Handled by, department
Jonas Bremholt
Electronics
+46(0)105165438, jonas.bremholt@sp.se

Ericsson AB
Adders Johansson
PDU Radio Base Station
16480 Stockholm

Class II permissive change measurements on RRUS 11 B4 1700/ 2100 MHz with FCC ID: TA8AKRC161254-1 and IC: 287AB-AS1612541
 (8 appendices)

Test object

RRUS 11 B4, RC 161 254/1 Rev. R1D
Summary

Note 1: The client declared that the test object has no stand-by mode. Both TX are always active. RX measurements are claimed not applicable

Note 2: Above RSS-139 items are given as cross-reference only. Measurements were performed according to ANSI procedures referenced by FCC and covered by SP's accreditation.

SP Technical Research Institute of Sweden
Electronics - EMC

Christen Karlsson
Technical Manager

SP Technical Research Institute of Sweden

Postal address	Office location	Phone/Fax/E-mail	Laboratories are accredited by the Swedish Board for Accreditation and Conformity
SP	Västeråsen	+46105165000	Assessment (SWEDAC) under the terms of Swedish legislation. This report may
Box 857	Brinellgatan 4	+4633135502	not be reproduced other than in full, except with the prior written approval of the
SE-501 15 Borås	Borảs	info@sp.se	issuing laboratory.

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Table of contents

Description of the test object
Operation mode during measurements
Test setups
Purpose of test
RF power output
Occupied bandwidth
Band edge
Spurious emission at antenna terminals
Field strength of spurious radiation
Frequency stability
Receiver spurious emissions
External photos

Appendix 1
Appendix 1
Appendix 1
Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7
Appendix 8
Appendix 9

FCC ID: TA8AKRC161254-1

IC: 287AB-AS1612541
Appendix 1

Description - Test object

Equipment: Radio equipment RRUS 11 B4 running in WCDMA mode supporting

Antenna ports:
Frequency bands:
Modulations:
Nominal output power:
(Maximum)

Channel bandwidth:
Channel spacing:
Nominal power voltage:
single and multi carrier.
2 TX/RX ports
TX: $2110-2155 \mathrm{MHz}$
RX: $1710-1755 \mathrm{MHz}$
QPSK, 16QAM and 64QAM
Single carrier: 1x 44.8 dBm (1x 30W) on each antenna port Multi carrier: 2x $41.8 \mathrm{dBm}(2 \mathrm{x} \mathrm{15W})$ on each antenna port $4 \mathrm{x} 38.8 \mathrm{dBm}(4 \mathrm{x} 7.5 \mathrm{~W})$ on each antenna port
4.2 to 5 MHz (configurable in steps of $100 / 200 \mathrm{kHz}$)
4.4 to 5 MHz (configurable in steps of $100 / 200 \mathrm{kHz}$)
-48 VDC

Tested channels

	Downlink		Uplink	
Channel	Frequency*	UARFCN	Frequency*	UARFCN
B	2112.4	1537	1712.4	1312
B+5	2117.4	1562	1717.4	1337
B+10	2122.4	1587	1722.4	1362
B+15	2127.4	1612	1727.4	1387
M	2132.5	1987	1732.5	1762
T-15	2137.6	1663	1737.6	1438
T-10	2142.6	1688	1742.6	1463
T-5	2147.6	1713	1747.6	1488
T	2152.6	1738	1752.6	1513

* Frequency in MHz

Operation mode during measurements

Measurements were performed with the test object transmitting the Test models which are defined in 3GPP TS 25.141. Test model 1 (TM1) uses the QPSK modulation only, Test model 5 (TM5) includes the 16QAM modulation and Test model 6 (TM6) includes the 64QAM modulation.

The settings below were found to be representative for all traffic scenarios when several settings with the different modulations, channel bandwidths and the number of carriers were tested to find the worst case setting. These settings were used for all measurements if not otherwise noted.

Single carrier
TM1: 64 DPCH:s at $30 \mathrm{ksps}(\mathrm{SF}=128)$
Multi carrier
TM1: $32 \mathrm{DPCH}:$ s at $30 \mathrm{ksps}(\mathrm{SF}=128)$ in each carrier (Two carriers activated)
Channel bandwidth 5 MHz

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Conducted measurements

Complete TX measurements were done at port RF A. Limited complementary TX measurements were done at port RF B to verify identical performance for both transmitter chains. RX measurements were considered not applicable, as the client claims the test object can not provide a stand-by mode. Both TX are always active.

Radiated measurements

The test object was powered with -48 VDC. All measurements were performed with the test object configured for maximum transmit power. The configuration represents worst case for radiated spurious emission measurements.

The RF output power port was via a RF attenuator connected to functional test equipment for supervision.

The RRUS unit was allocated to the following UARFCN:
Single Carrier: (One carrier configuration)

Cell	1	1	1
Channel	B	M	T

Multi Carrier: (Two carrier configuration)

Cell	1	2
Channel	B	B+10
Channel	T-10	T

Multi Carrier: (Four carrier configuration)

Cell	1	2	3	4
Channel	B	$\mathrm{B}+5$	$\mathrm{~B}+10$	$\mathrm{~B}+15$
Channel	T	$\mathrm{T}-5$	$\mathrm{~T}-10$	$\mathrm{~T}-15$

Purpose of test

The purpose of the tests is a class II permissive change verification of maintained compliance to the performance characteristics specified in applicable parts of FCC CFR 47 and IC RSS139. The changes comprise addition of a new RAT, WCDMA mode, and a product revision update to version R1D due to minor HW changes as described in the client documentation. The preceding hardware revision has been filed with RAT LTE earlier. Additional to the results presented in this report for WCDMA mode, limited complementary verification measurements in LTE mode were performed and showed maintained compliance with hardware version R1D. Thus it was deemed sufficient to present only the results for the new WCDMA mode in this report.

Date Reference
2011-04-12 FX104348-F27

FCC ID: TA8AKRC161254-1
Appendix 1
IC: 287AB-AS1612541

References

Measurements were done according to relevant parts of the following standards:
ANSI 63.4-2003
ANSI/TIA/EIA-603-C-2004
CFR 47 part 2, October $1^{\text {st }}, 2010$
CFR 47 part 27, October $1^{\text {st }}, 2010$
3GPP TS 25.141, version 8.9.0
RSS-Gen Issue 3
RSS-139 Issue 2

FCC ID: TA8AKRC161254-1
Appendix 1
IC: 287AB-AS1612541
Measurement equipment

Measurement equipment	Calibration Due	SP number
Test site Tesla	$2012-10$	503881
R\&S FSIQ 40	$2011-07$	503738
R\&S FSQ 40	$2011-07$	504143
R\&S ESI 26	$2011-08$	503292
High pass filter	$2011-07$	504199
High pass filter	$2011-07$	503739
High pass filter	$2011-07$	503740
RF attenuator	$2011-07$	504159
RF attenuator	$2011-08$	900233
RF step attenuator	$2012-07$	503096
Boonton RF Peak power meter/analyzer	$2011-10$	503144
Boonton Power sensor 56518-S/4	$2012-10$	503145
Chase Bilog Antenna CBL 6111A	$2011-10$	503182
EMCO Horn Antenna 3115	$2014-01$	502175
Std.gain horn FLANN model 16240-25	-	503939
Std.gain horn FLANN model 20240-20	$2011-07$	503674
μ Comp Nordic, Low Noise Amplifier	$2011-06$	503160
MITEQ Low Noise Amplifier	$2013-11$	501031
Temperature chamber 2	$2011-04$	502190
Multimeter Fluke 87	$2011-08$	504188
Testo 625, Temperature and humidity meter	$2011-04$	504203
Testo 635 Temperature and humidity meter		

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The measurement uncertainties can be found in the table below. The uncertainties are calculated with a coverage factor $\mathrm{k}=2$ (95% level of confidence).

Reservation

The test results in this report apply only to the particular test object as declared in the report.

Delivery of test object

The test object was delivered 2011-03-18.

Manufacturer's representative

Christer Hjorth, Ericsson AB

Test engineers

Jörgen Wassholm, Reinhold Reul and Jonas Bremholt

Test participant

Christer Hjorth, Ericsson AB (Partly present)

Test setup: Conducted measurements

Test object

1.	RRUS 11 B4, KRC 161 254/1, R1D, CB4G735981
FCC ID: TA8AKRC161254-1 and IC: 287AB-AS1612541	

Functional test equipment

2.	Main unit, see details in appendix 1.1
3.	Fast Ethernet switch, Netgear GSM 7212, BAMS - 1000517292
4.	Computer, Sunblade Ultra 45, BAMS - 1000517298
5.	ERNC SIM 145, BAMS - 1000707989
6.	SP test instrument according measurement equipment list
7.	RF attenuator, SP 504 159 and SP 900 233
8.	Attenuator, Weinschel model 48-30-33, Terminator Weinschel model 1433-4-LIM
9.	Symmetriom model 8040, BAMS - 1000838408

FCC ID: TA8AKRC161254-1

Page

6 (6)

Appendix 1
IC: 287AB-AS1612541
Test setup: Radiated measurements

Test object

1. RRUS 11 B4, KRC 161 254/1, R1D, CB4G735981
```
FCC ID: TA8AKRC161254-1 and IC: 287AB-AS1612541
```

Functional test equipment

2.	RET - Remote Electrical Tilt unit
3.	Signal Analyzer, Rhode \& Schwartz FSIQ 40 SP 503 738
4.	Attenuator, Weinschel model 57-40-34 S/N ML394
5.	Attenuator, Weinschel model 1433-4-LIM S/N NC023
6.	Computer, Sunblade Ultra 45, BAMS - 1000517298
7.	Fast Ethernet switch, Netgear GSM 7212, BAMS - 1000517292
8.	Fast Ethernet switch, Netgear GSM 7212, BAMS -1000517298
9.	NTP server, Symmetricom Syncserver, BAMS - 1000562216
10.	Main unit, see details in Appendix 1.1
11.	ERNC SIM 145, BAMS - 1000707989

Interfaces:
Type of port:

Power configuration: -48 VDC	DC Power
Antenna port A, 7/16 connector	Antenna
Antenna port B, terminated	Antenna
LMT, only for maintenance, no cable attached	Signal
RX A I/O, not supported	Signal
RX A out, not supported	Signal
RX B I/O, not supported	Signal
ALD Ctrl, shielded multi-wire	Signal
Data 1, Optical Interface Link, Single mode opto fibre	Signal
Data 2, not supported	Signal
EXT Alarm, shielded multi-wire	Signal
Ground wire	Ground

FCC ID: TA8AKRC161254-1
Appendix 1.1

RBS 6601 Main unit (Primary)

Product name	Product number	R-state	Serial number
DUW 30 01	KDU 127 161/3	R3A	C823680745
SUP 6601	1/BFL 901 009/1	R3B	BR80901303

RBS 6601 Main unit (Secondary)

Product name	Product number	R-state	Serial number
DUW 30 01	KDU 127 161/3	R3A	C823486741
SUP 6601	1/BFL 901 009/1	R3B	BR80983119

Software

Software	Revision
CXP 901 8319/1	R1A23

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541
RF power output measurements according to CFR 47 §27.50 / IC RSS-139 6.4

Date	Temperature	Humidity	
	$2011-03-29$	$25^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$17 \% \pm 5 \%$
	$2011-03-30$	$24^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$16 \% \pm 5 \%$

Test set-up and procedure

The test object was connected to a power analyzer measuring peak and RMS output power in CDF mode.

Measurement equipment	SP number
Boonton RF Peak power meter/analyzer	503144
Boonton Power sensor 56518-S/4	503146
RF attenuator	900233
Testo 635, temperature and humidity meter	504203

Measurement uncertainty: 0.7 dB

Results

Single carrier: Rated output power level at RF A connector (maximum): 1x 44.8 dBm

Transmitter power (dBm / dB) RMS / PAR		
B	M	T
$44.2 / 6.8$	$44.0 / 6.7$	$44.0 / 6.7$

Multi carrier: Rated output power level at RF A connector (maximum): 2x $41.8 \mathrm{dBm} /$ carrier

Transmitter power (dBm / dB) RMS / PAR		
B	M	T
$41.4 / 9.5$	$41.2 / 9.5$	$41.2 / 9.5$

Multi carrier: Rated output power level at RF A connector (maximum): $4 \mathrm{x} 38.8 \mathrm{dBm} /$ carrier

\left.| Transmitter power (dBm / dB) | | |
| :---: | :---: | :---: |
| RMS / PAR | | |$\right]$| B | M |
| :---: | :---: |
| $38.5 / 10.7$ | $38.3 / 10.7$ |

FCC ID: TA8AKRC161254-1
Appendix 2
IC: 287AB-AS1612541

Limits

§27.50 The maximum output power may not exceed $1640 \mathrm{~W} / \mathrm{MHz}$ (EIRP). The Peak to Average Ratio (PAR) may not exceed 13 dB .

RSS-139: Consult SRSP-513 for e.i.r.p. limits on fixed and base stations operating in the 2110-2155 MHz band.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB .

Complies?	Yes

FCC ID: TA8AKRC161254-1
Appendix 3
IC: 287AB-AS1612541
Occupied bandwidth measurements according to 47 CFR 2.1049 / RSS-Gen 4.6.1

Date	Temperature	Humidity	
	$2011-03-29$	$25^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$17 \% \pm 5 \%$
	$2011-03-30$	$24^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$16 \% \pm 5 \%$

Test set-up and procedure

The measurements were made per definition in §2.1049. The output was connected to a signal analyzer with the RMS detector activated. The signal analyzer was connected to an external 10 MHz reference standard during the measurements.

Measurement equipment	SP number
Rohde \& Schwarz signal analyzer FSQ40	504143
RF attenuator	900233
Testo 615 temperature and humidity meter	503498

Measurement uncertainty: 3.7 dB

Results

The results are shown in appendix 3.1
Channel Bandwidth 5.0 MHz

	Channel	OBW
Diagram 1	B	4.18 MHz
Diagram 2	M	4.18 MHz
Diagram 3	T	4.18 MHz

Channel Bandwidth 4.2 MHz

Channel OBW
Diagram $4 \quad$ B $\quad 3.85 \mathrm{MHz}$
Diagram $5 \quad \mathrm{M} \quad$ 3.85 MHz
Diagram 6 T 3.85 MHz \checkmark Your e^{τ}

FCC ID: TA8AKRC161254-1
Appendix 3.1
IC: 287AB-AS1612541

Diagram 1

Date: 29.MAR. 2011 09:19:27

Diagram 2

FCC ID: TA8AKRC161254-1
2011-04-12 FX104348-F27

IC: 287AB-AS1612541

Diagram 3

Date: 29.MAR.2011 10:03:49

Diagram 4

Diagram 5

Date: 29.MAR.2011 10:43:57

Diagram 6

Date: 29.MAR.2011 11:12:27

Band edge measurements according to CFR 47 §27.53(h) / IC RSS-139 6.5

Date	Temperature	Humidity	
	$2011-03-29$	$25^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$17 \% \pm 5 \%$
$2011-03-30$	$24^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$16 \% \pm 5 \%$	

Test set-up and procedure

The measurements were made per definition in §27.53(h). The output was connected to a spectrum analyzer with the RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements. A resolution bandwidth of 30 kHz was used up to 5 MHz away from the band edges. 30 kHz is $<1 \%$ of the Emission BW (4.25 MHz between the 26 dB points for 5 MHz nominal BW setting). To compensate for the reduced measurement bandwidth, the limit was adjusted with 1.5 dB to -14.5 dBm up to 1 MHz away from the band edges and with 15.2 dB to -28.2 dBm from 1 MHz to 5 MHz away from the band edges.

Measurement equipment	SP number
R\&S FSQ	504143
RF attenuator	900233
Testo 635, temperature and humidity meter	504203

Measurement uncertainty: 3.7 dB

Results

The results are shown in appendix 4.1
Single carrier:
Diagram 1: B
Diagram 2: T
Multi carrier:
Diagram 3: $\quad \mathrm{B}+(\mathrm{B}+5)$
Diagram 4: $\mathrm{T}+(\mathrm{T}-5)$

Limits

CFR 47 §27.53(h) and RSS-139 6.5
Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$, resulting in a limit of -13 dBm .

Complies?	Yes

FCC ID: TA8AKRC161254-1
Appendix 4.1
IC: 287AB-AS1612541
Diagram 1a:

Date: 29.MAR. 2011 09:26:58

Diagram 1b:

Date: 29.MAR.2011 09:29:27

FCC ID: TA8AKRC161254-1
Appendix 4.1
IC: 287AB-AS1612541
Diagram 2a:

Date: 29.MAR. 2011 09:54:42
Diagram 2b:

FCC ID: TA8AKRC161254-1
Appendix 4.1
IC: 287AB-AS1612541

Diagram 3a:

Date: 30.MAR. 2011 08:47:52
Diagram 3b:

FCC ID: TA8AKRC161254-1
Appendix 4.1
IC: 287AB-AS1612541

Diagram 4a:

Date: 29.MAR. 2011 15:28:42
Diagram 4b:

Date: 29.MAR.2011 15:32:11

FCC ID: TA8AKRC161254-1
Appendix 5
IC: 287AB-AS1612541

Conducted spurious emission measurements according to CFR 47 §27.53(h)/ IC RSS-139 6.5

Date	Temperature	Humidity	
	$2011-03-29$	$25^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$17 \% \pm 5 \%$
	$2011-03-30$	$24^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	$16 \% \pm 5 \%$

Test set-up and procedure

The measurements were made per definition in §27.53(h). The output was connected to a spectrum analyzer. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements. A pre-measurement was performed with the PEAK detector activated. Emission close to or above the limit with the PEAK detector is measured with the RMS detector activated and the level of the emission is determined with the substitution method.

Measurement equipment	SP number
R\&S FSQ	504143
RF attenuator	900233
High pass filter	504200
RF attenuator	900229
High pass filter	503740
Testo 635 temperature and humidity meter	504203

Measurement uncertainty: 3.7 dB

Results

The results are shown in appendix 5.1

Single carrier:
Diagram 1: B
Diagram 2: M
Diagram 3: T

Multi carrier:
Diagram 4: $\quad \mathrm{B}+(\mathrm{B}+10)$
Diagram 5: $\quad \mathrm{T}+(\mathrm{T}-10)$

Remark

The emission at 9 kHz on the plots was not generated by the test object. A complementary measurement with a smaller RBW showed that it was related to the LO feed-through.

The highest internal frequency as declared by the client was 2.4576 GHz , thus the choice of the upper frequency boundary was set to $10 \times 2.5 \mathrm{GHz}=25 \mathrm{GHz}$ for emission measurements.

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Limits

§27.53(h) and RSS-139 6.5

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$, resulting in a limit of -13 dBm per 1 MHz RBW.

Complies?

Yes

FCC ID: TA8AKRC161254-1
Appendix 5.1
IC: 287AB-AS1612541

Diagram 1a

Date: 29.MAR. 2011 09:12:33

Diagram 1b

FCC ID: TA8AKRC161254-1
Appendix 5.1
IC: 287AB-AS1612541
Diagram 1c

Date: 29.MAR.2011 08:57:30

FCC ID: TA8AKRC161254-1
Appendix 5.1
IC: 287AB-AS1612541

Diagram 2a

Date: 29.MAR.2011 07:15:05

Diagram 2b

Date: 29.MAR.2011 07:28:18

FCC ID: TA8AKRC161254-1
Appendix 5.1

Diagram 2c

FCC ID: TA8AKRC161254-1
Appendix 5.1
IC: 287AB-AS1612541

Diagram 3a

Date: 29.MAR.2011 10:05:48

Diagram 3b

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541
Appendix 5.1

Diagram 3c

FCC ID: TA8AKRC161254-1
Appendix 5.1
IC: 287AB-AS1612541

Diagram 4a

Date: 30.MAR.2011 07:54:36
The emissions around the carrier are within the operating frequency band

Diagram 4b

FCC ID: TA8AKRC161254-1
Appendix 5.1
IC: 287AB-AS1612541

Diagram 4c

IC: 287AB-AS1612541

Diagram 5a

Date: 29.MAR. 2011 15:41:14
The emissions around the carriers are within the operating frequency band

Diagram 5b

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1

Diagram 5c

Field strength of spurious radiation measurements according to CFR 47 §27.53(h) / IC RSS-139 6.5

Date	Temperature	Humidity
$2011-03-21$ to 2011-03-24	$23-24{ }^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$	22% to $25 \% \pm 5 \%$

Test set-up and procedure

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarization of the antenna. The antenna distance was 3 m in the frequency range $30 \mathrm{MHz}-18 \mathrm{GHz}$ and 1 m in the frequency range $18-25 \mathrm{GHz}$.

In the frequency range $30 \mathrm{MHz}-25 \mathrm{GHz}$ the measurement was performed in power with a RBW of 1 MHz . A propagation loss in free space was calculated. The used formula was $\gamma=20 \log \left(\frac{4 \pi D}{\lambda}\right), \gamma$ is the propagation loss and D is the antenna distance.
The measurement procedure was as the following:

1. The pre-measurement was first performed with peak detector. The EUT was measured in eight directions and with the antenna at three heights, $1.0 \mathrm{~m}, 1.5 \mathrm{~m}$ and 2.0 m .
2. Spurious radiation on frequencies closer than 20 dB to the limit in the pre-measurement is scanned 0-360 degrees and the antenna is scanned 1-4 m for maximum response. The emission is then measured with the RMS detector and the RMS value is reported. Frequencies closer than 10 dB to the limit when measured with the RMS detector were measured with the substitution method according to the standard.

FCC ID: TA8AKRC161254-1
Date Reference
2011-04-12 FX104348-F27
Page

Appendix 6
IC: 287AB-AS1612541

The test set-up during the spurious radiation measurements.

FCC ID: TA8AKRC161254-1
Appendix 6
IC: 287AB-AS1612541

Measurement equipment

Measurement equipment	SP number
Test site Tesla	503881
R\&S ESI 26	503292
Control computer	503479
Software: R\&S EMC32, ver. 8.20.1	503745
Chase Bilog antenna CBL 6111A	503182
μ Corp Nordic, Low Noise Amplifier	504160
Miteq, Low Noise Amplifier	503285
EMCO Horn Antenna 3115	502175
Standard gain antenna 20240-20	503674
High pass filter, Wainright	504200
Testo 625 temperature and humidity meter	504188

The RRUS unit was allocated to the following UARFCN:
Single Carrier: (One carrier configuration)

Cell	1	1	1
Channel	B	M	T

Multi Carrier: (Two carrier configuration)

Cell	1	2
Channel	B	$\mathrm{B}+10$
Channel	T-10	T

Multi Carrier: (Four carrier configuration)

Cell	1	2	3	4
Channel	B	$\mathrm{B}+5$	$\mathrm{~B}+10$	$\mathrm{~B}+15$
Channel	T	$\mathrm{T}-5$	$\mathrm{~T}-10$	$\mathrm{~T}-15$

Results

Frequency (MHz)	Spurious emission level (dBm)	
	Vertical	Horizontal
	All emission $>20 \mathrm{~dB}$ below limit	All emission $>20 \mathrm{~dB}$ below limit

Measurement uncertainty:

3.2 dB up to $18 \mathrm{GHz}, 3.6 \mathrm{~dB}$ above 18 GHz

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 6

Limits

§27.53(h) and RSS-139 6.5

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (P) d B$, resulting in a limit of -13 dBm per 1 MHz RBW.

Frequency stability measurements according to CFR 47 §27.54 / IC RSS 1396.3

Date	Temperature (test equipment)	Humidity (test equipment)
$2011-03-30$ to 2011-03-31	$23-24^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$16-19 \% \pm 5 \%$

Test set-up and procedure

The measurement was made per 3GPP TS 25.141. The output was connected to a spectrum analyzer. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

Measurement equipment	SP number
Climate chamber 2	501031
Rohde \& Schwarz signal analyzer FSQ40	504143
RF attenuator	504159
Testo 635, Temperature and humidity meter	504203
Rotronic temperature and humidity meter	502946
Multimeter Fluke 87	502190

Results

Nominal Voltage -48 V DC
Maximum output power at mid channel (M)

Test conditions		Frequency error (Hz)
Supply voltage DC (V)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	
-48.0	+20	+6
-55.2	+20	-5
-40.8	+20	-4
-48.0	+30	+7
-48.0	+40	+9
-48.0	+50	-10
-48.0	+10	-4
-48.0	0	-5
-48.0	-10	+6
-48.0	-20	+4
-48.0	-30	-4
Maximum freq. error (Hz)		10
Measurement uncertainty		$< \pm 1 \times 10^{-7}$

FCC ID: TA8AKRC161254-1
Appendix 7
IC: 287AB-AS1612541

Limits

Limit according to 3GPP TS 25.141:
The frequency error shall be within $\pm 0.05 \mathrm{PPM} \pm 12 \mathrm{~Hz}(\pm 118.63)$.

§27.54

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-139 6.3 Frequency:
The frequency stability shall be sufficient to ensure that the emission bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

Complies?	Yes

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541
Back side

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Left side

Right side

Top side

Bottom side

