

issued by an FCC listed Laboratory Reg. no. 93866. The test sites comply with RSS-Gen, IC file no: 3482A

2011-02-14

Reference FX100778-F22L

Page 1 (2)

WEDAC

Handled by, department
Jonas Bremholt
Electronics
+46 10 516 54 38, jonas.bremholt@sp.se

Ericsson AB Anders Johansson PDU Radio Base Stations 164 80 Stockholm

Class II permissive change measurements on RUS 01 B5 radio equipment with FCC ID: TA8AKRC11864-2 and IC: 287AB-AS118642

(7 appendices)

Test object

RUS 01 B5, KRC 118 64/2, revision R2A

Summary

Appendix 1 describes the test object and set-ups during test. Appendix 7 presents photos of the test object.

Standard		Compliant	Appendix
FCC CFR 47 / IC RS	S-132		
2.1046 / RSS-132 4.4	RF power output	Yes	2
2.1049 / RSS-Gen 4.6.1	Occupied bandwidth	Yes	3
2.1051 / RSS-132 4.5	Band edge	Yes	4
2.1051 / RSS-132 4.5	Spurious emission at antenna terminals	Yes	5
2.1053 / RSS-132 4.5	Field strength of spurious radiation	Yes	6

Note: Above RSS-132 items are given as cross-reference only. Measurements were performed according to ANSI procedures referenced by FCC and covered by SP's accreditation.

SP Sveriges Tekniska Forskningsinstitut

Electronics - EMC

Jonas Bremholt Technical Officer Christer Karlsson Technical Manager

lande Unix

SWEDEN

Date Reference Page 2011-02-14 FX100778-F22L 2 (2)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Table of contents

Description of the test object	Appendix 1
Operation modes and test set-ups during measurements	Appendix 1
Purpose of test	Appendix 1
References	Appendix 1
Measurement equipment	Appendix 1
RF power output	Appendix 2
Occupied bandwidth	Appendix 3
Band edge	Appendix 4
Spurious emission at antenna terminals	Appendix 5
Field strength of spurious radiation	Appendix 6
External photos of the test object	Appendix 7

Date Reference Page 2011-02-14 FX100778-F22L 1 (6)

FCC ID: TA8AKRC11864-2

IC: 287AB-AS118642

Appendix 1

Description of the test object

Equipment: Radio equipment RUS 01 B5 running in LTE-mode

Frequency bands: TX: 869 - 894 MHz

RX: 824 - 849 MHz

Highest and lowest EARFCN per supported channel BW configuration and corresponding frequencies are listed

below.

Supported channel bandwidth

configurations

1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz

Modulation and access scheme OFDMA in FDD

OFDM subcarrier modulation System information and pilots use BPSK and QPSK.

For payload data QPSK, 16QAM and 64QAM can be used.

Maximum rated output power: Single carrier 1x 47.8 dBm (1x60 W)

Number of antenna ports: TX/RX: 1 RX only: 1

Nominal supply voltage: -48 VDC

Tested EARFCN settings and frequencies per LTE channel BW configuration

EARFC	N settings	Frequenc	y [MHz]	BW configuration
DL	UL	DL	UL	
2407	20407	869.7	824.7	1.4 MHz, bottom (B) frequency
2415	20415	870.5	825.5	3 MHz, bottom (B) frequency
2425	20425	871.5	826.5	5 MHz, bottom (B) frequency
2450	20450	874.0	829.0	10 MHz, bottom (B) frequency
2475	20475	876.5	831.5	15 MHz, bottom (B) frequency
2500	20500	879.0	834.0	20 MHz, bottom (B) frequency
2525	20525	881.5	836.5	all BW, mid (M) frequency
2550	20550	884.0	839.0	20 MHz, top (T) frequency
2575	20575	886.5	841.5	15 MHz, top (T) frequency
2600	20600	889.0	844.0	10 MHz, top (T) frequency
2625	20625	891.5	846.5	5 MHz, top (T) frequency
2635	20635	892.5	847.5	3 MHz, top (T) frequency
2643	20643	893.3	848.3	1.4 MHz, top (T) frequency

Note: EARFCN are derived according 3GPP TS 36.141, table 5.7.3-1.

Date Reference Page 2011-02-14 FX100778-F22L 2 (6)

Appendix 1

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Operation modes and test set-ups during measurements

The setting with test model E-TM1.1 in channel bandwidth configuration 1.4 MHz(defined in 3GPP TS 36.141) was found to be representative for worst case setting for all traffic scenarios. This setting was used for all measurements unless noted otherwise.

The test object was powered with -48 VDC and measurements were performed with the test object configured for maximum transmit power, unless noted otherwise.

Conducted measurements

The EUT was mounted into a RBS 6201 cabinet and supplied by the cabinet's internal -48 V DC. TX parameters were measured at port RF A with port RF B unterminated.

Radiated measurements

The test object was tested stand-alone and supplied with -48 VDC from functional test equipment. The active port RF A was monitored with signal analyzer outside the test chamber. Port RF B was unterminated.

Purpose of test

The purpose of the tests is a class II permissive change verification of maintained compliance to the performance characteristics specified in applicable parts of FCC CFR 47 and IC RSS-132. The changes comprise a product revision update to version R2A due to minor HW changes as described in the client documentation. Limited verification measurements in LTE mode were performed and showed maintained compliance.

References

RSS-Gen Issue 3

Measurements were done according to relevant parts of the following standards: ANSI C63.4-2003
ANSI/TIA/EIA-603-C-2004
3GPP TS 36.141, version 8.5.0
CFR 47 part 2, October 1st, 2010
CFR 47 part 22, October 1st, 2010
RSS-132 Issue 2

Date Reference Page 2011-02-14 FX100778-F22L 3 (6)

Appendix 1

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Measurement equipment

Measurement equipment	Calibration Due	SP number
Semi anechoic chamber, Tesla	2012-10	503 881
Rohde & Schwarz FSIQ 40	2011-07	503 738
Rohde & Schwarz FSQ 40	2011-07	504 143
Rohde & Schwarz ESI 26	2011-08	503 292
EMI measurement computer	-	-
Software: R&S EMC32, ver. 8.20.1	-	503 745
High pass filter	2011-07	502 758
High pass filter	2011-07	503 739
High pass filter	2011-07	503 740
High pass filter	2011-07	504 199
High pass filter	2011-07	504 200
RF attenuator	2011-07	504 159
RF attenuator	2011-08	900 233
Boonton RF Peak power meter/analyzer	2011-10	503 144
Boonton Power sensor 56518-S/4	2012-10	503 145
Chase Bilog antenna CBL 6111A	2011-10	503 182
Horn antenna EMCO 3115	2014-01	502 175
Standard Gain model 20240-20	-	503 674
Low Noise Amplifier, Miteq	2011-07	503 285
μComp Nordic, Low Noise Amplifier	2011-07	504 160
Multimeter Fluke 87	2011-03	502 190
Testo 625 temperature and humidity meter	2011-04	504 117
Testo 635 temperature and humidity meter	2011-03	504 203

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor k=2 (95% level of confidence).

Reservation

The test results in this report apply only to the particular test objects as declared in the report.

Delivery of test object

The test objects were delivered: 2011-01-31.

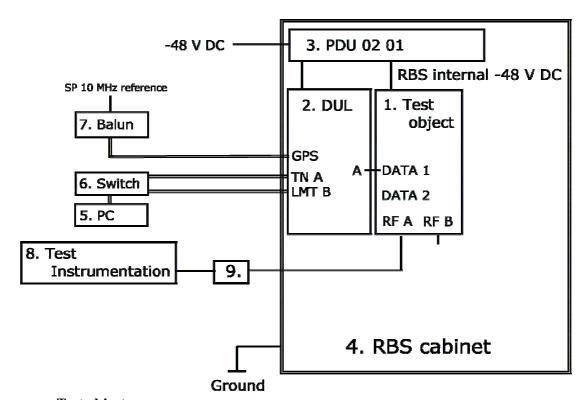
Manufacturer's representative

Samir Catic, Ericsson AB

Test engineers

Andreas Johnson, Jörgen Wassholm, and Jonas Bremholt

Test participants


Samir Catic, Ericsson AB (partially present)

Date Reference Page 2011-02-14 FX100778-F22L 4 (6)

Appendix 1

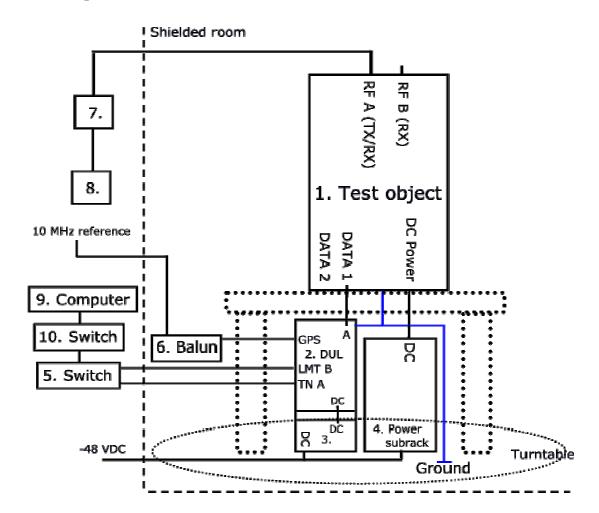
FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Test set-up conducted TX measurements at port RF A

Test object

1. RUS 01 B5, product KRC 118 64/2, revision R2A, S/N: C823824691 FCC ID: TA8AKRC11864-2 and IC: 287AB-AS118642

Functional test equipment


- 2. DUL 20 01, product KDU 137 533/4, revision R1A, S/N: C823562999
- 3. PDU 02 01, product BMG 980 336/4, revision R2A, SN BJ31528316
- 4. RBS 6201 cabinet, BAMS 1000778792
- 5. Controlling laptop HP Elitebook 8730w, SN CNU 942532V, BAMS 1000757967 running software MOSHELL V8.0k
- 6. Switch, Netgear Fast Ethernet Switch FS108
- 7. Balun for 10 MHz reference, converting BNC to RJ-45 connector
- SP test instrument according measurement equipment list 8.
- 9. Attenuator and filter according measurement equipment list

Date Reference Page 2011-02-14 FX100778-F22L 5 (6)

Appendix 1

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Test set-up, radiated measurements

Test object

1 RUS 01 B5, product KRC 118 64/2, revision R2A, S/N: C823990634 FCC ID: TA8AKRC11864-2 and IC: 287AB-AS118642

Functional test equipment

- 2. DUL 20 01, product KDU 137 533/4, revision R1A, S/N: C823562999
- 3. Power subrack, individual components are listed below
- 4. SUP 6601 1/BFL 901 009/1 Rev R1B, S/N: BR80867188
- 5. Switch, D-Link DES-3526
- 6. Balun for 10 MHz reference, converting BNC to RJ-45 connector
- RF attenuator 7.
- 8. Signal analyzer FSIQ 40, SP no:503 738
- Laptop computor: Mobile Workstation, HP Elite book BAMS 1000757968 9. with MOSHELL Ver. 8.0k
- 10. Switch: Netgear 10/100 Mbps model: FS108

Date Reference Page 2011-02-14 FX100778-F22L 6 (6)

Appendix 1

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Test object ports

Interface:	Type of port:
Ground connection during stand alone radiated emission test,	Ground
in normal use grounded via cabinet	
Supply power -48 VDC	DC Power
Antenna port 1 "RF A", 7/16 connector, female, combined TX/RX	Antenna
Antenna port 2 "RF B", 7/16 connector, female, RX only	Antenna
Data 1, connected to Port "A" at DUL	Signal
Data 2, unused	Signal
RXA I/O cross connecter, unused	Signal
RXA OUT cross connecter, unused	Signal
RXB I/O cross connecter, unused	Signal

Test object software

Software	Revision
CXP 102 051/10	R9AJ

Components of the power sub-rack used during radiated emission test

Position	Product name	Product number	R-state	Serial number
1	PDU 01 01	BMG 980 336/2	R4F	BJ31532384
2	PDU 01 01	BMG 980 336/2	R4F	BJ31532382
3	SHU 01 01	BGK 901 18/1	R3C	BJ31446269
4	DUMMY	SXK 109 8257/1	R1F	-
5	DUMMY	SXK 109 8257/1	R1F	-
6	PFU 01 01	KFE 101 1162/1	R1B	BR80910495
7	DUMMY	SXK 109 8257/1	R1F	-
8	DUMMY	SXK 109 8257/1	R1F	-
9	PCF 02 01	KFE 101 1157/1	R1C	BW95301450

Note: The power subrack is functional test equipment in the context of this test report.

 $\begin{array}{cccc} \text{Date} & & \text{Reference} & & \text{Page} \\ 2011\text{-}02\text{-}14 & & FX100778\text{-}F22L & & 1 \ (1) \end{array}$

FCC ID: TA8AKRC11864-2 Appendix 2 IC: 287AB-AS118642

RF power output measurements according to 47 CFR 2.1046, 22.913 / IC RSS-132 4.4

Date	Temperature	Humidity
2011-02-04	23 °C ± 3 °C	$22 \% \pm 5 \%$

Test set-up and procedure

The test object was connected to a power analyzer measuring peak and RMS output power in CDF mode.

Measurement equipment	SP number
Boonton RF Peak power meter/analyzer	503 144
Boonton Power sensor 56518-S/4	503 145
RF attenuator	504 159
Testo 615 temperature and humidity meter	503 498

Nominal maximum rated output power 47.8 dBm (60 W).

Measurement uncertainty: 0.7 dB

Results

Measured output power at connector RF A:

Total con Prison	Transmitter power RMS (dBm) / PAR (dB)		
Test conditions	Frequency B	Frequency M	Frequency T
BW configuration 1.4 MHz	-	47.5 / 7.0	-
BW configuration 3 MHz	-	47.5/ 6.8	-
BW configuration 5 MHz	-	47.5 / 6.7	-
BW configuration 10 MHz	-	47.4 / 6.6	-
BW configuration 15 MHz	-	47.3 / 6.8	-
BW configuration 20 MHz	-	47.2 / 7.0	-

Limits

CFR 47, 22.913/ SRSP-503 5.1: The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts (57 dBm).

RSS-132: The transmitter output power shall not exceed the limits given in SRSP-503

Complies?	Yes
-----------	-----

Date Reference Page 2011-02-14 FX100778-F22L 1 (1)

Appendix 3

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Occupied bandwidth measurements according to 47 CFR 2.1049 / IC RSS-Gen 4.6.1

Date	Temperature	Humidity
2011-02-04	23 °C ± 3 °C	22 % ± 5 %

Test set-up and procedure

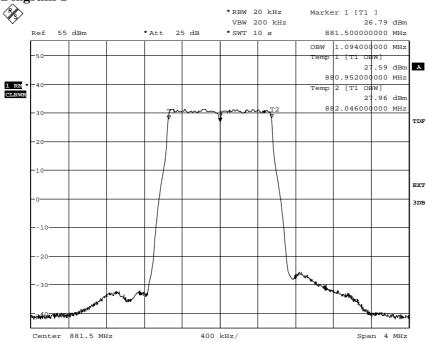
The measurements were made per definition in §2.1049. The output was connected to a signal analyzer with the RMS detector activated. The signal analyzer was connected to an external 10 MHz reference standard during the measurements.

Measurement equipment	SP number
Rohde & Schwarz signal analyzer FSQ40	504 143
RF attenuator	504 159
Testo 615 temperature and humidity meter	503 498

Measurement uncertainty: 3.7 dB

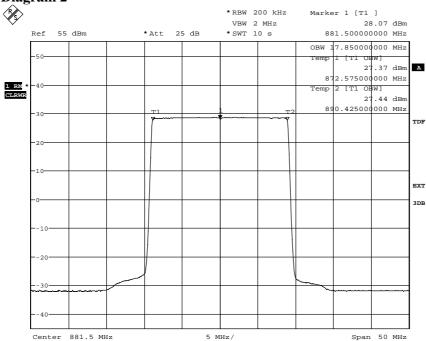
Results

The results are shown in appendix 3.1


Diagram	BW configuration	Tested frequency	OBW / [MHz]
1	1.4 MHz	M	1.094
2	20 MHz	M	17.850

Date Reference Page 2011-02-14 FX100778-F22L 1(1)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642


Appendix 3.1

Date: 4.FEB.2011 12:21:22

Diagram 2

Date Reference Page 2011-02-14 FX100778-F22L 1 (2)

Appendix 4

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Band edge measurements according to 47 CFR 2.1051, 22.917 / IC RSS-132 4.5

Date	Temperature	Humidity
2011-02-04	23 °C ± 3 °C	22 % ± 5 %
2011-02-08	22 °C ± 3 °C	19 % ± 5 %

Test set-up and procedure

The measurements were made per definition in §22.917. The test object was connected to a spectrum analyzer with the RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

Beyond the 1st MHz off the band edges the limit was adjusted to compensate for reduced measurement bandwidths where applicable, pursuant to the FCC rules, specifying a RBW of at least 1% of the fundamental emission bandwidth up to 1 MHz away from the band edges and a RBW of at least 100 KHz for measurements of emissions more than 1 MHz away from the band edges. For used RBWs smaller than the reference measurement bandwidth required by the applicable standards the limit was determined according fomula [1],

Limit = $-13 \text{ dBm} + 10 \log (RBWused / Bandwidth required by the applicable standard) [1]$

resulting in following limits for frequencies offset 1 MHz to 5 MHz from the band edges:

Channel BW	RBW used	FCC limit	IC limit
configuration [MHz]	[kHz]	[dBm]	[dBm]
1.4	20	-20.0	-20.0
3	30	-18.2	-18.2
5	30 (*)	-18.2	-28.2
10	100	-13.0	-23.0
15	200	-13.0	-20.0
20	200	-13.0	-20.0

^(*) The RBW 30 kHz is less than 1% of the measured emission bandwidth of 4.508 MHz for this BW configuration, thus the limit line in the plot was adapted by -1.8 dB (10 log[30/45]) to -14.8 dBm up to 1 MHz from the band edge.

Beyond 5 MHz off the band edges RBW 1 MHz was used to cover RSS-132 item 4.5.1.2, which requires 1 MHz RBW for signals exceeding 4 MHz emission bandwidth.

The limit lines shown in the plots represent the lower bound (most conservative requirement) of aggregated FCC and IC limits.

Measurement equipment	SP number
Rohde & Schwarz FSQ40	504 143
RF attenuator	504 159
Testo 615 temperature and humidity meter	503 498

Measurement uncertainty: 3.7 dB

Date Reference Page 2011-02-14 FX100778-F22L 2 (2)

Appendix 4

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Results

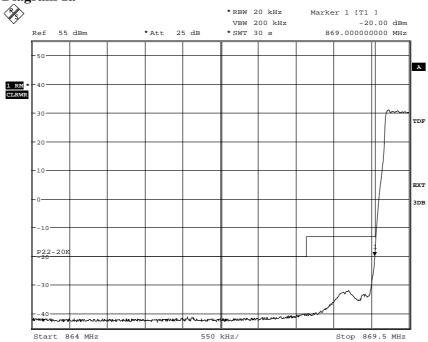
The results are shown in appendix 4.1

Diagram	BW configuration	Tested frequency
1 a+b	1.4 MHz	В
2 a+b	3 MHz	В
3 a+b	5 MHz	В
4 a+b	10 MHz	В
5 a+b	15 MHz	В
6 a+b	20 MHz	В
7 a+b	1.4 MHz	T
8 a+b	3 MHz	T
9 a+b	5 MHz	T
10 a+b	10 MHz	T
11 a+b	15 MHz	T
12 a+b	20 MHz	T

Limits

CFR 47, 22.917 / RSS-132 4.5:

The power of any emission outside the frequency band shall be attenuated below the transmitter power (P) by at least $43 + 10 \log P \, dB$.


Complies?	Yes
-----------	-----

Date Reference Page 2011-02-14 FX100778-F22L 1 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

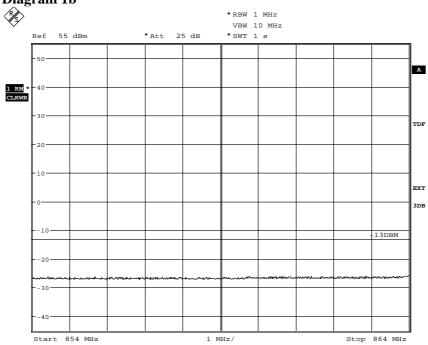
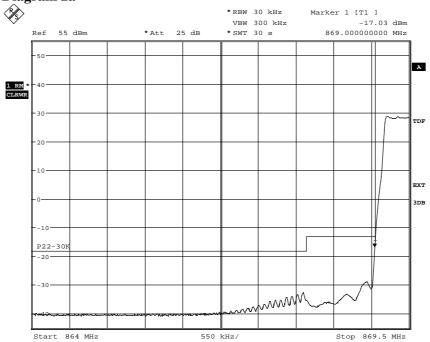

Appendix 4.1

Diagram 1a

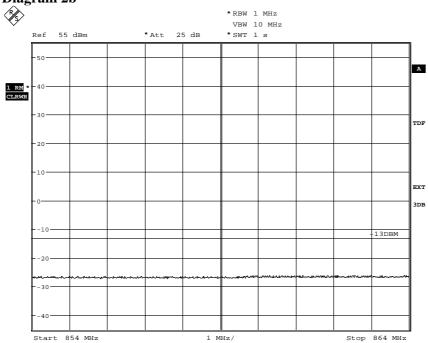
Date: 4.FEB.2011 14:25:05

Diagram 1b



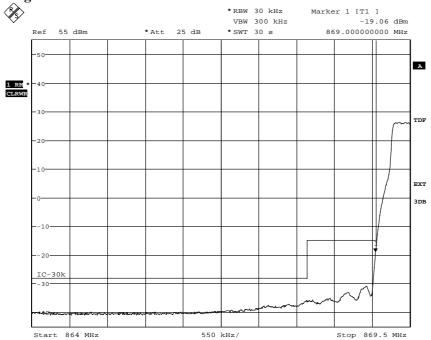
Date Reference Page 2011-02-14 FX100778-F22L 2 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642


Appendix 4.1

Date: 4.FEB.2011 15:37:49

Diagram 2b



Date Reference Page 2011-02-14 FX100778-F22L 3 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

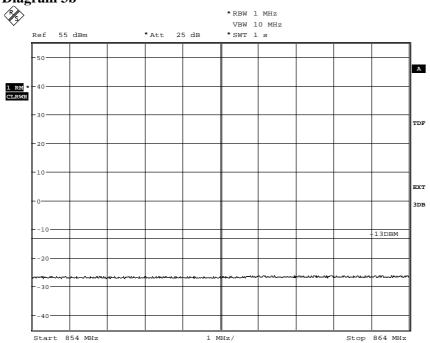
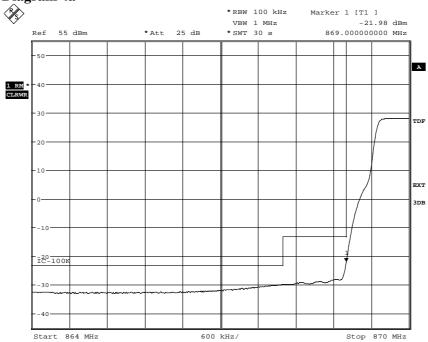

Appendix 4.1

Diagram 3a

Date: 4.FEB.2011 15:54:26

Diagram 3b



Date Reference Page 2011-02-14 FX100778-F22L 4 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

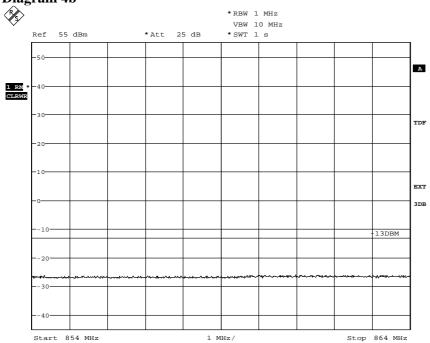
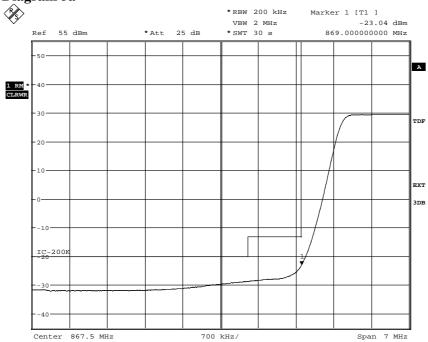

Appendix 4.1

Diagram 4a

Date: 4.FEB.2011 16:02:57

Diagram 4b



Date Reference Page 2011-02-14 FX100778-F22L 5 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

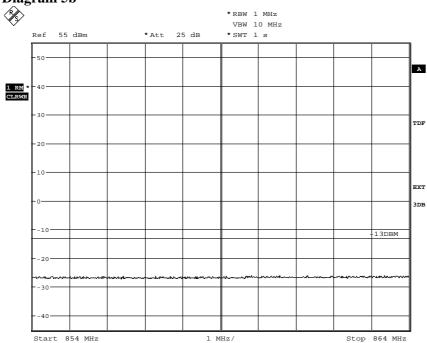
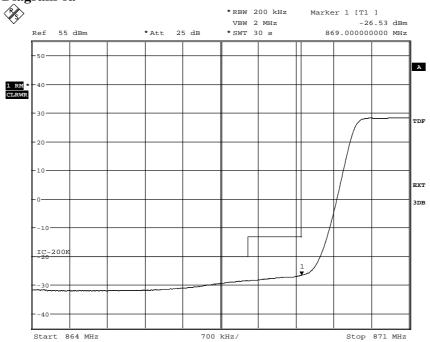

Appendix 4.1

Diagram 5a

Date: 8.FEB.2011 10:44:32

Diagram 5b


Date: 8.FEB.2011 10:46:47

Date Reference Page 2011-02-14 FX100778-F22L 6 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

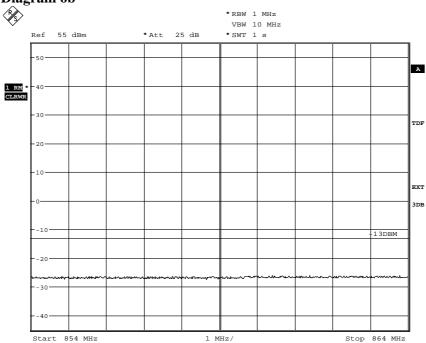
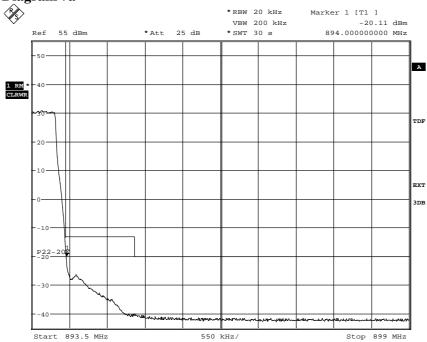

Appendix 4.1

Diagram 6a

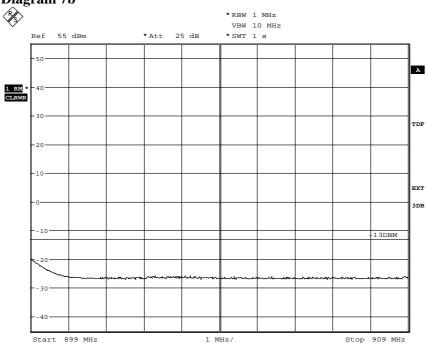
Date: 8.FEB.2011 10:58:27

Diagram 6b


Date: 8.FEB.2011 10:56:16

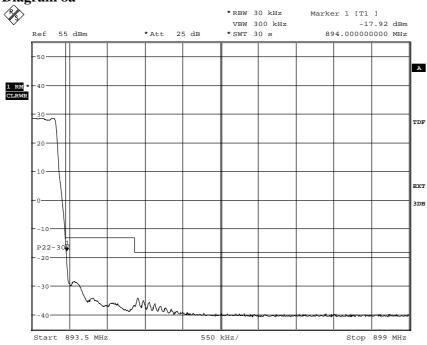
Date Reference Page 2011-02-14 FX100778-F22L 7 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642


Appendix 4.1

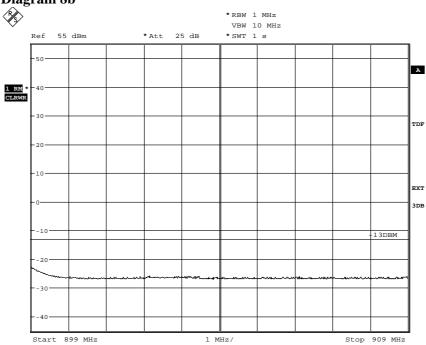
Date: 8.FEB.2011 13:18:44

Diagram 7b


Date: 8.FEB.2011 13:16:33

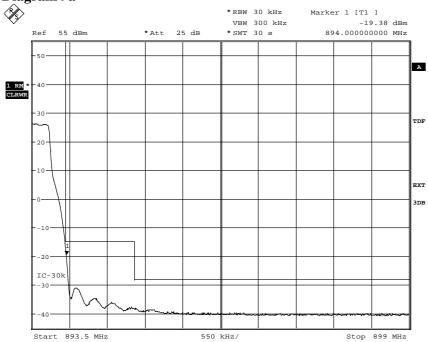
Date Reference Page 2011-02-14 FX100778-F22L 8 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642


Appendix 4.1

Date: 8.FEB.2011 13:09:44

Diagram 8b


Date: 8.FEB.2011 13:10:32

Date Reference Page 2011-02-14 FX100778-F22L 9 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

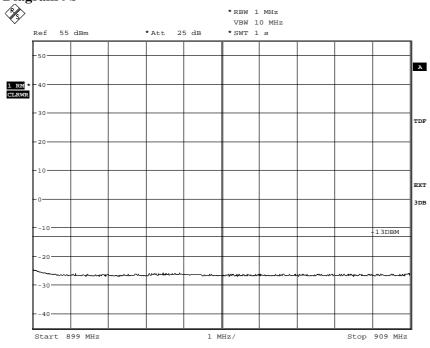
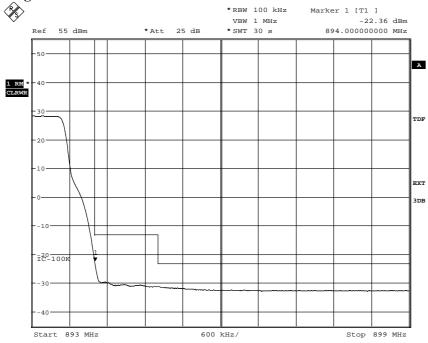

Appendix 4.1

Diagram 9a

Date: 8.FEB.2011 12:54:40

Diagram 9b


Date: 8.FEB.2011 12:51:06

Date Reference Page 2011-02-14 FX100778-F22L 10 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

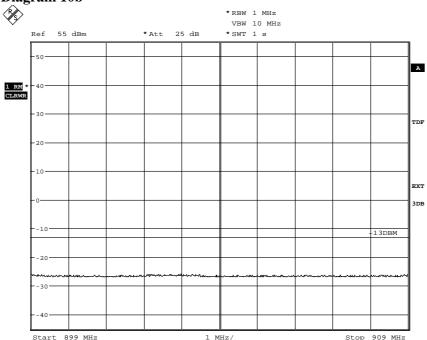
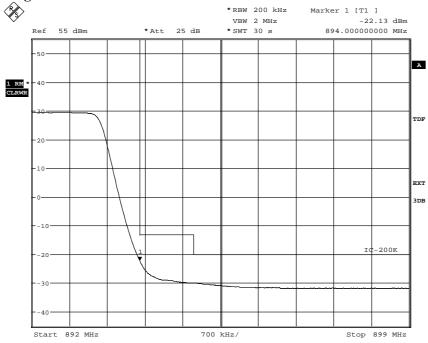

Appendix 4.1

Diagram 10a

Date: 8.FEB.2011 11:29:54

Diagram 10b


Date: 8.FEB.2011 11:30:47

Date Reference Page 2011-02-14 FX100778-F22L 11 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

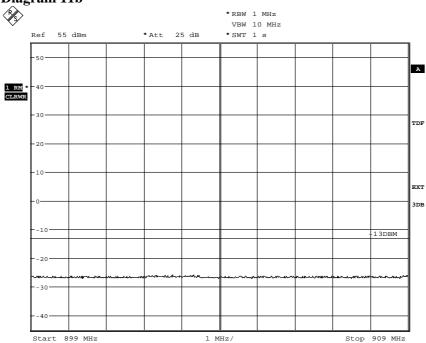
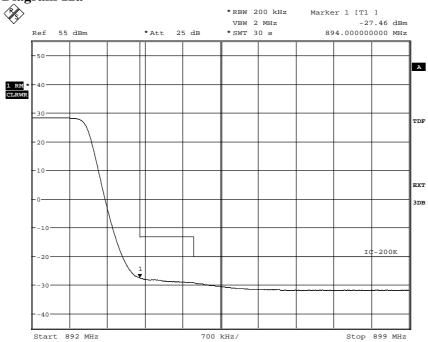

Appendix 4.1

Diagram 11a

Date: 8.FEB.2011 11:21:07

Diagram 11b


Date: 8.FEB.2011 11:17:31

Date Reference Page 2011-02-14 FX100778-F22L 12 (12)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

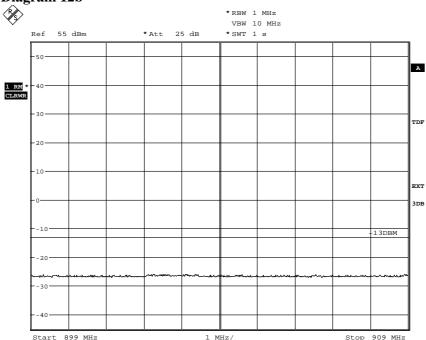

Appendix 4.1

Diagram 12a

Date: 8.FEB.2011 11:08:31

Diagram 12b

Date: 8.FEB.2011 11:10:02

Date Reference Page 2011-02-14 FX100778-F22L 1 (1)

Appendix 5

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Conducted spurious emission measurements according to 47 CFR 2.1051, 22.917 / IC RSS-132 4.5

Date	Temperature	Humidity
2011-02-04	23 °C ± 3 °C	22 % ± 5 %
2011-02-08	$22 ^{\circ}\text{C} \pm 3 ^{\circ}\text{C}$	19 % ± 5 %

Test set-up and procedure

The measurements were made with a RBW of 1 MHz instead of 100 kHz to cover RSS-132 section 4.5.1.2, requiring a RBW of 1 MHz for emission bandwidths exceeding 4 MHz, even though the worst case configuration was found to be BW configuration 1.4 MHz.

The test object output was connected to a spectrum analyzer. A pre-measurement wideband sweep was performed with the PEAK detector activated. Emission close to or above the limit with the PEAK detector was zoomed in and re-measured with the RMS detector activated using the substitution method, and the result was noted. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

According to the client, the 2.4576 GHz clock was not used in the RF chain and is not affected by the power setting of the carrier frequency. The transmitter was activated for 40 W output power during the measurements in the frequency range 18 to 25 GHz. In the frequency range 9 kHz to 18 GHz the transmitter was activated for maximum output power.

Measurement equipment	SP number
Rohde & Schwarz FSQ40	504 143
RF attenuator	504 159
RF attenuator	900 233
High pass filter used within 1-15 GHz	504 199
High pass filter used within 15-18 GHz	504 200
High pass filter used within 18-25 GHz	503 740
Testo 615 temperature and humidity meter	503 498

Measurement uncertainty: 3.7 dB

Results

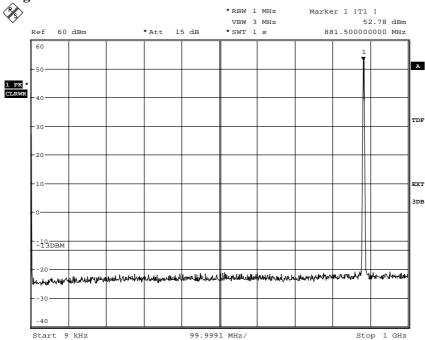
Diagram BW configuration / [MHz] Tested frequency 1 1.4 M

The diagrams are shown in appendix 5.1

Remark

The emission at 9 kHz on some plots was not generated by the test object. A complementary measurement with a smaller RBW showed that it was related to the LO feed-through.

Limits


CFR 47, 22.917 / RSS-132 4.5: The power of any emission outside the frequency band shall be attenuated below the transmitter power (P) by at least 43 + 10 log P dB.

Complies?	Yes
-----------	-----

Date Reference Page 2011-02-14 FX100778-F22L 1 (2)

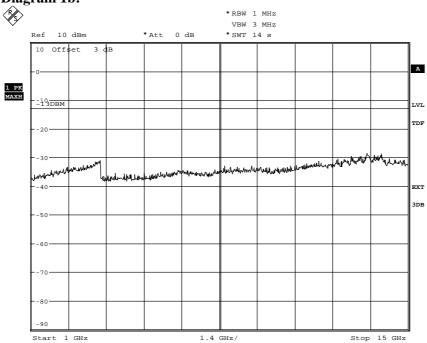
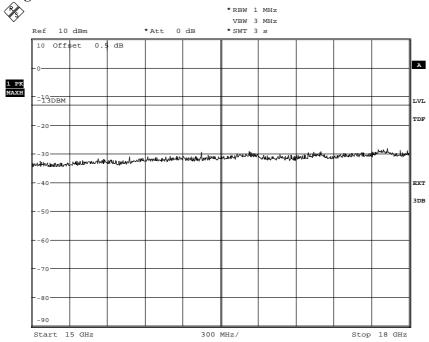

FCC ID: TA8AKRC11864-2 Appendix 5.1 IC: 287AB-AS118642

Diagram 1a:

Date: 4.FEB.2011 11:37:17

Diagram 1b:



Date Reference Page 2011-02-14 FX100778-F22L 2 (2)

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

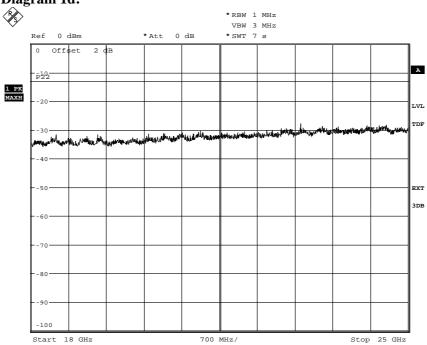

Appendix 5.1

Diagram 1c:

Date: 8.FEB.2011 15:35:25

Diagram 1d:

Date: 8.FEB.2011 15:30:25

Date Reference Page 2011-02-14 FX100778-F22L 1 (2)

Appendix 6

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

Field strength of spurious radiation measurements according to 47 CFR 2.1053, 22.917 / IC RSS-132 4.5

Date	Temperature	Humidity
2011-01-04	23 % ± 5 °C	19 % ± 5 %

Test set-up and procedure

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarisation of the antenna. The antenna distance was 3 m in the frequency range $30 \, \text{MHz} - 15 \, \text{GHz}$ and 1m in the frequency range 15-25 GHz.

A pre-measurement was first performed:

In the frequency range 30 MHz-25 GHz the measurement was performed in power with a RBW of 1 MHz. A propagation loss in free space was calculated. The used formula was,

$$\gamma = 20 \log \left(\frac{4\pi D}{\lambda} \right)$$
, γ is the propagation loss and D is the antenna distance.

The measurement procedure was as the following:

- 1. The pre-measurement was first performed with peak detector. The EUT was measured in eight directions and with the antenna at three heights, 1.0 m, 1.5 m and 2.0 m.
- 2. Spurious radiation on frequencies closer than 20 dB to the limit is scanned 0-360 degrees and the antenna is scanned 1-4 m for maximum response. The emission is then measured with the average detector and the average value is reported, frequencies closer than 10 dB to the limit measured with the average detector was measured with the substitution method according to the standard.

Measurement equipment	SP number
Semi anechoic chamber Tesla	503 881
Rohde & Schwarz ESI 26	503 292
Rohde & Schwarz FSIQ 40	503 738
EMC 32 ver. 8.20.1	503 745
Chase Bilog antenna CBL 6111A	503 182
EMCO Horn Antenna 3115	502 175
Standard Gain model 20240-20	503 674
Highpass filter 1-15 GHz	504 199
Highpass filter 3-18 GHz	504 200
MITEQ Low Noise Amplifier	503 285
uComp Nordic Low Noise Amplifier	504 160
Testo 625 temperature and humidity meter	504 188

Date Reference Page 2011-02-14 FX100778-F22L 2(2)

Appendix 6

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

The test set-up during the spurious radiation measurement is shown in the picture below:

Results

Channel M

Chamier 1/1			
	Spurious emission level (dBm)		
Frequency (MHz)	Vertical	Horizontal	
30-25 000	All emission > 20 dB below limit	All emission > 20 dB below limit	

Measurement uncertainty:

3.2 dB up to 18 GHz, 3.6 dB above 18 GHz

Limits

CFR 47, 22.917 / RSS-132 4.5:

The power of any emission outside the frequency band shall be attenuated below the transmitter power (P) by at least 43 + 10 log P dB.

Complies?	Yes
-----------	-----

Reference FX100778-F22L

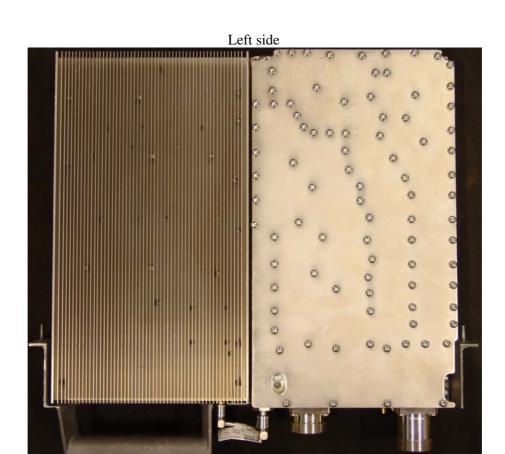
Page 1 (3)

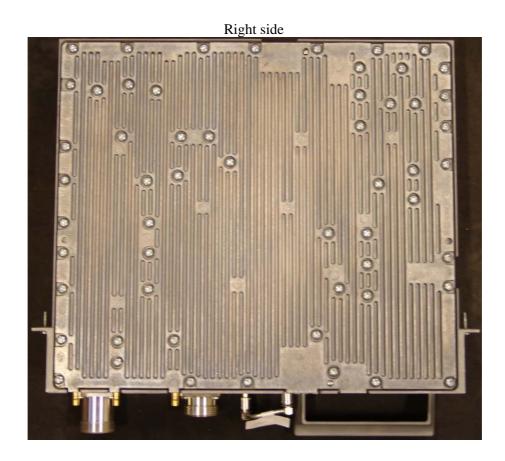
Appendix 7

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

External photos of the test object

Note: The pictures show the sample used for radiated tests.




FCC ID: TA8AKRC11864-2

IC: 287AB-AS118642

Date Page 2 (3) Reference 2011-02-14 FX100778-F22L

Appendix 7

Date 2011-02-14

Reference FX100778-F22L

Page 3 (3)

Appendix 7

FCC ID: TA8AKRC11864-2 IC: 287AB-AS118642

