - Mode 2

2.2.5 Environmental Conditions

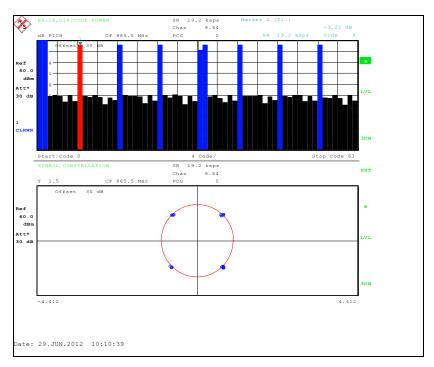
	05 June 2012	06 June 2012	29 June 2012
Ambient Temperature	26.8°C	26.1°C	24.1°C
Relative Humidity	47.0%	45.1%	50.1%

2.2.6 Test Results

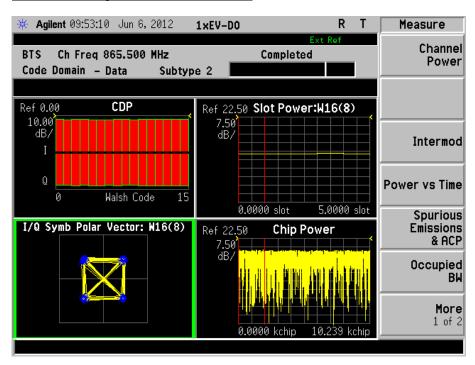

Plots are listed on the following showing the EUT transmitting with all of the modulations:

The test results are shown below

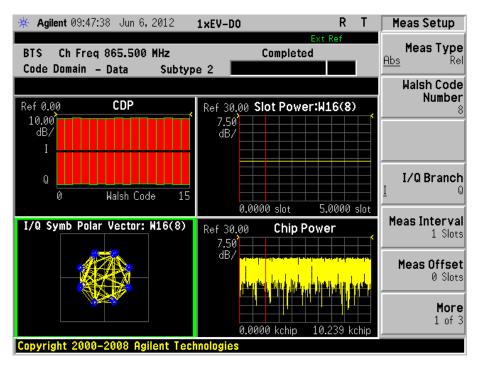
Single Carrier


Configuration 1 - Mode 2

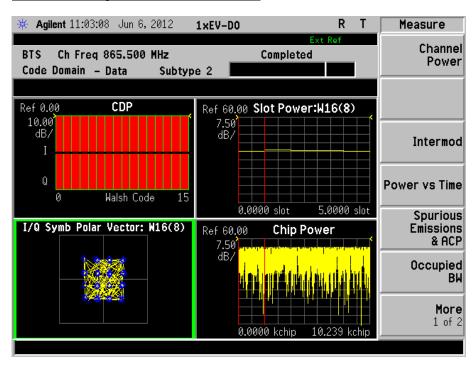
EUT transmitting with BPSK(Voice) modulation:



EUT transmitting with QPSK(Voice) modulation:



EUT transmitting with QPSK modulation:



EUT transmitting with 8PSK modulation:

EUT transmitting with 16QAM modulation:

2.3 OCCUPIED BANDWIDTH

2.3.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1049 (h)

2.3.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.3.3 Date of Test and Modification State

05 and 06 June 2012 - Modification State 0

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2.

The EUT was transmitting at maximum power. Using a resolution bandwidth of 13kHz and a video bandwidth of 130kHz, the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

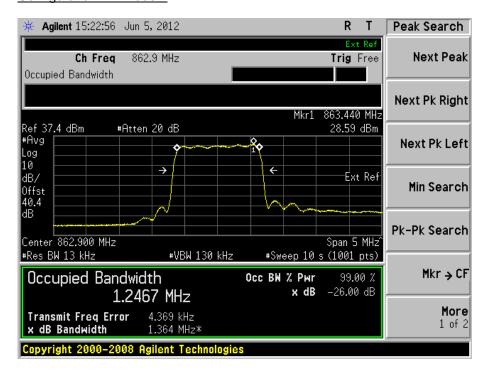
- Mode 3

2.3.6 Environmental Conditions

05 June 2012 06 June 2012

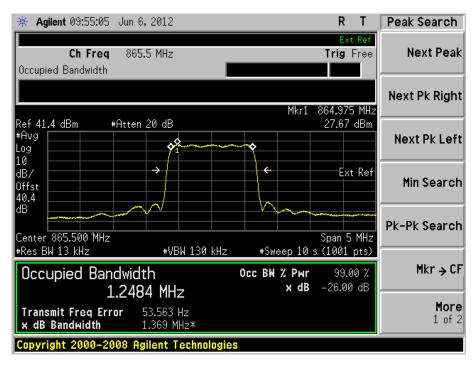
Ambient Temperature 26.8°C 26.1°C Relative Humidity 47.0% 45.1%

2.3.7 Test Results

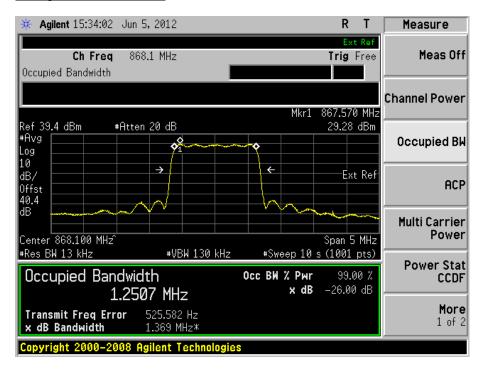

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90 for Occupied Bandwidth.

The test results are shown below

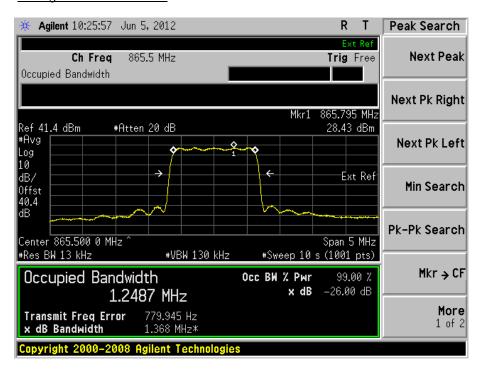
Single Carrier:

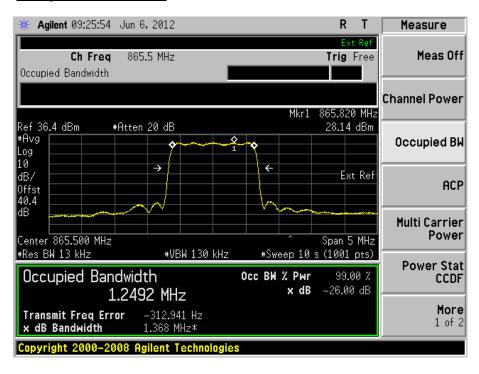

BPSK

Configuration 1 - Mode 1



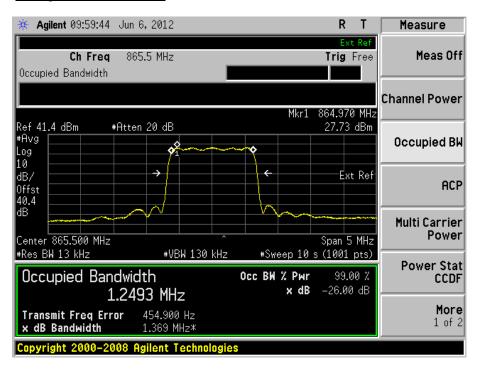
Configuration 1 – Mode 2


Configuration 1 – Mode 3


QPSK

Configuration 1 – Mode 2

8PSK


Configuration 1 – Mode 2

<u>16QAM</u>

Configuration 1 – Mode 2

2.4 EMISSION MASK

2.4.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 90, Clause 90.210(g) FCC CFR 47 Part 90, Clause 90.691

2.4.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.4.3 Date of Test and Modification State

05 June 2012 - Modification State 0

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2 and Part 90.

In accordance with 90.691(a), Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

In accordance with 90.210(g), Emission Mask G, for transmitters that are not equipped with an audio low-pass filter, the power of any emissions must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10kHz, but no more than 250 percent of the authorized bandwidth: At least 116 Log10(f/6.1) dB, or 50 + 10 Log10(P) dB or 70 dB, whichever is the lesser attenuation.
- (2) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At lease 43 + 10 Log (P) dB.

The EUT was tested at it's maximum power level. At least 1% of the emission bandwidth was used for the resolution bandwidth. Spectrum analyser detector was set as RMS.

The path loss measured and entered as a reference level offset.

The EUT was tested at it's maximum power level. Both Antennas were tested and the tests performed on Antenna A were selected as representative.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 3

- Mode 4

- Mode 6

2.4.6 Environmental Conditions

05 June 2012

Ambient Temperature 26.8°C Relative Humidity 47.0%

2.4.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90.

Below are the Frequencies the EUT was tested against along with the tested channels.

BPSK

Single Carrier

Configuration 1 - Mode 1 and 3

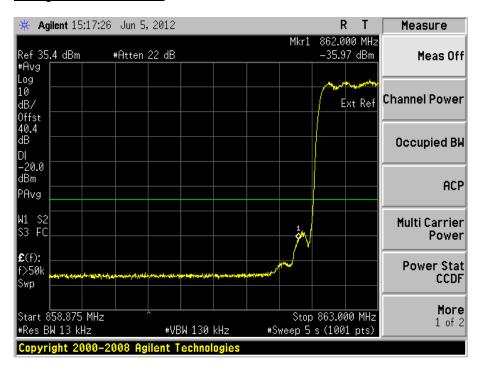
Band Edge Frequency	Emission Mask Test with QPSK modulation Channel No./Frequencies
Bottom	Channel: 476
862 MHz	Frequency: 862.90 MHz
Top	Channel: 684
869 MHz	Frequency: 868.10 MHz

Multi Carrier (1x2)

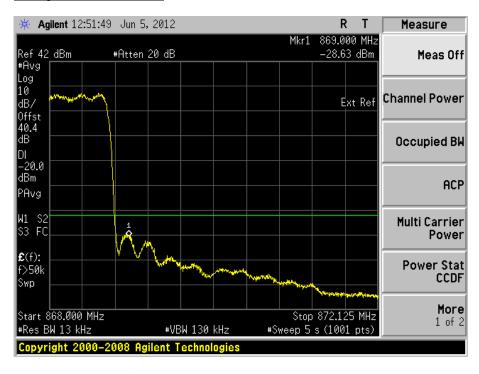
Configuration 1 - Mode 4 and 6

Band Edge Frequency	Emission Mask Test with QPSK modulation Channel No./Frequencies
Bottom	Channel: 476 & 526
862 MHz	Frequency: 862.90 & 864.15 MHz
Top	Channel: 634 & 684
869 MHz	Frequency: 866.85 & 868.10 MHz

The channels shown in the table above are the minimum and maximum channels that can be used in the authorised frequency ranges to maintain compliance.

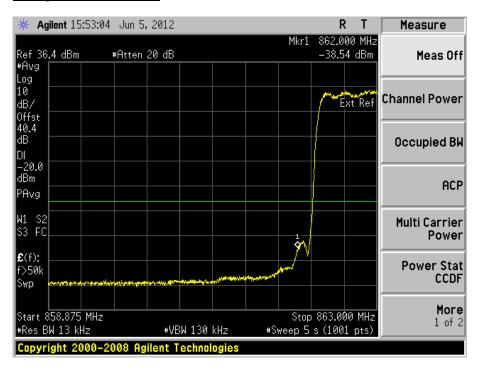


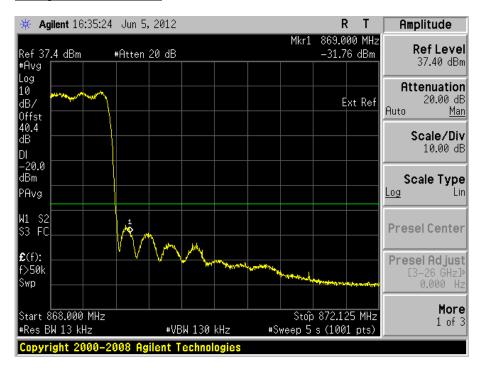
The test results are shown below


BPSK

Single Carrier

Configuration 1 - Mode 1


Configuration 1 - Mode 3



Multi Carrier (1x2)

Configuration 1 - Mode 4

Configuration 1 - Mode 6

Limit

The power of any emission outside the frequency band shall be attenuated below the transmitter power (P) by at least 50 + 10logP dB.

2.5 RADIATED SPURIOUS EMISSIONS

2.5.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1053 FCC CFR 47 Part 90, Clause 90.691

2.5.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062817

2.5.3 Date of Test and Modification State

14 and 15 June 2012 - Modification State 0

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2 and Part 90.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within the chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations.

Emissions identified within the range 30MHz – 25GHz were then formally measured using a Peak detector as the worst case.

In the frequency Range 30MHz – 25GHz, the measurement was performed with a resolution bandwidth of 1MHz.

The measurements were performed at a 3m distance unless otherwise stated.

The limits for Spurious Emissions have been calculated, as shown below using the following formula:

Field Strength of Carrier - (43 + 10Log (P)) dB

Where:

Field Strength is measured in dBµV/m P is measured Transmitter Power in Watts

Determination of Spurious Emission Limit

As the EUT does not have an integral antenna, the field strength of the carrier has been calculated assuming that the power is to be fed to a half-wave tuned dipoles as per 2.1053 (a).

$$E_{(v/m)} = (30 \times G_i \times P_o)^{0.5} / d$$

Where G_i is the antenna gain of ideal half-wave dipoles,

Po is the power out of the transceiver in W,

d is the measurement distance in meter.

Therefore at 3m measurement distance the field strength using the lowest transceiver output power would be:

$$E_{(v/m)} = (30 \times 1.64 \times 39.71)^{0.5} / 3 = 14.73 \text{V/m} = 143.37 \text{dB} \mu \text{V/m}$$

As per 22.917(a) the spurious emission must be attenuated by 43 + 10log (P_o) dB this gives:

$$43 + 10\log(39.71) = 58.99$$
dB

Therefore the limit at 3m measurement distance is:

$$143.37 - 58.99 = 84.4 dB\mu V/m$$

This limit has been used to determine Pass or Fail for the harmonics measured and detailed in the following results.

The test was performed with the EUT in the following configurations and modes of operation as the worst cases:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

- Mode 4

- Mode 4

- Mode 5

- Mode 6

2.5.6 Environmental Conditions

14 June 2012 15 June 2012

Ambient Temperature 24.5°C 25.0°C Relative Humidity 29.5% 32.2%

2.5.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90 for Radiated Spurious Emissions.

The test results are shown below

Note: Only the worst case results plots have been included as all of the emissions are greater than 20dB below the limit. A set of plots have been included to show the measurement system noise floor.

Single Carrier

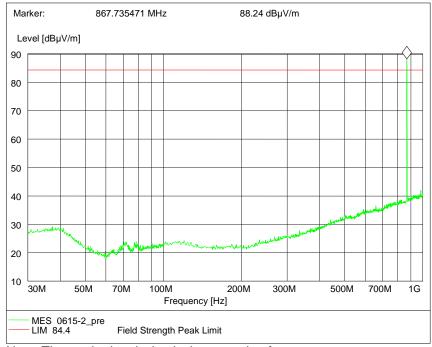
BPSK

Configuration 1 - Mode 2

No emissions were detected within 20dB of the limit.

QPSK

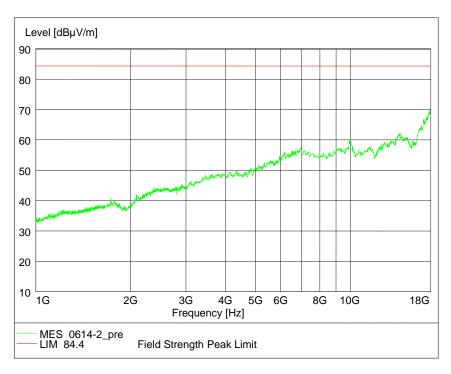
Configuration 1 - Mode 1

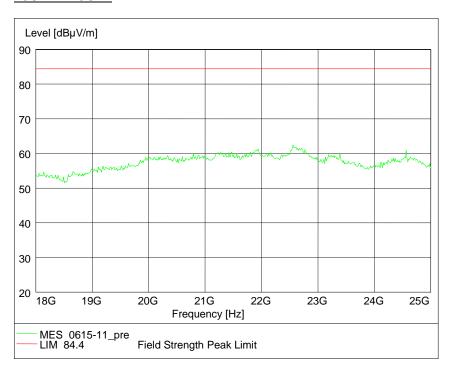

No emissions were detected within 20dB of the limit.

Configuration 1 - Mode 2

No emissions were detected within 20dB of the limit.

Configuration 1 - Mode 3


30MHz - 1GHz


Note: The marked emission is the operating frequency.

<u>1GHz – 18GHz</u>

<u> 18GHz – 25GHz</u>

8PSK

Configuration 1 - Mode 2

No emissions were detected within 20dB of the limit.

16QAM

Configuration 1 - Mode 2

No emissions were detected within 20dB of the limit.

Multi Carrier (1x2)

QPSK

Configuration 1 - Mode 6

No emissions were detected within 20dB of the limit.

Limit	-13dBm / 84.4 dBµV/m
-------	----------------------

Remarks

The EUT does not exceed -13dBm at the measured frequencies.

2.6 CONDUCTED SPURIOUS EMISSIONS

2.6.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1051 FCC CFR 47 Part 90, Clause 90.691

2.6.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.6.3 Date of Test and Modification State

04 and 07 June 2012 - Modification State 0

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2 and Part 90.

In accordance with Part 2.1051 and Part 90.691, the spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using an attenuator and the frequency spectrum investigated from 9kHz to 25GHz. The EUT was set to transmit on maximum power. The resolution was set to 1MHz for 9kHz to 25GHz. The spectrum analyzer detector was set to peak and trace was kept on Max Hold.

The maximum path loss across the measurement band was used as the reference level offset to ensure worst case.

In addition, measurements were made up to the 10th harmonic of the highest internal frequency.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

- Mode 4

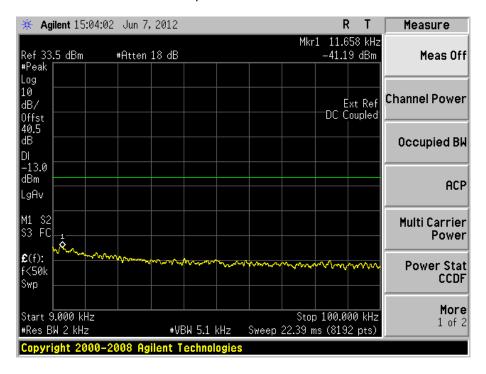
- Mode 5

- Mode 6

2.6.6 Environmental Conditions

04 June 2012 07 June 2012

Ambient Temperature 25.7°C 26.5°C Relative Humidity 49.5% 46.3%

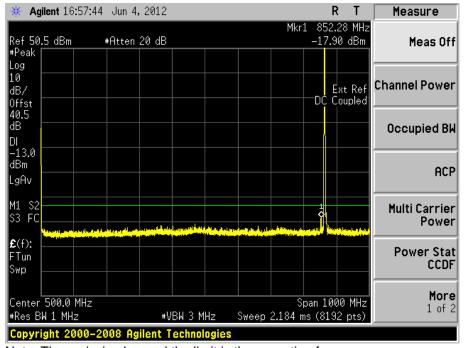

2.6.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90 for Conducted Spurious Emissions.

The test results are shown below

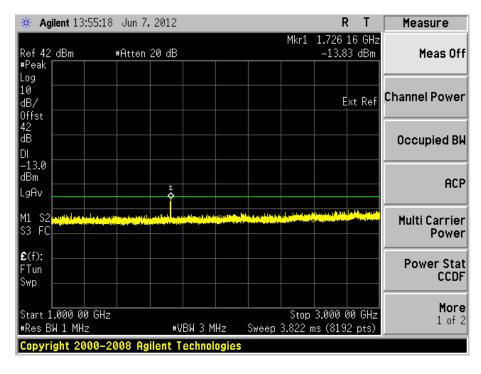
Remark:

The emissions at 9kHz on the plots was not generated by the test object. A complementary measurement with a smaller Span showed that it was related to the LO feedthrough.

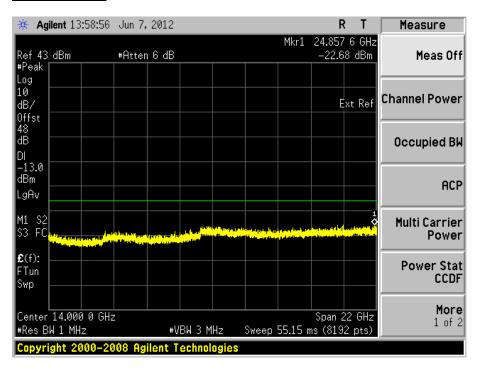


BPSK

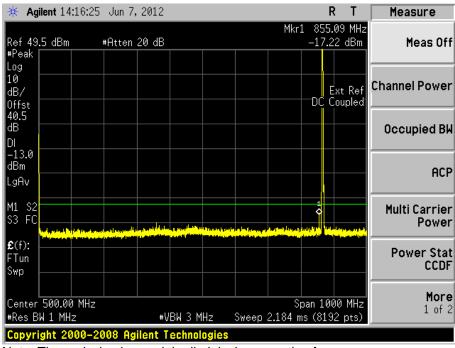
Single Carrier


Configuration 1 - Mode 1

9kHz to 1GHz

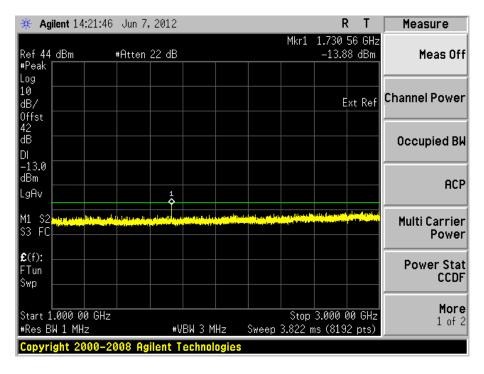

Note: The emission beyond the limit is the operating frequency.

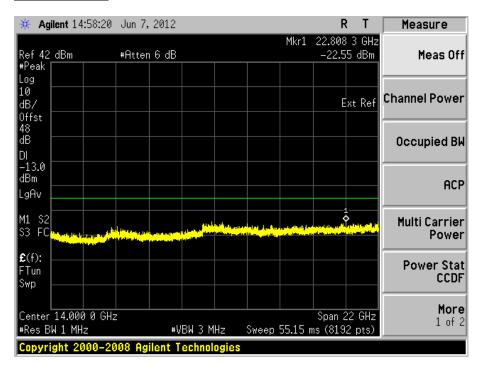
1GHz to 3GHz



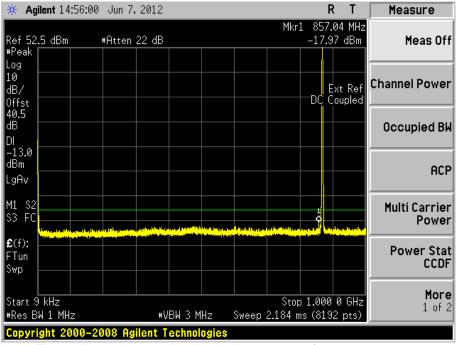
3GHz to 25GHz

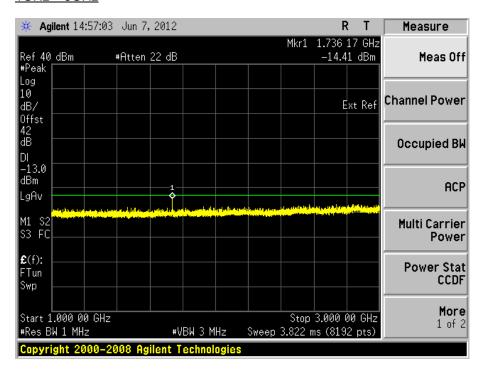
Configuration 1 - Mode 2


9kHz to 1GHz

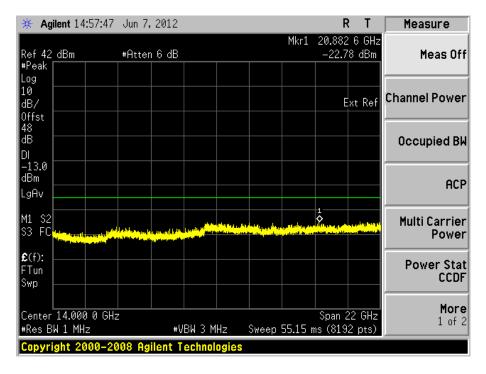

Note: The emission beyond the limit is the operating frequency.

1GHz to 3GHz

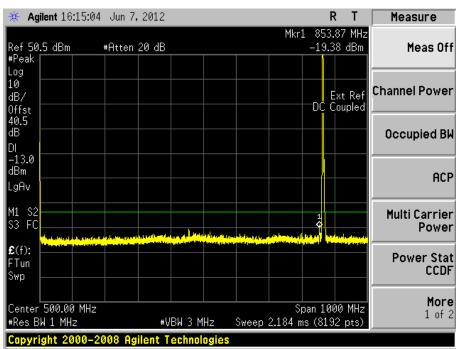

3GHz to 25GHz


Configuration 1 – Mode 3

9kHz - 1GHz

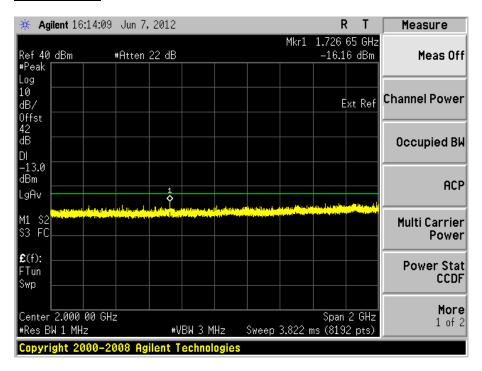

Note: The emission beyond the limit is the operating frequency.

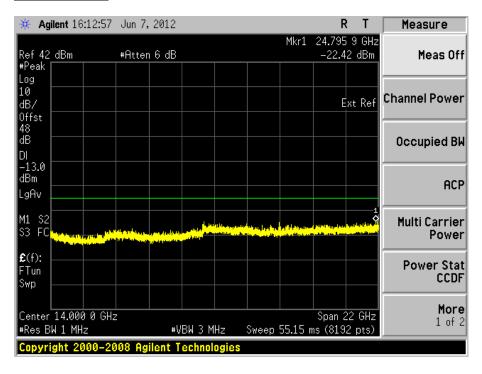
<u>1GHz – 3GHz</u>


<u>3GHz – 25GHz</u>

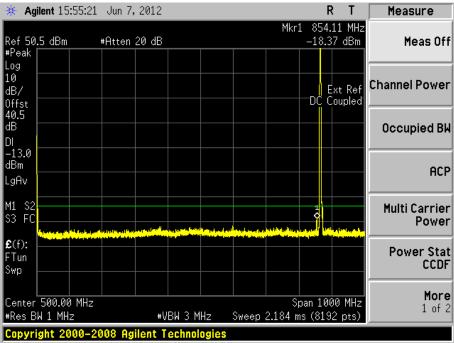
Multi Carrier (1x2)

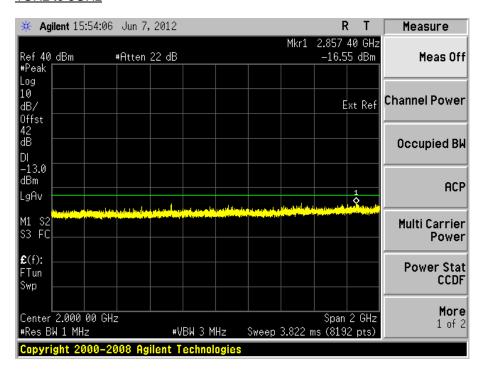
Configuration 1 - Mode 4


9kHz to 1GHz

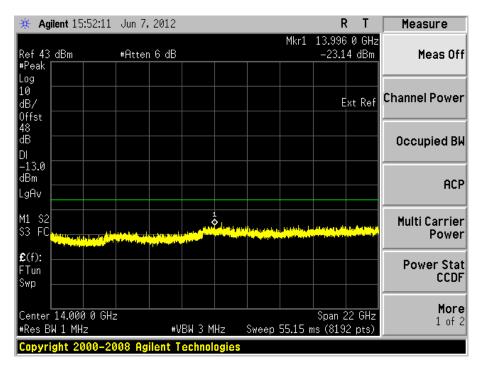

Note: The emissions beyond the limit are the operating frequencies.

1GHz to 3GHz

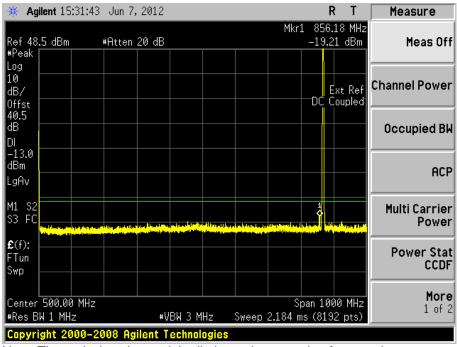

3GHz to 25GHz


Configuration 1 - Mode 5

9kHz to 1GHz

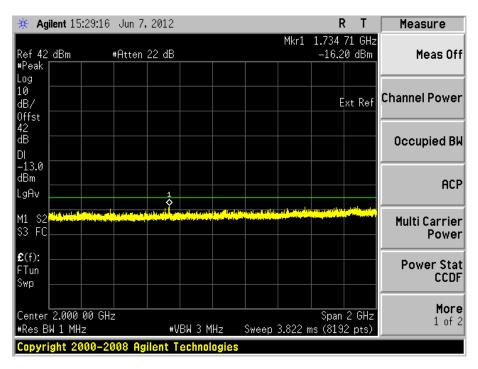

Note: The emissions beyond the limit are the operating frequencies.

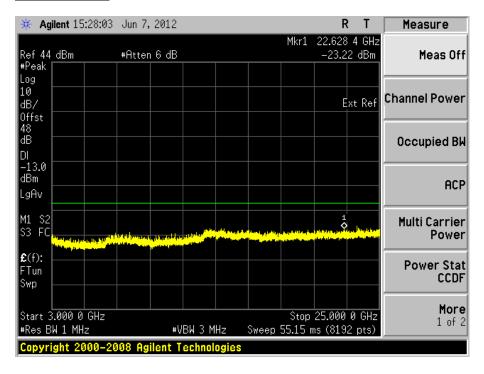
1GHz to 3GHz



3GHz to 25GHz

Configuration 1 - Mode 6


9kHz to 1GHz


Note: The emissions beyond the limit are the operating frequencies.

1GHz to 3GHz

3GHz to 25GHz

Limit	-13dBm
-------	--------

Remarks

The EUT does not exceed -13dBm at the frequency range of 9kHz to 25GHz.

2.7 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

2.7.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1055 FCC CFR 47 Part 90, Clause 90.213

2.7.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.7.3 Date of Test and Modification State

08 and 11 June 2012 - Modification State 0

2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2 and Part 90.

The EUT was set to transmit on maximum power. A Spectrum Analyzer was used to measure the frequency error. The temperature was adjusted between -30°C and +50°C in 10°C steps as per 2.1055.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 2

2.7.6 Environmental Conditions

08 June 2012 11 June 2012

Ambient Temperature 26.3°C 28.5°C Relative Humidity 45.0% 51.2%

COMMERCIAL-IN-CONFIDENCE

2.7.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90 for Frequency Stability Under Temperature Variations.

The test results are shown below

Power Supply: -48V DC

Single Carrier

<u>QPSK</u>

Configuration 1 - Mode 2

Temperature Interval (°C)	Deviation (Hz)
-30	+19.58
-20	+18.20
-10	+17.55
0	+18.22
+10	-21.92
+20	-19.10
+30	+23.32
+40	+19.82
+50	-20.02

Limit	±1.5 ppm or ±1.298kHz
-------	-----------------------

Remarks

The frequency stability of the EUT is sufficient to keep it within the authorised frequency ranges under voltage variations across the measured range.

2.8 FREQUENCY STABILITY UNDER VOLTAGE VARIATIONS

2.8.1 Specification Reference

FCC CFR 47 Part 2, Clause 2.1055 FCC CFR 47 Part 90, Clause 90.213

2.8.2 Equipment Under Test

RRUS 11 B26A / KRC 161 287/2, S/N: C826062816

2.8.3 Date of Test and Modification State

08 June 2012 - Modification State 0

2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2 and Part 90.

The EUT was set to transmit on maximum power. A Spectrum Analyzer was used to measure the frequency error. The supplied voltage was varied from 85 to 115 percent of the nominal value.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 2

2.8.6 Environmental Conditions

08 June 2012

Ambient Temperature 26.3°C

Relative Humidity 45.0%

COMMERCIAL-IN-CONFIDENCE

2.8.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 2 and Part 90 for Frequency Stability Under Voltage Variations.

The test results are shown below

Temperature: 20°C

Single Carrier

QPSK

Configuration 1 - Mode 2

DC Voltage (V)	Deviation (Hz)
-40.8	+20.74
-48.0	-19.10
-55.2	+19.54

Limit	±1.5 ppm or ±1.298kHz

Remarks

The frequency stability of the EUT is sufficient to keep it within the authorised frequency ranges under voltage variations across the measured range.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipments.

Instrument	Manufacturer	Type No.	Serial No.	Calibration Period (months)	Calibration Due	
Section 2.1, 2.2, 2.3, 2.4 and 2.6 – Maximum Conducted Output Power, Modulation Characteristics, Occupied Bandwidth, Emission Mask, and Conducted Spurious Emissions.						
Spectrum Analyser	Agilent	E4440A	MY48250517	12	12-April-2013	
Spectrum Analyser	Rohde & Schwarz	FSQ26	200900	12	27-Mar-2013	
Power Meter	Agilent	N1914A	MY50001665	12	23-Nov-2012	
Thermal Power Sensor	Agilent	8482A	MY45093513	12	02-April-2013	
Network Analyzer	Agilent	E5071B	MY42404301	12	12-April-2013	
40 dB Attenuator	Nanjing Jiexi	TSG 200C- 18-40N	12010601	-	O/P MON	
50 dB Attenuator	Nanjing Jiexi	TSG 400-3- 50NFNFRE-A	11091430	-	O/P MON	
Load	Huber+ Suhner	65N-50-0-17	302260	-	O/P MON	
Load	Nanjing Jiexi	MCLI TNN- 15150	120	-	O/P MON	
Power Supply	XANTREX	XFR 60-46	E00103273	-	O/P MON	
Digital Multi-meter	FLUKE	179	91820401	12	13-Dec-2012	
Thermo-hygrometer	AZ Instruments	8705	9151655	12	19-Dec-2012	
Section 2.5 - Radiat	ed Spurious Emissions	3				
Load	Shanghai Huaxiang	TF100	09121631	-	O/P MON	
Load	Shanghai Huaxiang	TF100	09121602	-	O/P MON	
EMI Receiver	Rohde & Schwarz	ESI 40	100015	12	19-Aug-2012	
Ultra log test antenna	Rohde & Schwarz	HL562	100167	12	19-Aug-2012	
Double-Ridged Wave-guide Horn Antenna	Rohde & Schwarz	HF 906	100029	12	19-Aug-2012	
Pyramidal Horn Antenna	EMCO	3160-09	-	-	-	
Antenna master	Frankonia	MA 260	-	12	19-Aug-2012	
Relay Switch Unit	Rohde & Schwarz	331.1601.31	338965002	-	TU	
Semi Anechoic Chamber	Frankonia	23.18m×16.88 m× 9.60m	-	12	19-Aug-2012	
Power Supply	Dahua	DH1716-5D	200360033	-	O/P MON	
Digital Multimeter	FLUKE	179	91820401	12	13-Dec-2012	
Thermo-hygrometer	AZ Instruments	8705	9151655	12	19-Dec-2012	

COMMERCIAL-IN-CONFIDENCE

Section 2.7 and 2.8 – Frequency Stability Under Temperature and Voltage Variations					
Spectrum Analyser	Agilent	E4440A	MY48250517	12	12-April-2013
40 dB Attenuator	Nanjing Jiexi	TSG 200C-18- 40N	12010601	-	O/P MON
50 dB Attenuator	Nanjing Jiexi	TSG 400-3- 50NFNFRE-A	11091430	-	O/P MON
Load	Huber+ Suhner	65N-50-0-17	302260	-	O/P MON
Temperature Chamber	THERMOTRON	SE-600-6-6	34648	-	O/P MON
Power Supply	XANTREX	XFR 60-46	E00103273	-	O/P MON
Digital Multimeter	FLUKE	179	91820401	12	13-Dec-2012
Thermo-hygrometer	AZ Instruments	8705	9151655	12	16-Dec-2012

O/P MON Output monitored with calibration equipment TU Traceability Unscheduled

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	Frequency / Parameter	MU		
Conducted Maximum Peak Output Power	30MHz to 10GHz Amplitude	0.5dB*		
Conducted Emissions	30MHz to 40GHz Amplitude	3.0dB*		
Frequency Stability	30MHz to 2GHz Amplitude	<1x10 ⁻⁷		
Radiated Emissions, Bilog Antenna, AOATS	30MHz to 1GHz Amplitude	5.1dB*		
Radiated Emissions, Horn Antenna, AOATS	1GHz to 40GHz Amplitude	6.3dB*		
Worst case error for both Time and Frequency measurement 12 parts in 10 ⁶				

^{*} In accordance with CISPR 16-4

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service Limited

© 2012 TÜV SÜD Product Service Limited