

Test report No. Page Issued date

: 13325695H-A-R1 : 1 of 22 : December 16, 202

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

RADIO TEST REPORT

Test Report No.: 13325695H-A-R1

Applicant : ASAHI DENSO CO.,LTD.

Type of EUT : SMART KEY

Model Number of EUT : ZKM013A-903

FCC ID : T8VZKM013A-903

Test regulation : FCC Part 15 Subpart C: 2020

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13325695H-A. 13325695H-A is replaced with this report.

Date of test:	September 29, 2020
Representative test engineer:	A. Maeda
	Akihiko Maeda
	Engineer
	Consumer Technology Division
Approved by:	S. migozono
	Shinichi Miyazono
	Engineer
	Consumer Technology Division

CERTIFICATE 5107.02

	The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
\setminus	There is no testing item of "Non-accreditation"

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13325695H-A-R1

 Page
 : 2 of 22

 Issued date
 : December 16, 2020

 FCC ID
 : T8VZKM013A-903

REVISION HISTORY

Original Test Report No.: 13325695H-A

Revision	Test report No.	Date	Page	Contents
			revised	
-	13325695H-A	October 5, 2020	-	-
(Original)				
1	13325695H-A-R1	December 16,	P.18	Addition of the "EMI Test Receiver" and
		2020		"Spectrum Analyzer" to Test equipment.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1 Page : 3 of 22

Wireless LAN

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

Reference: Abbreviations (Including words undescribed in this report)

MCS A2LA The American Association for Laboratory Accreditation Modulation and Coding Scheme ACAlternating Current MRA Mutual Recognition Arrangement AFH

N/A Adaptive Frequency Hopping Not Applicable

Amplitude Modulation NIST National Institute of Standards and Technology AM

Amp, AMP Amplifier NS No signal detect.

American National Standards Institute ANSI NSA Normalized Site Attenuation Ant, ANT Antenna **NVLAP** National Voluntary Laboratory Accreditation Program

AP Access Point OBW Occupied Band Width

ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing

Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate Bluetooth Basic Rate PHY Physical Layer Bluetooth PΚ Peak

BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth PRBS BW Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density

CCK Complementary Code Keying QAM Quadrature Amplitude Modulation

Ch., CH QP Quasi-Peak

CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency Dynamic Frequency Selection DFS RMS Root Mean Square

DOPSK Differential OPSK RSS Radio Standards Specifications

DSSS Rx Direct Sequence Spread Spectrum Receiving EDR Enhanced Data Rate Spectrum Analyzer SA, S/A SG EIRP, e.i.r.p. Equivalent Isotropically Radiated Power Signal Generator

SVSWR **EMC** ElectroMagnetic Compatibility Site-Voltage Standing Wave Ratio

EMI ElectroMagnetic Interference TR Test Receiver European Norm TxTransmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth European Union Vertical

EUT Equipment Under Test WLAN Fac.

FCC Federal Communications Commission

FHSS Frequency Hopping Spread Spectrum

FM Frequency Modulation Freq. Frequency

FSK Frequency Shift Keying

GFSK Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System

GPS Global Positioning System

BR

ВТ

EN

Horizontal Hori. ICES

Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers

Intermediate Frequency ΙF

ILAC International Laboratory Accreditation Conference ISED Innovation, Science and Economic Development Canada

ISO International Organization for Standardization

IAB Japan Accreditation Board LAN Local Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

Page Issued date FCC ID : 13325695H-A-R1 : 4 of 22 : December 16, 2020

: T8VZKM013A-903

CONTENTS PAGE SECTION 1: Equipment under test (EUT)......5 **SECTION 2: SECTION 3:** Operation of EUT during testing.....9 **SECTION 4:** SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) Automatically deactivate......14 Test instruments _______18 **APPENDIX 2: APPENDIX 3:**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1 Page : 5 of 22

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

SECTION 1: Customer information

Company Name : ASAHI DENSO CO.,LTD.

Address : 6-2-1 Somejidai, Hamakita-ku, Hamamatsu, Shizuoka 434-0046, Japan

Telephone Number : +81-53-586-7383 Facsimile Number : +81-53-584-1589 Contact Person : Tomohiro Yaguchi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : SMART KEY Model Number : ZKM013A-903

Serial Number : Refer to SECTION 4.2

Rating : DC 3.0 V

Receipt Date : September 23, 2020

Country of Mass-production : Thailand

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: ZKM013A-903 (referred to as the EUT in this report) is a SMART KEY.

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 315 MHz
Modulation : FSK

Operating temperature range : -20 deg. C to +60 deg. C
Operating voltage range : DC 2.1 V to 3.3 V
Clock frequency (Maximum) : 9.84375 MHz

Radio Type : Receiver Frequency of Operation : 134.2 kHz *1)

*1) The test of receiver part was performed separately from this test report, and the conformability is confirmed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1 Page : 6 of 22

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on June 26, 2020 and effective July 27, 2020

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	·N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(a)(1) ISED: RSS-210 A1.1	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.12	FCC: Section 15.231(b) ISED: RSS-210 A1.2	9.0 dB 315.000 MHz Horizontal PK with Duty factor	Complied b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) ISED: RSS-210 A1.2 RSS-Gen 8.9	1.4 dB 630.000 MHz Horizontal PK with Duty factor	Complied# b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(c) ISED: Reference data	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Automatically deactivate)
- b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))
- c) Refer to APPENDIX 1 (data of -20 dB and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13325695H-A-R1 Page : 7 of 22

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks		
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated		
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422							

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Radiated emission	<u>U</u>		
Measurement distance	Frequency range		Uncertainty (+/-)
3 m	9 kHz to 30 M	Hz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GH	1 GHz to 6 GHz	
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz		5.5 dB
	26.5 GHz to 40 GHz		5.5 dB
10 m	1 GHz to 18 G	Hz	5.2 dB

Antenna Terminal test

THICCHIA TOTALIA TOSE	
Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1

Page : 8 of 22

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*A2LA\ Certificate\ Number:\ 5107.02\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1 Page : 9 of 22

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test Item*	Mode
Automatically Deactivate	1) Normal use mode *1)
Electric Field Strength of Fundamental Emission	2) Transmitting mode (Tx)
Electric Field Strength of Spurious Emission	
-20 dB & 99 % Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

* EUT was set by the software as follows;

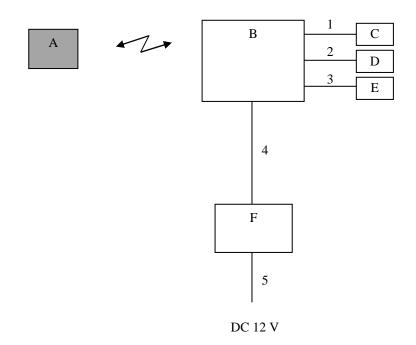
Software: ZKM006-811 Ver1.0 [Normal use mode]

ZKM006-813 Ver1.0 [Transmitting mode]

(Date: September 29, 2020, Storage location: EUT memory)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.


In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Once UHF transmission from Steering Lock operating.

Test report No. : 13325695H-A-R1
Page : 10 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

Desci	rescription of EOT and Support equipment					
No.	Item	Model number	Serial number	Manufacturer	Remarks	
A	SMART KEY	ZKM013A-903	00000004 *1)	ASAHI DENSO CO.,LTD.	EUT	
			00000003 *2)			
В	Control Unit	ZKM013-920	00000003	ASAHI DENSO CO.,LTD.	*1)	
	(including LF Antenna)					
С	LED	-	-	ASAHI DENSO CO.,LTD.	*1)	
D	Switch	-	-	ASAHI DENSO CO.,LTD.	*1)	
Е	Steering Lock	-	-	ASAHI DENSO CO.,LTD.	*1)	
F	Operation Jig			ASAHI DENSO CO.,LTD.	*1)	

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.2	Unshielded	Unshielded	*1)
2	Signal Cable	0.2	Unshielded	Unshielded	*1)
3	Signal Cable	0.2	Unshielded	Unshielded	*1)
4	DC and Signal Cable	0.5	Unshielded	Unshielded	*1)
5	DC Cable	0.2	Unshielded	Unshielded	*1)

^{*1)} Used for Normal use mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for Transmitting mode

Test report No. : 13325695H-A-R1
Page : 11 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

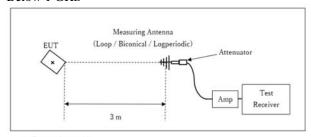
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

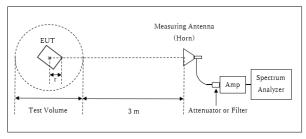
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1
Page : 12 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903

[Test Setup]


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz - 10 GHz

- Test Volume: 2.0 m
- (Test Volume has been calibrated based on CISPR 16-1-4.)

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 4.0 m

r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inside or outside. The worst case was confirmed with inside and outside mechanical key, as a result, the test outside mechanical key was the worst case. Therefore, the test outside mechanical key was performed only.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz - 3.2 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1
Page : 13 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used			
20 dB Bandwidth	200 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer			
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer			
Peak hold was appli	Peak hold was applied as Worst-case measurement									

Test data : APPENDIX

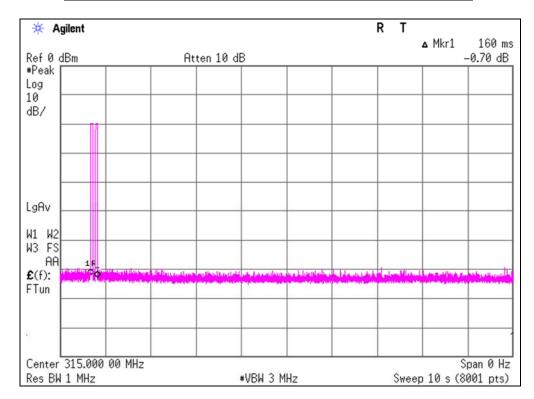
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1
Page : 14 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903

APPENDIX 1: Test data


Automatically deactivate

Report No. 13325695H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date September 29, 2020
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Akihiko Maeda
Mode Mode 1

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.160	5.00	Pass

^{*} The test was performed with Steering Lock operating since the EUT only transmits UHF when LF signal is received from a vehicle.

Please refer to the "Theory of Operation" for details.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1
Page : 15 of 22

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13325695H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date September 29, 2020
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Akihiko Maeda
Mode Mode 2

QP or PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Margin		Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
315.000	PK	74.6	70.6	13.9	9.8	31.8	-	66.6	62.6	95.6	29.0	33.0	Carrier
630.000	PK	55.2	54.4	19.5	11.6	32.0	-	54.2	53.4	75.6	21.4	22.2	Outside
945.000	PK	44.5	45.3	21.8	13.0	30.9	-	48.5	49.3	75.6	27.1	26.3	Outside
1260.000	PK	46.8	38.9	25.3	6.1	34.0	-	44.2	36.3	75.6	31.5	39.4	Outside
1575.000	PK	51.0	51.5	25.0	5.5	33.2	-	48.3	48.8	73.9	25.6	25.1	Inside
1890.000	PK	49.9	50.0	25.5	5.5	32.3	-	48.5	48.6	75.6	27.1	27.0	Outside
2205.000	PK	47.9	46.4	28.2	5.6	32.0	-	49.7	48.2	73.9	24.2	25.7	Inside
2520.000	PK	46.3	45.0	27.7	5.7	31.8	-	47.8	46.5	75.6	27.8	29.1	Outside
2835.000	PK	47.0	45.8	28.5	5.8	31.7	-	49.6	48.4	73.9	24.3	25.5	Inside
3150.000	PK	44.7	42.9	28.8	5.9	31.6	-	47.8	46.0	75.6	27.8	29.6	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dBuV]		Factor			Factor	[dBuV/m]			[dB]		
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
315.000	PK	74.6	70.6	13.9	9.8	31.8	0.0	66.6	62.6	75.6	9.0	13.0	Carrier
630.000	PK	55.2	54.4	19.5	11.6	32.0	0.0	54.2	53.4	55.6	1.4	2.2	Outside
945.000	PK	44.5	45.3	21.8	13.0	30.9	0.0	48.5	49.3	55.6	7.1	6.3	Outside
1260.000	PK	46.8	38.9	25.3	6.1	34.0	0.0	44.2	36.3	55.6	11.5	19.4	Outside
1575.000	PK	51.0	51.5	25.0	5.5	33.2	0.0	48.3	48.8	53.9	5.6	5.1	Inside
1890.000	PK	49.9	50.0	25.5	5.5	32.3	0.0	48.5	48.6	55.6	7.1	7.0	Outside
2205.000	PK	47.9	46.4	28.2	5.6	32.0	0.0	49.7	48.2	53.9	4.2	5.7	Inside
2520.000	PK	46.3	45.0	27.7	5.7	31.8	0.0	47.8	46.5	55.6	7.8	9.1	Outside
2835.000	PK	47.0	45.8	28.5	5.8	31.7	0.0	49.6	48.4	53.9	4.3	5.5	Inside
3150.000	PK	44.7	42.9	28.8	5.9	31.6	0.0	47.8	46.0	55.6	7.8	9.6	Outside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (4.0 \text{ m/} 3.0 \text{ m}) = 2.50 \text{ dB}$

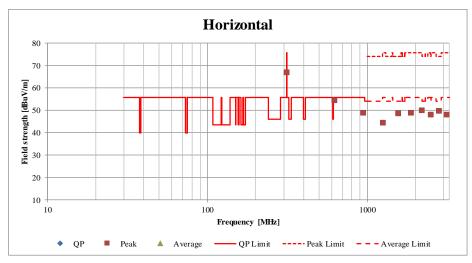
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

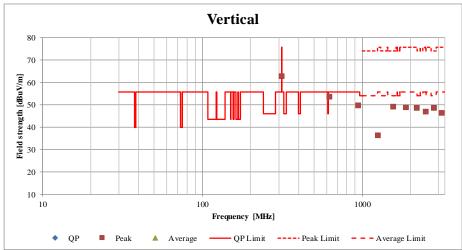
Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 13325695H-A-R1
Page : 16 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903


Radiated Spurious Emission (Plot data, Worst case)

Report No. 13325695H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date September 29, 2020
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Akihiko Maeda
Mode Mode 2

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

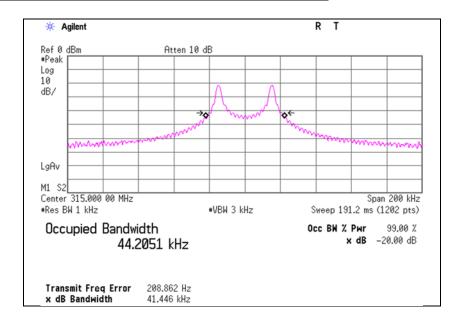
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1
Page : 17 of 22
Issued date : December 16, 2020
FCC ID : T8VZKM013A-903

-20 dB and 99% Occupied Bandwidth

Report No. 13325695H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4


Date September 29, 2020
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Akihiko Maeda
Mode Mode 2

Bandwidth Limit: Fundamental Frequency 315.00 MHz x 0.25% = 787.50 kHz

st The above limit was calculated from more stringent nominal frequency.

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
41.446	787.50	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
44.2051	787.50	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325695H-A-R1
Page : 18 of 22
Issued date : December 16, 2020

Issued date : December 16, 2020 FCC ID : T8VZKM013A-903

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/07/2020	12
RE	MMM-10	141545	DIGITAL HITESTER	Hioki	3805	51201148	01/06/2020	12
RE	MJM-26	142227	Measure	KOMELON	KMC-36	-	-	-
	COTS-ME MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/04/2019	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/05/2020	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	VHA 91031302	08/31/2020	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	03/24/2020	12
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	09/02/2020	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2020	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	05/22/2020	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	650	10/16/2019	12
RE	MCC-246	199563	Microwave Cable	HUBER+SUNER		537061/126E / 537072/126E	06/11/2020	12
RE	MHF-27	141297	High Pass Filter (1.1-10GHz)	ТОКҮО КЕІКІ	TF219CD1	1001	01/09/2020	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	03/10/2020	12
RE	MSA-03	141884	1	Keysight Technologies Inc	E4448A	MY44020357	03/04/2020	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN