

Testing ISO/IEC 17025

Report On

FCC and ISED Testing of the Ericsson RRUS 32A B4, NB-IoT IB, KRC 118 050/1 (2100 MHz) Base Station in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 27, ISED RSS-GEN and Industry Canada RSS-139

COMMERCIAL-IN-CONFIDENCE

FCC: TA8AKRC118050-1 IC: 287AB-AS1180501

PREPARED BY

APPROVED BY

DATED

144 Juntoning

Steve Scarfe Authorised Signatory 9 September 2021

Maggie Whiting Key Account Manager

September 2021

Document 75952701 Report 04 Issue 1

CONTENTS

Section

Page No

1	REPORT INFORMATION	2
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11	Report Details Brief Summary of Results Test Rationale Configuration Description Declaration of Build Status Product Information Test Setup Test Conditions Deviation From The Standard Modification Record Additional Information	4 5 7 9 10 10
2	TEST DETAILS	
2.1 2.2 2.3 2.4	Maximum Peak Output Power and Peak to Average Ratio - Conducted Occupied Bandwidth Band Edge Transmitter Spurious Emissions	19 25
3	TEST EQUIPMENT USED	53
3.1 3.2	Test Equipment Used Measurement Uncertainty	54 57
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	58
4.1	Accreditation, Disclaimers and Copyright	59
ANNEX	A Module ListsA	٩.2

SECTION 1

REPORT INFORMATION

1.1 **REPORT DETAILS**

Manufacturer	Ericsson
Address	Torshamnsgatan 23 Kista SE-16480 Stockholm Sweden
Product Name & Product Number	RRUS 32A B4 - KRC 118 050/1
Serial Number(s)	C828422384
Software Version	CXP9013268/12 Revision R82CM
Hardware Version	R1C
Test Specification/Issue/Date	FCC CFR 47 Part 2: 2020 FCC CFR 47 Part 27: 2020 ISED RSS-GEN: Issue 5: March 2019 Amendment 1, 2021 Amendment 2 Industry Canada RSS-139: Issue 3: 2015
Test Plan	Q1 FCC_IC test plan for MR7602-1 NR-IoT V 0.9 Reduced Scope
Start of Test	06 July 2021
Finish of Test	06 July 2021
Name of Engineer(s)	Hector Moreno & Ashok Kumar
Related Document(s)	KDB 971168 D01 v02r02 KDB 662911 D01 v02r01 KDB 716230 ICES-003:Issue 7 (2020-10) ANSI C63.26-2015

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate compliance with and FCC CFR 47 Part 2: 2020, FCC CFR 47 Part 27: 2020, ISED RSS-GEN: Issue 5: March 2019 Amendment 1, 2021 Amendment 2, Industry Canada RSS-139: Issue 3: 2015 The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

G.R.D.

Hector Moreno & Ashok Kumar

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of results for each configuration, in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 27, ISED RSS-GEN and Industry Canada RSS-139 is shown below.

	Specificati	on Clause				
Section	FCC CFR 47 Part 2	FCC CFR 47 Part 27	RSS- GEN	RSS-139	SS-139 Test Description	
2.1	2.1046	27.50	-	6.5	Maximum Peak Output Power and Peak to Average Ratio - Conducted	Pass
2.2	2.1049	27.53	6.6	-	Occupied Bandwidth	Pass
2.3	2.1051	27.53	-	6.5	Band Edge	Pass
2.4	2.1051	27.53	-	6.6	Transmitter Spurious Emissions	Pass

Testing for Radiated Spurious Emissions are recording in the following report: 2104108STO-112 RRUS32AB4 IoT FCC27

1.3 TEST RATIONALE

The tests that have been selected are detailed in the customer Test Plan as defined in section 1.1 of this report. The Test Plan is based on the TÜV SÜD FCC Test Plan Rationale, available on request.

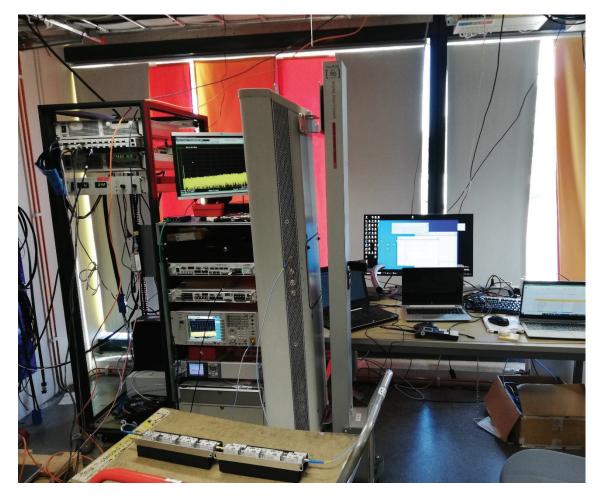
1.4 CONFIGURATION DESCRIPTION

Configuration	tion RAT No. Of		Pout (W)	Carrier Bandwidth	Carrier Frequency Configuration (MHz)				
Configuration		carriers	FOUL (VV)		Bottom	Middle	Тор		
	NR in NR/ESS Setup		NR in			10 MHz- SCS 15kHz	2115.0	2132.5	2150.0
1			1	30	15 MHz- SCS 15kHz	2117.5	2132.5	2145.5	
	(NB-loT)			20 MHz- SCS 15kHz	2120.0	2132.5	2145.0		

1.5 DECLARATION OF BUILD STATUS

1.											
Equipment Description											
Technical Description:											
(Please provide a brief description of the intended use of the equipment including											
the technologies the product supports)		M	ulti-standard rer	note radio unit							
Manufacturer:		Ericsson AB									
Model:			RRUS 32	2A B4							
Part Number:			KRC 118								
Hardware Version:			R10								
Software Version:			CXP 901 3268								
FCC ID of the product under test			TA8AKRC1								
IC ID of the product under test			287AB-AS1								
			287AB-AS1	180001							
Intentional Radiators	1500										
FDD, TDD	FDD										
Frequency Range (MHz to MHz)	2110MHz - 2155MHz DL 1	710MHz - 175	5MHz UL								
FDD / TDD	FDD										
Conducted Declared Output Power (dBm)	30W per antenna connecto	or (NB IoT SA	carrier max 20W			_					
RAT		WCDMA	NB IoT SA	LTE (ind. NB IoT IB, GB)	NR (incl NB IoT IB)	MRO					
				1.4, 3, 5, 10, 15,	5,10,15,20MHz						
Supported Bandwidth(s) (MHz)		5MHz		20MHz	15kHz scs						
		QPSK,		QPSK, 16QAM,	QPSK, 16QAM,						
		16QAM.		64QAM	64QAM						
Modulation Scheme(s) DL		64QAM	QPSK	256QAM	256QAM						
			4 , 6, 1	2000,000	4M47W7D.						
					9M29W7D.						
				1M40W7D.	9M45W7D						
				3M00W7D.	14M1W7D.						
				5M00W7D,	14M4W7D.						
				10M0W7D,	18M9W7D,						
				15M0W7D,	19M2W7D,						
ITU Emission Designator		5M00F9W	210KW7D	20M0W7D	37M8W7D,						
IBW		45MHz	45MHz	45MHz	45MHz						
		2		3							
Maximum number of carriers			2	3	, <u> </u>	0					
Unintentional Radiators	1										
Highest frequency generated or used in the device or on which the device											
operates or tunes			9,8 Gb	it/s							
Lowest frequency generated or used in the device or on which the device											
operates or tunes if <30MHz											
Class A Digital Device (Use in commercial, industrial or business environment) or											
Class B Digital Device (Use in residential environment)			Class	В							
DC Power Supply (Delete if Not Applicable)	•										
Nominal voltage:			-48\	/							
Extreme upper voltage:			-39\	1							
Extreme lower voltage:			-58.5								
Max current:			26A	-							
Temperature	1		200								
Minimum temperature:	1		-40°0	·							
Maximum temperature:	-40°C 55°C										
Maximum temperature:			55 0	,							
I hereby declare that I am entitled to sign on behalt	f of the manufacturer and th	at the informat	tion supplied is o	correct and comple	ete.						
		Fays	al Pir	mohan	ned						
Name:		1	Faysal Pirm	ohamed							
Position held:											
Date:					Regulatory Engineer 2021-09-08						

No responsibility will be accepted by TÜV SÜD as to the accuracy of the information declared in this document by the manufacturer.

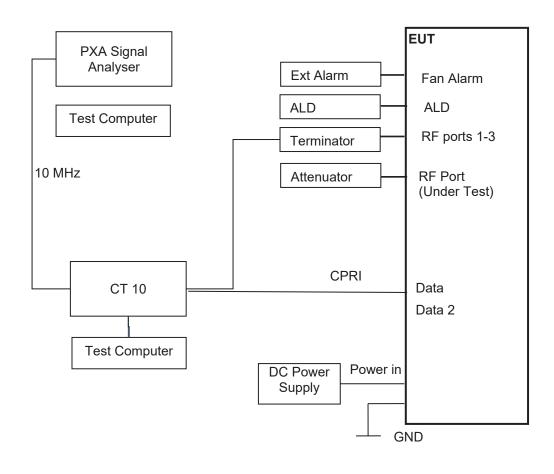


1.6 **PRODUCT INFORMATION**

1.6.1 Technical Description

The Equipment Under Test (EUT) RRUS 32A B4 – KRC 118 050/1 is an Ericsson AB Radio Unit working in the public mobile service 2100 MHz band which provides communication connections to 2100 MHz network. The EUT operates from a -48V DC supply.

The Equipment Under Test (EUT) is shown in the photograph below. A full technical description can be found in the Manufacturer's documentation.



Equipment Under Test

1.7 TEST SETUP

Conducted Test Set Up

1.8 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated as described in the Test Method for each Test.

The EUT was powered from a -48V DC supply.

FCC Measurement Facility Registration Number 563983 Ericsson Test Laboratory, Kista Postal Address: Erisson AB, Isafjordsgatan 10, Stockholm, SE-16 440, Sweden

ISED Accreditation IC#26170 Ericsson Test Laboratory, Kista Postal Address: Erisson AB, Isafjordsgatan 10, Stockholm, SE-164 40, Sweden

Test Name	Name of Engineer(s)
Maximum Peak Output Power and Peak to Average Ratio -	Ashok Kumar, Hector Eric Moreno Trujillo
Conducted	
Occupied Bandwidth	Ashok Kumar, Hector Eric Moreno Trujillo
Band Edge	Ashok Kumar, Hector Eric Moreno Trujillo
Transmitter Spurious Emissions	Ashok Kumar, Hector Eric Moreno Trujillo

1.9 DEVIATION FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.10 MODIFICATION RECORD

No modifications were made to the EUT during testing.

1.11 ADDITIONAL INFORMATION

Ericsson will limit this product through the software from operating across the whole of Band B4, it will be limited to 2100 MHz.

This filing is for a Class 2 Permissive change to add NR in NR/ESS (NB-IoT) to a previously certified Radio for use in the USA and Canada under the following ID's:

FCC ID: TA8AKRC118050-1 IC: 287AB-AS1180501

This device is electrically identical as originally certified as no hardware changes have been made

Frequency Stability has been verified at time of original certification.

The Test Plan is based on the TUV SUD Document FCC and ISED Test Plan Rationale for Base Station Equipment.

This TX and RX share the same port and therefore Rx Spurious Emissions have not been performed.

SECTION 2

TEST DETAILS

2.1 MAXIMUM PEAK OUTPUT POWER AND PEAK TO AVERAGE RATIO - CONDUCTED

2.1.1 Specification Reference

FCC CFR 47 Part 27, Clause 27.50 FCC CFR 47 Part 2, Clause 2.1046 Industry Canada RSS-139, Clause 6.5

2.1.2 Date of Test and Modification State

06 July 2021 - Modification State 0

2.1.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.4 Environmental Conditions

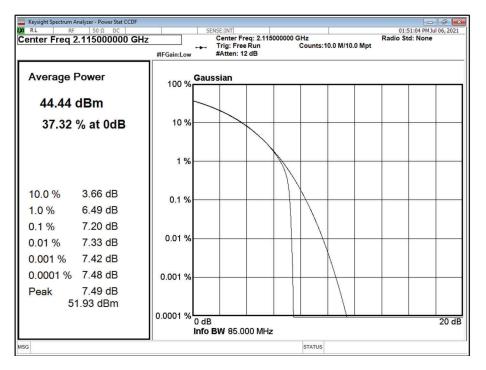
Ambient Temperature	23.4°C
Relative Humidity	42.0%

2.1.5 Test Method

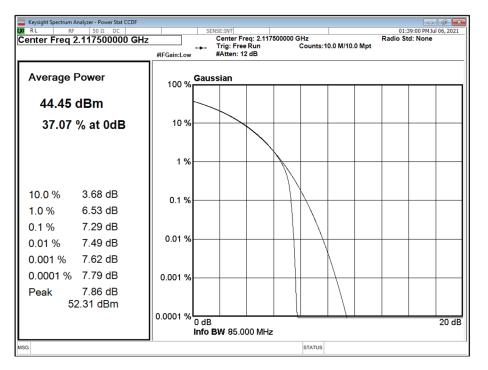
All measurements were made in accordance with FCC KDB 971168 D01, clause 5.2.1 and summed in accordance with FCC KDB 662911 D01.

Calculations Total Power = Measured PSD (Total Power Port A) + 10log (N_{ANT}), where N_{ANT} =4 Maximum Total Power (EIRP) = Total Power (as above) + Declared Antenna Gain

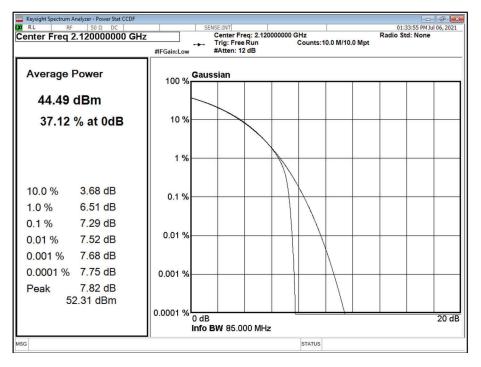
2.1.6 Test Results


Configuration 1

Maximum Output Power 44.80 dBm


			Peak to Average Ratio (PAR) / Output Power / PSD						
	NR in NR/ESS NR in NR/ESS Set			Chanr	nel Position	В			
Antenna	Setup (NB-IoT) Modulation	(NB-IoT) Carrier Bandwidth	PAR (dB)	Average Power/PSD		Total Power Port A + B + C +D			
				dBm	dBm/MHz	dBm	dBm/MHz		
A	QPSK	10.0 MHz	7.20	44.45	35.78	50.47	41.80		
A	QPSK	15.0 MHz	7.29	44.46	35.36	50.48	41.38		
Α	QPSK	20.0 MHz	7.29	44.55	35.24	50.57	41.26		

Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 10.0 MHz - Channel Position B

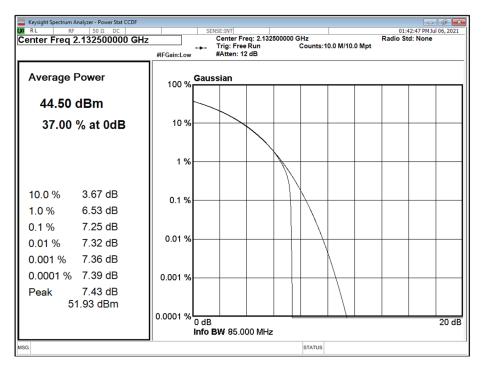


Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 15.0 MHz - Channel Position B

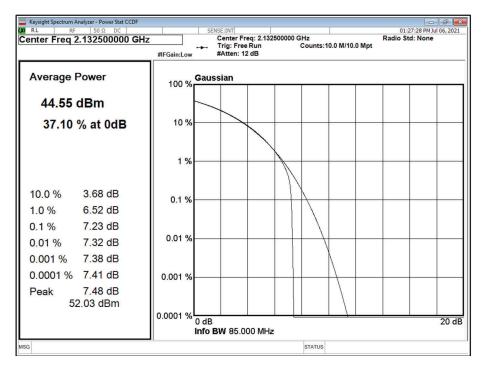
Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 20.0 MHz - Channel Position B

Configuration 1

Maximum Output Power 44.80 dBm

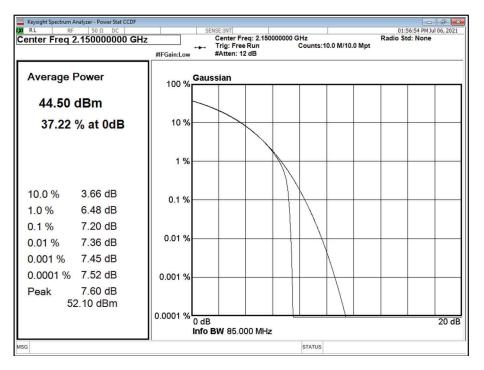

			Peak to Average Ratio (PAR) / Output Power / PSD					
	NR in NR/ESS	NR in NR/ESS Setup		Chann	el Position N	Λ		
Antenna	Setup (NB-IoT) Modulation	(NB-IoT) Carrier Bandwidth	PAR (dB)	Average Power/PSD		Total I Port A + I		
				dBm	dBm/MHz	dBm	dBm/MHz	
Α	QPSK	10.0 MHz	7.18	44.55	35.96	50.57	41.98	
A	QPSK	15.0 MHz	7.25	44.50	35.37	50.52	41.39	
A	QPSK	20.0 MHz	7.23	44.53	35.27	50.55	41.29	

Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 10.0 MHz - Channel Position M

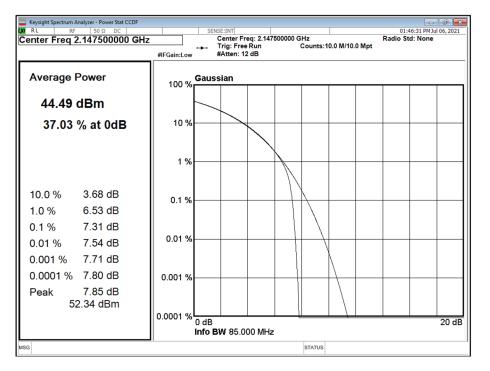


Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 15.0 MHz - Channel Position M

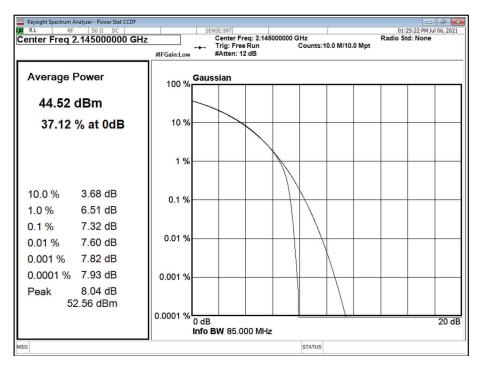
Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 20.0 MHz - Channel Position M


Configuration 1

Maximum Output Power 44.80 dBm


			Peak to Average Ratio (PAR) / Output Power / P					
	NR in NR/ESS Setup	NR in NR/ESS Setup		Chann	el Position	Г		
Antenna	(NB-IoT) Modulation	(NB-IoT) Carrier Bandwidth	PAR (dB)	Average Power/PSD			Power B + C +D	
				dBm	dBm/MHz	dBm	dBm/MHz	
А	QPSK	10.0 MHz	7.20	44.57	36.00	50.59	42.02	
А	QPSK	15.0 MHz	7.31	44.51	35.28	50.53	41.30	
A	QPSK	20.0 MHz	7.32	44.50	35.37	50.52	41.39	

Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 10.0 MHz - Channel Position T



Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 15.0 MHz - Channel Position T

Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 20.0 MHz - Channel Position T

Limit	
Maximum rated output power (Non-Rural)	≤ 1640 W/MHz or ≤+62.15 dBm/MHz
Maximum rated output power (Rural)	≤ 3280 W/MHz or ≤+65.15 dBm/MHz
Peak to Average Ratio	13 dB

The radio unit was tested with maximum output power and without an antenna. ERP/EIRP compliance is addressed at the time of licensing, as required by the responsible FCC/ISED Bureau(s). Licensees are required to take into account maximum allowed antenna gain used in combination with the applicable power settings to prevent the radiated output power exceeding the limits.

2.2 OCCUPIED BANDWIDTH

2.2.1 Specification Reference

FCC CFR 47 Part 27, Clause 27.53 ISED RSS-GEN, Clause 6.6 FCC CFR 47 Part 2, Clause 2.1049

2.2.2 Date of Test and Modification State

06 July 2021 - Modification State 0

2.2.3 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.4 Environmental Conditions

Ambient Temperature23.4°CRelative Humidity42.0%

2.2.5 Test Method

All measurements were made in accordance with FCC KDB 971168 D01, Clause 4.3. The Spectrum Analyser RBW was configured to be at least 1% of the channel bandwidth of the carrier to be measured.

For 26 dB Bandwidth, in accordance with KDB 971168 D01, a peak detector and a trace setting of Max Hold were used. The trace was allowed to stabilise. Using the Spectrum Analyser function, the 26dB measurement result was obtained.

4.3 Occupied bandwidth – power bandwidth (99 %) measurement procedure Subclause 5.4.4 of ANSI C63.26-2015 is applicable (wherein the recommendation is to use the 99 % power bandwidth function of a spectrum analyser).

2.2.6 Test Results

Configuration 1

Maximum Output Power 44.80 dBm

	NR in	NR in			Result	(MHz)		
	NR/ESS NR/ESS		6 Channel Position B		Channel Position M		Channel Position T	
Antenna	Setup (NB- IoT) Modulation	Setup (NB- IoT) Carrier Bandwidth	Occupied Bandwidth	-26 dB Bandwidth	Occupied Bandwidth	-26 dB Bandwidth	Occupied Bandwidth	-26 dB Bandwidth
A	QPSK	10.0 MHz	9453.97	9805.84	9413.18	9753.35	9433.55	9789.56
A	QPSK	15.0 MHz	14349.30	14763.54	14357.05	14761.00	14345.44	14758.59
A	QPSK	20.0 MHz	19191.47	19713.83	19187.84	19710.51	19179.84	19727.62

Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT) Carrier Bandwidth 10.0 MHz - Channel Position B

Keysight Spectrum Analyzer - Occupied		T	anuar turl						6 PM Jul 06, 202
Center Freq 2.11500000				q: 2.11500000				Radio Std: N	
·	_ Trig: Free Run Avg Hold: 200/20 #Atten: 12 dB			00/200	00 Radio Device: BTS				
0 dB/div Ref 53.86 dE	łm								
og									
3.9	n					~			
3.9	l m	here the second	a warmen	man man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~			
3.9	1					h			
3.9	1					1			
5.1									
5.1 may my low on the shall and	mar					1	Lann	hanna m	
6.1									HUGER MARCA
enter 2.115 GHz Res BW 100 kHz			#VE	3W 300 kHz	<u>.</u>				oan 20 MH 5 1.933 n
Occupied Bandwig	dth		Total P	ower	52.1 dB	m			
9	.4540	MHz							
Transmit Freq Error	-12.	546 kHz	% of O	BW Power	99.00	%			
x dB Bandwidth	9.8	06 MHz	x dB		-26.00 c	B			
1									
G					STATUS				

<u>Antenna A - NR in NR/ESS Setup (NB-IoT) Modulation QPSK - NR in NR/ESS Setup (NB-IoT)</u> Carrier Bandwidth 10.0 MHz - Channel Position M

Keysight Spectrum Analyzer - Occupied BV	v			- f		
RL RF 50 Ω DC enter Freq 2.132500000	I GHz #IFGain:Low	SENSE:INT Center Freq: 2.132500000 Trig: Free Run #Atten: 12 dB	GHz Avg Hold: 200/200	01:54:59 PM Jul 06, 2021 Radio Std: None 00 Radio Device: BTS		
0 dB/div Ref 53.77 dBr	n					
3.8						
3.8		the for the second s	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
77						
23						
5.2 and and the second se	ann			- Angel Mar and the state of th		
enter 2.133 GHz Res BW 100 kHz		#VBW 300 kHz		Span 20 MH Sweep 1.933 m		
Occupied Bandwidt 9.	։հ 4132 MHz	Total Power	52.1 dBm			
Transmit Freq Error -18.969 kHz		% of OBW Power	99.00 %			
x dB Bandwidth	9.753 MHz	x dB	-26.00 dB			
3			STATUS			