RF Exposure Evaluation

Test report On Behalf of AiRISTA Flow, Inc. For Wi-Fi/BLE Gateway

Model No. : G3

FCC ID: TA7-G3

- Prepared for : AiRISTA Flow, Inc. 913 Ridgebrook Rd., Suite 110, Sparks, MD, 21152, USA
- Prepared By :Shenzhen HUAK Testing Technology Co., Ltd.1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation
Park, Fuhai Street, Bao'an District, Shenzhen City, China
- Date of Test:
 Jun. 20, 2020 ~ Feb. 22, 2021

 Date of Report:
 Feb. 22, 2021

Equipment	Wi-Fi/BLE Gateway
Model Name	G3
Serial No.	N/A
Trade Mark:	
FCC ID	TA7-G3
Hardware Version:	V1.2
Software Version:	V2.58
BLE	
Operation frequency:	2402MHz ~ 2480MHz
Channel separation:	2MHz
Data rate	1Mbit/s
Channel number:	40
Modulation Technology:	GFSK
Antenna Type:	Chip Antenna
Antenna Gain:	0dBi
2.4GWIFI	
Operation frequency	802.11b/g/n 20: 2412~2462 MHz
Number of Channels	802.11b/g/n20: 11CH
Modulation Type	CCK/DSSS/OFDM
Antenna type:	Chip Antenna
Antenna gain:	0dBi

1 General Description of EUT

2 RF Exposure Compliance Requirement

2.1 Standard Requirement

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Lin	nits for Occupationa	I/Controlled Exposur	es	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000 (B) Limits	614 1842/i 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300 5	6 6 6 6 6
0.3–1.34 1.34–30 30–300 300–1500 1500–100,000	614 824/1 27.5	1.63 2.19/1 0.073	*(100) *(180/f ²) 0.2 f/1500 1.0	30 30 30 30 30 30

F= Frequency in MHz Friis

Formula

Friis transmission formula: Pd = (Pout*G)/(4* Pi * R 2) Where

Pd = power density in mW/cm2 Pout = output power to antenna in mW G =gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

3 EUT RF Exposure

Antenna Gain: 0Bi

For BLE:

Antenna Gain: The maximum Gain measured in fully anechoic chamber is in linear scale. Output Power Into Antenna & RF Exposure Evaluation Distance:

BLE-1Mbit/s						
Channel	Channel Maximum Peak Conducted Output		Maximum tune-up Power		Calculated	Exclusion
	(dBm)	(dBm)	(dBm)	(mW)	Value	lineshold
Lowest (2402MHz)	1.844	1±1	2	1.585	0.491	
Middle (2440MHz)	1.526	1±1	2	1.585	0.495	3.0
Highest (2480MHz)	1.241	1±1	2	1.585	0.499	
Conclusion: the calculated value \leq 3.0, SAR is exempted.						

Measurement Data

Remark: The Max Conducted Peak Output Power data refer to report Report No.: HK2007211844-2E

For 2.4GWIFI

802.11b mode					
Testshornel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
rest channel	(dBm)	(dBm)	(dBm)	(mW)	
Lowest(2412MHz)	16.802	16±1	17	50.119	
Middle(2437MHz)	15.736	15±1	16	39.811	
Highest(2462MHz)	13.558	13±1	14	25.119	

802.11g mode					
Test shannel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
rest channel	(dBm) (dBm)		(dBm)	(mW)	
Lowest(2412MHz)	15.266	16±1	17	50.119	
Middle(2437MHz)	15.566	15±1	16	39.811	
Highest(2462MHz)	12.235	13±1	14	25.119	

802.11n(HT20)mode					
Tost channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
rest channer	(dBm) (dBm)		(dBm)	(mW)	
Lowest(2412MHz)	15.554	16±1	17	50.119	
Middle(2437MHz)	15.019	15±1	16	39.811	
Highest(2462MHz)	12.126	13±1	14	25.119	

Worst case: 802.11g mode Lowest (2462MHz) Using the maximum value of the test report

Maximum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R =20m (mW/cm2)	Limit	Result
50.119	0	0.00997	1	PASS

Remark: The Max Conducted Peak Output Power data refer to report Report No.: HK2007211844-1E Value : Pd = $(Pout*G)/(4*Pi*R^2)=(50.119*1)/(4*3.1416*20*20)=0.00997mW/cm2$