Intertek

Total Quality. Assured.

Channel Position B

																			- 🗞
MultiView	Spem3	×	Spem4	×	Spectrum	×	Spem2	×	Spem5	×	Spem6	×	Spem7	3	K Sp	pem8	4	۰.	-
Ref Level	41.50 dBm	Offset	t 41.50 dB	● RBW	1 MHz														
Att TRG:EXT1	10 dB 🔍	swt	10 s	VBW	3 MHz	Mode Au	ito Sweep												
1 Frequenc	y Sweep										1		1		1			01	Rm Clrw
																	M1[1] - 3.430	37.46 dBm 105 00 GHz
30 dBm																			
20 dBm																			
10.17																			
10 dBm																			
0 dBm																			
-10 dBm																			
20.10																			
-20 abm																			
-30 dBm																			
M1 ▼																			
-40 dBm																			
-30 0611																			
CF 3.435 GH	łz					1001 p	ots				1.0 MHz/							Span	10.0 MHz
														Measuring	J [2023-11-23 07:45:40
07:45:40 AM	11/23/2023	3																	

R Spe..m4 MultiView 📕 Spe..m3 Spe..m2 X Spe..m5 X Spe..m6 X Spe..m8 ₄ → × Spectrum Ref Level 41.50 dBm Offset 41.50 dB • RBW 1 MHz Att 10 d
TRG:EXT1
I Frequency Sweep 10 dB 🗢 SWT 10 s • VBW 3 MHz Mode Auto Sweep • 1Rm Clrw -24.45 dBm M1[1] 3.448 995 50 GHz 30 dBm 20 dBi 0 dE dE 10 dB 20 dBr 30 dBr 40 dBr 50 dBn Span 9.0 MHz CF 3.444 5 GHz 1001 pts 900.0 kHz/ Measuring... EXT 2023-11-23

07:46:08 AM 11/23/2023

TEST REPORT

07:46:46 AM 11/23/2023

Channel Position T

07:54:09 AM 11/23/2023

TEST REPORT

															٨
MultiView 📑 Sper	m3 🗙	Spem4	× Spi	ectrum 🗙	Spem2	×	Spem5	×	Spem6	×	Spem7	×	Spem8		
Ref Level 41.50 Att TRG:EXT1	0 dBm Offs 10 dB © SWT	et 41.50 dB 10 s	• RBW 1	MHz MHz Mode Au	ito Sweep										
1 Frequency Sw	еер			1											1Rm Clrw
														M1[1]	-24.31 dBm 3.551 004 50 GHz
30 dBm															
20 dBm															
10 dBm															
0 dBm															
-10 dBm															
Mî0 dBm															
-30 dBm															
-40 dBm															
-50 dBm															
CF 3.555 5 GHz				1001 p	ots			90	00.0 kHz/						Span 9.0 MHz
	~										✓ Mea	suring		E) Ri	2023-11-23 07:54:32

07:54:33 AM 11/23/2023

																(*)
Spem3	×	Spem4	:	Spectrum	>	Spem2	×	Spem5	×	pem6	× Spe	m7	Spem8	×		• •
Ref Leve	el 41.50	dBm	Offset 4	1.50 dB 🏾	RBW 1 M	1Hz							_			
TRG:EXT1		10 dB = :	5001	10 s 🛡	VBW 3 M	IHZ MODE	Auto Swe	eep								
1 Frequer	n <mark>cy S</mark> we	ep									1					1Rm Clrw
															M1[1]	-37.65 dBm 3.560 075 00 GHz
30 dBm-																
20 dBm																
10 dBm																
0 dBm																
-10 dBm-																
-20 dBm-																
-30 dBm-																
M1 ▼																
-40 dBm-																
-50 dBm-																
						100	1									C 10 0 MU-
CF 3.565	GHZ					100	T pts				r.o MHz/			-	Б	2023-11-23
		V										~	weasurin	ig	RE	F 07:55:07

07:55:07 AM 11/23/2023

TEST REPORT

6 Conducted Unwanted Emission

Test result: Pass

6.1 Limit

For base station operations in the 3450–3550 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz. Compliance with the provisions of this paragraph (n)(1) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed, but limited to a maximum of 200 kHz. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Notwithstanding the channel edge requirement of -13 dBm per megahertz, for base station operations in the 3450–3550 MHz band, the conducted power of any emission below 3440 MHz or above 3560 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3430 MHz or above 3570 MHz shall not exceed -40 dBm/MHz.

6.2 Measurement Procedure

In accordance with FCC rules, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using an attenuator and the frequency spectrum investigated from 9kHz to 38GHz. The resolution bandwidth of 1MHz was employed for frequency band 9kHz to 40GHz. The spectrum analyzer detector was set to RMS.

For MIMO mode configurations, the limit was adjusted with a correction of -6.02dB [10Log(1/4)] by using the Measure and Add 10Log(N) dB technique according to KDB 662911 D01 Multiple Transmitter Output accounting for simultaneous transmission from antenna ports. Then the limit was adjusted to - 46.02dBm.

6.3 Measurement result

NR-1C-UE

Antenna	Channel	Modulation	Channel Bandwidth	RBW	Limit
Port	Position		(MHz)	(kHz)	(dBm)
D	В	256QAM	10	1000	-46.02
D	Т	256QAM	10	1000	-46.02

Channel Position B

08:03:39 AM 11/23/2023

~

TEST REPORT

MultiView 💶 Spectrum	× Spectrum 2 ×			
Ref Level 3.70 dBm Offset 3 Att 10 dB SWT	3.70 dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto Sv	veep		
1 Frequency Sweep				• 1Rm Clrw
0 dBm				M1[1] -72.55 dBm
C dom				5.984 210 GHz
-10 dBm				
-20 dBm				
-30 dBm				
40.IB.				
-40 dbin				
-50 dBm				
-60 dBm				
-70 dBm				M1
-80 dBm				
-90 dBm				
CE 4 785 GHz	-5001 pt	e 21	13.0 MH+/	Span 2 43 GHz
	5001 pt		Moscuring	EXT 2023-11-23
× 1			- Measuring	REF 08:04:21

08:04:22 AM 11/23/2023

09:21:32 AM 11/23/2023

									
MultiView 🔳	Spectrum								-
Ref Level 18.10 dBr Att 10 d TRG:EXT1	m Offset 18. B • SWT	10 dB • RBW 1 N 10 s • VBW 3 N	1Hz 1Hz Mode Auto 9	ōweep					
1 Frequency Sweep)								• 1Rm Clrw
10.10								M1[1]	-59.80 dBm 15.986 310 GHz
TU dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60.dBm				//······					T
-70 dBm									
00.10									
CE 14 375 GHz			7001 pts		2	25.0 MHz/			Span 3 25 GHz
~			, ee 1 p (3				→ Measuring		EXT 2023-11-27 REF 3:30:33

03:30:34 AM 11/27/2023

05:57:57 AM 11/27/2023

									-
MultiView	Spectrum								•
Ref Level 22.30 Att	dBm Offset 22 10 dB • SWT	2.30 dB • RBW 1 1 10 s • VBW 3 1	MHz MHz Mode Auto	Sweep					
1 Frequency Swe	ep								• 1Rm Clrw
20 dBm								M1[1]	-51.10 dBm
									32.826 900 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
20.15									
-30 dBm									
-40 dBm									
-50 dBm					M1				
-60 dBm									
-70 dBm									
CF 32.0 GHz			12001 pt	s		1.2 GHz/			Span 12.0 GHz
	~						→ Measuring.		EXT 2023-11-27 REF 07:55:29

07:55:29 AM 11/27/2023

Channel Position T

									 Image: A start of the start of
MultiView 🖶	Spectrum	× Spectru	m 2 🗙						•
Ref Level 4.10 dBn Att 10 dF	n Offset 4.10 d	B	Mode Auto Sw	een					
TRG:EXT1									
1 Frequency Sweep									• 1Rm Clrw
0 dBm								M	1[1] -/1.2/ dBm
									5.209770 GH2
-10 dBm									
20 dBm									
-20 0011									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
70 -18									м1
-70 dBm									
-80 dBm		an da mana ang kang pananan ing kang pananan ing kang pang pang pang pang pang pang pang p	**************************************						
oo com									
-90 dBm									
CF 1.725 GHz	-		7001 pts		34	45.0 MHz/			Span 3.45 GHz
							→ Measuring.		EXT 2023-11-23 REF 08:06:01

08:06:02 AM 11/23/2023

Report No.: 231200287SHA-001

TEST REPORT

									
MultiView 🎫	Spectrum	X Spectru	um 2 🛛 🗙						•
Ref Level 3.70 dB Att 10 d TRG:EXT1	m Offset 3.70 c IB = SWT 10	iB ● RBW 1 MHz)s ● VBW 3 MHz	Mode Auto Sw	eep					
1 Frequency Swee	p								1Rm Clrw
0 dBm								M	1[1] -72.56 dBm
o ubiii									5.932 700 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBur									
to abiii									
-50 dBm									
-60 dBm									
-70 dBm									M1
-80 dBm	and a second		a di administra di anci di anci administra di administra a seguri						
-90 dBm									
CF 4.785 GHz			5001 pts		2	43.0 MHz/			Span 2.43 GHz
							- Measuring		2023-11-23 08:06:20

08:06:20 AM 11/23/2023

09:23:07 AM 11/23/2023

								I
MultiView	Spectrum							•
Ref Level 18.10 c Att 10 TRG:EXT1	iBm Offset 18.10 dB 0 dB SWT 10 s	RBW 1 MHz VBW 3 MHz Mode Auto) Sweep					
1 Frequency Swe	ер							1Rm Clrw
10 - 10							M1[1]	-59.79 dBm 15.997 450 GHz
TO OBIT								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
A0 dBm								
HU UDIT								
-50 dBm								M1
.60.dBm		an an ini ini any any any ana amin'ny ana amin'ny fany ana amin'ny fany amin'ny fany amin'ny fany fany fany fan					and day may late you say a sing of a second starting of	
-70 dBm								
-80 dBm								
CF 14.375 GHz		7001 p	ts	33	25.0 MHz/			Span 3.25 GHz
						 Measuring. 		EXT 2023-11-27 REF 05:22:20

05:22:20 AM 11/27/2023

05:59:33 AM 11/27/2023

07:57:51 AM 11/27/2023

Antenna	Channel	Modulation	Channel Bandwidth	RBW	Limit
Port	Position		(MHz)	(kHz)	(dBm)
D	В	256QAM	15	1000	-46.02
D	Т	256QAM	15	1000	-46.02

 \bigotimes

TEST REPORT

Channel Position B

								I
MultiView	Spectrum	× Spectru	m 2 🗙					•
Ref Level 4.10 d Att 10 TRG:EXT1	Bm Offset 4.10 dB • SWT 1	dB • RBW 1 MHz 0 s • VBW 3 MHz	Mode Auto Sw	еер				
1 Frequency Swe	ер					I		IRm Clrw
0 dBm							M1	[1] -71.20 dBm
								3.209 / /0 GHz
-10 dBm								
-20 dBm								
20 abiii								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
oo dbiii								M1
-70 dBm								
			سكر المهادي ومنافعة المراجع مهمور مروار معرو أسره والماله	er besterfte et anvel sitt i biget give et angele praise af Bagerer and		e y anne feat a tha a' dù chù chù chu		ي _{لىدى} بالىنىپەلىسىيە بىيەرلىيە بىل.
-80 abm								
00 dBm								
-90 abiii								
CF 1.725 GHz			7001 pts		34	15.0 MHz/		Span 3.45 GHz
	~						 E.	XT 2023-11-23 EF 08:07:23

08:07:24 AM 11/23/2023

MultiView	Spectrum	× Spect	rum 2 🗙 🗙						
Ref Level 3.70 dl	Bm Offset 3.70	dB 🗢 RBW 1 MH	łz						
Att 10 TRG:EXT1	dB = SWT 1	0 s = VBW 3 MF	Iz Mode Auto Sw	reep					
1 Frequency Swe	ер	1		1	1		I		1Rm Clrw
0 dBm								M	I[1] -72.51 dBm
									5.921 550 GH2
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									Y
00.10						Lunamo			
-80 dBm									
00 -10									
-90 abm									
CF 4.785 GHz			5001 pts		2	43.0 MHz/			Span 2.43 GHz
	~						→ Measuring		XT 2023-11-23 REF 08:07:47

08:07:47 AM 11/23/2023

09:24:57 AM 11/23/2023

									I
MultiView	Spectrum								-
Ref Level 18.10 (Att 10 TRG:EXT1	dBm Offset 18. 0 dB • SWT	10 dB • RBW 1 N 10 s • VBW 3 N	1Hz 1Hz Mode Auto 9	ōweep					
1 Frequency Swe	ep								O 1Rm Clrw
10 dBm								M1[1]	-59.74 dBm 15.980 270 GHz
TO GDIT									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60.dRm	-Manuary and a state of the sta		and a star way of the star street of the star stree		and the second strateging to the second strategy of the second strat				M1
-70 dBm									
00 JD									
CF 14 375 GHz			7001 pts		2	25.0 MHz/			Span 3 25 GHz
G - 11.57 5 GHZ	~		7001 pts				→ Measuring.		EXT 2023-11-27 REF 2023-11-27 05:26:56

05:26:57 AM 11/27/2023

06:02:10 AM 11/27/2023

08:00:53 AM 11/27/2023

Report No.: 231200287SHA-001

 \bigotimes

TEST REPORT

Channel Position T

						I
MultiView = Spectrum	× Spectrum 2 ×					•
Ref Level 4.10 dBm Offset 4.10 Att 10 dB SWT 1 TRG:EXT1 1 1 1 1	dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto Sv	veep				
1 Frequency Sweep		1				IRm Clrw
0 dBm					M1[1] -71.27 dBm
						3.209 / /0 GHz
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
						M1
-70 dBm						
						أججه المحد (مجماليين المربيا
-80 dBm						
-90 dBm						
CF 1.725 GHz	7001 pt:	5	345.0 MHz/			Span 3.45 GHz
~				✓ Measuring.	EXT. REF	2023-11-23 08:09:20

08:09:20 AM 11/23/2023

MultiView 🖶	Spectrum	× Spectru	ım 2 🗙							•
Ref Level 3.70 dB	Bm Offset 3.70	dB 🗢 RBW 1 MHz								
Att 10 o TRG:EXT1	dB ● SWT 1	0 s 🗢 VBW 3 MHz	Mode Auto Sw	еер						
1 Frequency Swee	ep	1			1	l			• 1Rm (Clrw
0 dBm								M	1[1] -72.53	3 dBm
									5.923 96	0 GHZ
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm										
										41
-/0 dBm										V
-80 dBm										
00.10										
-90 dBm										
CF 4.785 GHz			5001 pts		24	43.0 MHz/			Span 2.43	3 GHz
							→ Measuring		EXT 🕤 🕂 20.	123-11-23 08:09:54

08:09:54 AM 11/23/2023

09:25:59 AM 11/23/2023

								I
MultiView	Spectrum							-
Ref Level 18.10 (Att 10 TRG:EXT1	dBm Offset 18.10 dB RBW 1 0 dB SWT 10 s VBW 3	MHz MHz Mode Auto Swee	≥p					
1 Frequency Swe	ep							• 1Rm Clrw
10 dBm							M1[1]	-59.76 dBm 15.990 020 GHz
TO GOM								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
.60 dBm		المرجعة م ر المحافظة المرجعة الم				مر المراقع المراجع الم		M1
-70 dBm								
-80 dBm								
CF 14.375 GHz		7001 pts		32	25.0 MHz/			Span 3.25 GHz
	*					- Measuring.		2023-11-27 REF 05:27:46

05:27:47 AM 11/27/2023

06:04:28 AM 11/27/2023

08:02:36 AM 11/27/2023

NR-2C-UE

Antenna	Channel	Modulation	Channel Bandwidth	RBW	Limit
Port	Position		(MHz)	(kHz)	(dBm)
D	В	256QAM	10	1000	-46.02
D	Т	256QAM	10	1000	-46.02

Channel Position B

08:41:01 AM 11/23/2023

Report No.: 231200287SHA-001

TEST REPORT

									\$
MultiView 🖴	Spectrum	× Spectru	ım 2 🗙						
Ref Level 3.70 dBr Att 10 d TRG:EXT1	m Offset 3.70 d IB • SWT 10	IB ● RBW 1 MHz s ● VBW 3 MHz	Mode Auto Sw	еер					
1 Frequency Swee	P								1Rm Clrw
0 dBm								M	1[1] -72.57 dBm
o ubiii									5.964 770 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									M1
-80 dBm									
-90 dBm									
CF 4.785 GHz			5001 pts		2	43.0 MHz/			Span 2.43 GHz
							✓ Measuring.		2023-11-23 REF 08:41:41

08:41:42 AM 11/23/2023

09:28:58 AM 11/23/2023

								
MultiView	Spectrum							•
Ref Level 18.10 c Att 10 TRG:EXT1	IBm Offset 18.10 dB ● RBW) dB ● SWT 10 s ● VBW	/ 1 MHz / 3 MHz Mode Auto Sw	veep					
1 Frequency Swe	ep							1Rm Clrw
40.10							M1[1]	-59.79 dBm 15.998 840 GHz
TO dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
.60.dBm				djange er bjed tiler bere dynamisk ingeneratien for er ber				M1
-70 dBm								
90 JB								
CE 14 375 GHz		7001 pts		37	25.0 MHz/			Span 3 25 GHz
	v	7001 pts				✓ Measuring.		EXT 2023-11-27 REF 05:30:05

05:30:06 AM 11/27/2023

06:06:59 AM 11/27/2023

TEST REPORT

MultiView	Spectrum							•
Ref Level 22. Att TRG-FXT1	30 dBm Offset 2 10 dB • SWT	2.30 dB • RBW 1 / 10 s • VBW 3 /	MHz MHz Mode Auto	Sweep				
1 Frequency S	weep							• 1Rm Clrw
20 dBm							M1[1]	-50.59 dBm
								32.801 900 GHz
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
40 dBm								
-40 0011					M1			
-50 dBm								
-60 dBm								
-70 dBm								
10 abiii								
CF 32.0 GHz			12001 pt	S		1.2 GHz/		Span 12.0 GHz
	~							EXT 2023-11-27 REF 08:10:55

08:10:56 AM 11/27/2023

Channel Position T

	· ·
MultiView 🖬 Spectrum 🗙 Spectrum 2 🗙	
Ref Level 4.10 dBm Offset 4.10 dB RBW 1 MHz	
Att 10 dB • SWT 10 s • VBW 3 MHz Mode Auto Sweep	
IRGEX11	0 1Rm Clow
	1[1] -71.21 dBm
0 dBm	3.209 770 GHz
-10 dBm	
-20 dBm	
-30 ABm	
-40 dBm	
-50 dBm	
-60 dBm	
-70 dBm	M1
-80 dBm	
00.45~	
30 0011	
CF 1.725 GHz 7001 pts 345.0 MHz/	Span 3.45 GHz
v Measuring	EXT 2023-11-23 REF 08-43-22

08:43:23 AM 11/23/2023

Report No.: 231200287SHA-001

intertek Total Quality. Assured.

TEST REPORT

									
MultiView 🔳	Spectrum	X Spectru	um 2 🛛 🗙						•
Ref Level 3.70 dBr Att 10 dl TRG:EXT1	m Offset 3.70 a B = SWT 10	iB ● RBW 1 MHz)s ● VBW 3 MHz	Mode Auto Sw	eep					
1 Frequency Swee	Р								1Rm Clrw
0 dBm								M	1[1] -72.54 dBm
o abii									5.938 050 GHz
-10 dBm									
-20 dBm									
-30 dBm									
10.10									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									M1
an ang ta band and an			***** ** ******			7			
-80 dBm									
-90 dBm									
CF 4.785 GHz			5001 pts		2	43.0 MHz/			Span 2.43 GHz
							- Measuring	E	2023-11-23 REF 08:43:55

08:43:56 AM 11/23/2023

09:30:32 AM 11/23/2023

								
MultiView 🖴	Spectrum							•
Ref Level 18.10 c Att 10 TRG:EXT1	IBm Offset 18.10 dB • RBW 1 0 dB • SWT 10 s • VBW 3	I MHz 3 MHz Mode Auto Swee	р					
1 Frequency Swe	ep							IRm Clrw
10 dBm							M1[1]	-59.81 dBm 15.994 660 GHz
10 ubii								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
.60 dBgg	and the second							MI
70 4P								
-70 0001								
-80 dBm		7001						Sec. 2 25 CH
GF 14.575 GHz		7001 pts		32:	5.0 WIH2/	- Mossuring		2023-11-27
						measuring.		IEF 05:31:14

05:31:14 AM 11/27/2023

06:10:00 AM 11/27/2023

08:14:37 AM 11/27/2023

Antenna	Channel	Modulation	Channel Bandwidth	RBW	Limit
Port	Position		(MHz)	(kHz)	(dBm)
D	В	256QAM	15	1000	-46.02
D	Т	256QAM	15	1000	-46.02

 \bigotimes

TEST REPORT

Channel Position B

								 Image: A start of the start of
MultiView	Spectrum	× Spectru	m 2 ×					•
Ref Level 4.10 d Att 10 TRG:EXT1	Bm Offset 4.10 dB • SWT 1	dB • RBW 1 MHz 0 s • VBW 3 MHz	Mode Auto Sw	еер				
1 Frequency Swe	ер	1		I	I	1		1Rm Clrw
0 dBm							M1	[1] -71.19 dBm
								3.209 / /0 GHz
-10 dBm								
-20 dBm								
20 0011								
-30 dBm								
-40 dBm								
40 0.011								
-50 dBm								
-60 dBm								
								M41
-70 dBm								
		9 (1999) 1999 (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999)						
-80 dBm								
-90 dBm								
CF 1.725 GHz			7001 pts		34	45.0 MHz/		Span 3.45 GHz
	*						E:	EF 2023-11-23 08:48:42

08:48:43 AM 11/23/2023

MultiView 🖴	Spectrum	× Spectru	ım 2 🗙						
Ref Level 3.70 dE Att 10 TRG-EXT1	Bm Offset 3.70 dB • SWT 1	dB • RBW 1 MHz 0 s • VBW 3 MHz	Mode Auto Sw	еер					
1 Frequency Swe	ер								• 1Rm Clrw
0 dBm								M	1[1] -72.60 dBm
									5.915 700 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
CO 10									
-60 dBm									
-70 dBm									м1
-70 dbin									
-80 dBm									
ou dom									
-90 dBm									
CF 4.785 GHz			5001 pts		2	43.0 MHz/			Span 2.43 GHz
							- Measuring		2023-11-23 REF 08:49:07

08:49:07 AM 11/23/2023

09:32:08 AM 11/23/2023

								\$
MultiView	Spectrum							•
Ref Level 18.10 c Att 10 TRG:EXT1	dBm Offset 18.10 dB 0 dB • SWT 10 s	RBW 1 MHz VBW 3 MHz Mode Auto	Sweep					
1 Frequency Swe	ер							• 1Rm Clrw
10 dBm							M1[1]	-59.78 dBm 15.971 450 GHz
TO UDIT								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
					Constant of Marcale States		Las Martinos de la companya de la	M1 •
70.45								
-79 GBM								
-80 dBm		3004						C 2.25 GH
CF 14.375 GHz	242	/001 pt	s	3.	25.0 MH2/	Moortuning		Span 3.25 GHz
						→ measuring.		REF 05:32:48

05:32:49 AM 11/27/2023

06:12:41 AM 11/27/2023

08:34:05 AM 11/27/2023

Report No.: 231200287SHA-001

 \bigotimes

TEST REPORT

Channel Position T

MultiView = Spectrum X Spectru	um 2 🗙		•
Ref Level 4.10 dBm Offset 4.10 dB RBW 1 MH Att 10 dB SWT 10 s VBW 3 MH TRG:EXT1 10 VBW 1 MH	z z Mode Auto Sweep		
1 Frequency Sweep			• 1Rm Clrw
0 dBm			M1[1] -70.99 dBm
			3.209 770 GHz
-10 dBm			
20.10			
-20 dbm			
-30 dBm			
50 dbm			
-40 dBm			
-50 dBm			
-60 dBm			
			M1
-70 dBm			
			and a second
-80 dBm			
-90 dBm			
CF 1.725 GHz	7001 pts	345.0 MHz/	Span 3.45 GHz
*			✓ Measuring EXT REF 2023-11-23 08:50:35

08:50:35 AM 11/23/2023

MultiView 🖴	Spectrum	× Spectru	um 2 🛛 🗙					
Ref Level 3.70 dE Att 10	8m Offset 3.70 dB = SWT 1	dB = RBW 1 MHz 0 s = VBW 3 MHz	z Mode Auto Sw	еер				
TRG:EXT1								0.10
T Frequency Swe	ер							 • TRm Clrw
0 dBm								5.939 990 GHz
-10 dBm								
-20 dBm								
-30 dBm								
-50 0.611								
10.15								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								M1
		·····				٦		
-80 dBm								
-90 dBm								
JU COM								
CF 4.785 GHz			5001 pts		24	13.0 MHz/		Span 2.43 GHz
							→ Measuring	 EXT 2023-11-23 REF 08:51:00

08:51:01 AM 11/23/2023

.

TEST REPORT

09:34:42 AM 11/23/2023

MultiView	Spectrum								-
Ref Level 18.10	dBm Offset 18.	.10 dB 🗢 RBW 1 M	1Hz						
Att 10 TRG-EXT1	0 dB 🗢 SWT	10 s 🗢 VBW 3 M	1Hz Mode Auto	Sweep					
1 Frequency Swe	ep								• 1Rm Clrw
								M1[1]	-59.73 dBm
10 dBm									15.992 340 GHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
EQ. IR									
-50 dBm									
60 dBm									M1
			**************************************		**************************************				
-70 dBm									
-80 dBm									
CF 14.375 GHz			7001 pts		3:	25.0 MHz/			Span 3.25 GHz
							- Measuring		EXT 2023-11-27 REF 05:34:57

05:34:57 AM 11/27/2023

06:14:13 AM 11/27/2023

08:46:17 AM 11/27/2023

NR-6C-UE

Antenna	Channel	Modulation	Channel Bandwidth	RBW	Limit
Port	Position		(MHz)	(kHz)	(dBm)
D	В	256QAM	10	1000	-46.02
D	Т	256QAM	10	1000	-46.02

Channel Position B

									 Image: A start of the start of
MultiView	Spectrum	× Spectru	im 2 🗙						•
Ref Level 4.10 d	Bm Offset 4.10	dB • RBW 1 MHz	Mode Auto Su	000					
TRG:EXT1				сср					
1 Frequency Swe	ер								• 1Rm Clrw
0 dBm								M	1[1] -71.19 dBm
									3.209770 GHZ
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									M1
Concernent in									المروسا ساليا المروس
-80 dBm	7								
-90 dBm									
D.B. GIDITI									
CF 1.725 GHz			7001 pts		34	45.0 MHz/			Span 3.45 GHz
	~						→ Measuring.		EXT 2023-11-23 REF 08:57:17

08:57:18 AM 11/23/2023

Report No.: 231200287SHA-001

TEST REPORT

									\$
MultiView 🔳	Spectrum	X Spectru	um 2 🛛 🗙						
Ref Level 3.70 dBr Att 10 dl TRG:EXT1	m Offset 3.70 c B = SWT 10	iB ● RBW 1 MHz)s ● VBW 3 MHz	Mode Auto Sw	eep					
1 Frequency Swee	Р								O 1Rm Clrw
0 dBm								M	1[1] -72.57 dBm
o abii									5.929 790 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									M1
			يري والع - والمعند الأمر (معاليات الجواحد المركات			- Lugar	and the second s		
-80 dBm									
-90 dBm									
CE 4 705 CU-			F001			12.0 1411-/			6
CF 4.785 GHz			5001 pts		2	43.0 WH2/			Span 2.43 GHz
							→ Measuring		08:57:52

08:57:53 AM 11/23/2023

09:37:08 AM 11/23/2023

								
MultiView 🖶	Spectrum							•
Ref Level 18.10 d Att 10 TRG:EXT1	Bm Offset 18.10 dB	MHz MHz Mode Auto S	weep					
1 Frequency Swee	≥p							IRm Clrw
10 dBm							M1[1]	-59.76 dBm 15.965 420 GHz
TO UBIT								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								M1
60 dBm	nden hånn for skinn gener følse brundt och er op skangeser for første som er skinne som er som er som er skinne		and the second secon		an a		an da mini ya na daga sa da ana anga sa	Y
-70 dBm								
-80 dBm								
CF 14.375 GHz		7001 pts		32	25.0 MHz/			Span 3.25 GHz
						 Measuring. 		REF 05:36:47

05:36:48 AM 11/27/2023

06:17:16 AM 11/27/2023

							
MultiView 🖿	Spectrum						•
Ref Level 22.30 c Att 10 TRG:FXT1	dBm Offset 22 D dB • SWT	.30 dB • RBW 1 1 10 s • VBW 3 1	MHz MHz Mode Auto	Sweep			
1 Frequency Swee	2p						• 1Rm Clrw
20 dBm						M1[1]	-50.63 dBm
							31.670 000 GHz
10 dBm							
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm				M1			
<0.4Pm							
-00 0011							
-70 dBm							
CF 32.0 GHz			12001 pt	S	1.2 GHz/		Span 12.0 GHz
	~						EXT 2023-11-27 REF 08:48:11

08:48:11 AM 11/27/2023

Channel Position T

									 Image: A start of the start of
MultiView 💶 S	pectrum	× Spectru	m 2 🗙						-
Ref Level 4.10 dBm Att 10 dB 4 TRG:EXT1	Offset 4.10 dl SWT 10	B • RBW 1 MHz s • VBW 3 MHz	Mode Auto Sw	еер					
1 Frequency Sweep									IRm Clrw
0 dBm								M	1[1] -71.04 dBm
o ubiii									3.209 770 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
			and a star of the		in an and the second				
-80 dBm									
-90 dBm									
CF 1.725 GHz			7001 pts		34	45.0 MHz/			Span 3.45 GHz
~							- Measuring		EXT 2023-11-23 REF 09:03:40

09:03:40 AM 11/23/2023

Report No.: 231200287SHA-001

~

intertek Total Quality. Assured.

TEST REPORT

MultiView 🖶	Spectrum	× Spectru	m 2 🗙						
Ref Level 3.70 dBr	m Offset 3.70 dB	• RBW 1 MHz							
Att 10 dl TRG:EXT1	B SWT 10 s	● VBW 3 MHz	Mode Auto Sw	eep					
1 Frequency Swee	р								1Rm Clrw
0 dBm								M	1[1] -72.59 dBm
									5.952 140 GHz
10 dPm									
- TO UBIT									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
So dom									
CO 10									
-60 dBm									
-70 dBm									M1
				······································		- L			
-80 dBm									
-90 dBm									
CF 4.785 GHz			5001 pts		24	43.0 MHz/			Span 2.43 GHz
	~						- Measuring		EXT 2023-11-23 REF 09:04:11

09:04:11 AM 11/23/2023

09:40:04 AM 11/23/2023

								I
MultiView	Spectrum							•
Ref Level 18.10 c Att 10 TRG:EXT1	iBm Offset 18.10 dB ● 0 dB ● SWT 10 s ● 1	RBW 1 MHz VBW 3 MHz Mode Auto	Sweep					
1 Frequency Swe	ер							• 1Rm Clrw
10 - 10							M1[1]	-59.79 dBm 15.984 910 GHz
TO OBIT								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
A0 dBm								
HU UDIT								
-50 dBm								Mi
		an a						
-70 dBm								
-80 dBm								
CF 14.375 GHz		7001 pts		32	25.0 MHz/			Span 3.25 GHz
						 Measuring. 		EXT 2023-11-27 REF 05:39:29

05:39:29 AM 11/27/2023

06:23:15 AM 11/27/2023

08:50:28 AM 11/27/2023

Antenna	Channel	Modulation	Channel Bandwidth	RBW	Limit
Port	Position		(MHz)	(kHz)	(dBm)
D	В	256QAM	15	1000	-46.02
D	Т	256QAM	15	1000	-46.02

 \bigotimes

TEST REPORT

Channel Position B

									 Image: A start of the start of
MultiView	Spectrum	× Spectru	m 2 🗙						•
Ref Level 4.10 d Att 10 TRG:EXT1	Bm Offset 4.10 dB • SWT 1	dB • RBW 1 MHz 0 s • VBW 3 MHz	Mode Auto Sw	еер					
1 Frequency Swe	ер	1				I			IRm Clrw
0 dBm								M1	[1] -71.08 dBm
									5.209770 GH2
-10 dBm									
-20 dBm									
20.10									
-30 dBm									
.40 dBm									
-40 0.011									
-50 dBm									
60 ID									
-60 dBm									
-70 dBm									M1
				and the second secon					. I de la construcción de la con
-80 dBm									
-90 dBm									
CE 1 725 GH=			7001 ptc		3/	15.0 MHz/			Snan 3 45 GHz
G 1.725 GH2	~		7001 pts		,	101011112/	→ Measuring	E)	2023-11-23
									09:11:48

09:11:48 AM 11/23/2023

MultiView 🖴	Spectrum	× Spectru	ım 2 🗙									
Ref Level 3.70 dE Att 10	Bm Offset 3.70 d dB • SWT 10	B • RBW 1 MHz s • VBW 3 MHz	Mode Auto Sw	еер								
I Frequency Sweep ● 1Rm Clrw												
0 dBm								M	1[1] -72.56 dBm			
o dibiti									5.980 810 GHz			
40.15												
-10 dBm												
-20 dBm												
-30 dBm												
-40 dBm												
E0 dBm												
-50 0011												
-60 dBm												
-70 dBm									M1 ▼			
	······································	****			2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -							
-80 dBm												
-90 dBm												
CF 4.785 GHz			5001 pts		24	43.0 MHz/			Span 2.43 GHz			
							- Measuring		2023-11-23 REF 09:13:57			

09:13:57 AM 11/23/2023

09:43:26 AM 11/23/2023

									\$
MultiView	Spectrum								•
Ref Level 18.10 c Att 10 TRG:EXT1	dBm Offset 18. DdB • SWT	10 dB ● RBW 1 M 10 s ● VBW 3 M	1Hz 1Hz Mode Auto 9	Sweep					
1 Frequency Swe	ер								• 1Rm Clrw
10 dBm								M1[1]	-59.82 dBm 15.994 660 GHz
TO UDIT									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dRm									M1
70.10									
-70 dBm									
-80 dBm									
CF 14.375 GHz			7001 pts		32	25.0 MHz/			Span 3.25 GHz
							 Measuring. 		REF 05:45:34

05:45:35 AM 11/27/2023

06:26:20 AM 11/27/2023

08:53:50 AM 11/27/2023

Report No.: 231200287SHA-001

 \bigotimes

TEST REPORT

Channel Position T

									 Image: A start of the start of
MultiView	Spectrum	× Spectru	m 2 🗙						•
Ref Level 4.10 dE Att 10 TRG:EXT1	8m Offset 4.10 dB = SWT 1	dB ● RBW 1 MHz 0 s ● VBW 3 MHz	Mode Auto Sw	еер					
1 Frequency Swe	ер	11			I	l	I		IRm Clrw
0 dBm								M1[1] -71.05 dBm
10.17									3.209 770 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm-									
50 10									
-50 dBm									
CO ID									
-60 abm									
70 J.B									м1
-70 abiii									
R0 dBm									
oo abiii									
90 dBm									
-50 abiii									
CF 1.725 GHz			7001 pts		34	45.0 MHz/			Span 3.45 GHz
	~							EX	2023-11-23 09:17:34

09:17:35 AM 11/23/2023

MultiView	Spectrum	× Spectru	ım 2 🗙						•
Ref Level 3.70 df Att 10 TRG:EXT1	8m Offset 3.70 dB SWT 1	dB • RBW 1 MHz 0 s • VBW 3 MHz	Mode Auto Sw	eep					
1 Frequency Swe	ер								1Rm Clrw
0 dBm								M	1[1] -72.56 dBm
									5.966 230 GHz
-10 dBm									
-20 dBm									
20 dbm									
-30 dBm									
Jo dbiii									
-40 dBur									
40 dbm									
50 dBm									
-50 0001									
60 dBm									
-00 dBm									
-70 dBm									M1
-70 dbm									X
80 dBm									
-oo ubiii									
00 dPm									
-50 abit									
CF 4.785 GHz			5001 pts		2	43.0 MHz/			Span 2.43 GHz
	~						→ Measuring		EXT 2023-11-23 REF 09:18:10

09:18:10 AM 11/23/2023

.

TEST REPORT

09:48:09 AM 11/23/2023

MultiView	Spectrum								-
Ref Level 18.10	dBm Offset 18.	.10 dB 🗢 RBW 1 M	1Hz						
Att 10	0 dB 🗢 SWT	10 s 🗢 VBW 3 N	1Hz Mode Auto	Sweep					
1 Frequency Swe	ep								• 1Rm Clrw
								M1[1]	-59.79 dBm
10 dBm									15.990 950 GHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
									M1
.60 dRg			a dali kamala dang kang dan selatan dan dalam da					and an a second seco	
-70 dBm									
-80 dBm			7001-+-						5
CF 14.375 GHz	7.5%		7001 pts		3.	25.0 MHz/			Span 3.25 GHz
							 Measuring. 		REF 05:50:34

05:50:34 AM 11/27/2023

¢\$

TEST REPORT

06:59:49 AM 11/27/2023

MultiView 📰 Spectrum Ref Level 22.30 dBm Offset 22.30 dB • RBW 1 MHz 10 dB • SWT 10 s • VBW 3 MHz Mode Auto Sweep Att TRG:EXT1 1 Frequency Sweep • 1Rm Clrw -50.60 dBm M1[1] 20 dBr 32.799 900 GHz 10 dBn dBn -20 dBm -30 dBm 40 dBr M1 50 dBr -60 dBi 70 dBm CF 32.0 GHz 12001 pts 1.2 GHz/ Span 12.0 GHz Measuring... EXT 2023-11-27 08:56:28 08:56:29 AM 11/27/2023