

Test report No. : 13325697H-A-R1 Page : 1 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

RADIO TEST REPORT

Test Report No.: 13325697H-A-R1

Applicant : ASAHI DENSO CO., LTD.

Type of EUT : IGNITION SW

Model Number of EUT : ZKM013A

FCC ID : T8VZKM013A

Test regulation : FCC Part 15 Subpart C: 2020

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13325697H-A. 13325697H-A is replaced with this report.

September 2, 2020

Representative test engineer:

Date of test:

Junki Nagatomi Engineer

Consumer Technology Division

Approved by:

Shinichi Miyazono Engineer

Consumer Technology Division

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325697H-A-R1 Page : 2 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

REVISION HISTORY

Original Test Report No.: 13325697H-A

Revision	Test report No.	Date	Page	Contents
			revised	
-	13325697H-A	September 29,	-	-
(Original)		2020		
1	13325697H-A-R1	December 17,	P.5	Correction of the Radio specification description
		2020		in Clause 2.2
1	13325697H-A-R1	December 17,	P. 9	Correction of the Cable No.1 length in Clause 4.2;
		2020		from 0.25 to 0.5

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

Reference: Abbreviations (Including words undescribed in this report)

MCS A2LA The American Association for Laboratory Accreditation Modulation and Coding Scheme AC Alternating Current MRA Mutual Recognition Arrangement AFH Adaptive Frequency Hopping N/A Not Applicable

Amplitude Modulation NIST National Institute of Standards and Technology AM

Amp, AMP Amplifier NS No signal detect. ANSI American National Standards Institute NSA Normalized Site Attenuation

Ant, ANT Antenna **NVLAP** National Voluntary Laboratory Accreditation Program

AP Access Point OBW Occupied Band Width

ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing

Atten., ATT Attenuator P/M Power meter ΑV PCB Printed Circuit Board Average **BPSK** Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer вт Bluetooth PK Peak

BT LE Bluetooth Low Energy PNPseudo random Noise BandWidth BW PRBS Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density

CCK Complementary Code Keying QAM Quadrature Amplitude Modulation

Ch., CH QP Quasi-Peak

CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Radio Frequency Distance factor Dynamic Frequency Selection RMS Root Mean Square

DFS DOPSK Differential OPSK RSS Radio Standards Specifications

DSSS Receiving Direct Sequence Spread Spectrum Rx**EDR** Enhanced Data Rate SA, S/A Spectrum Analyzer

Equivalent Isotropically Radiated Power EIRP, e.i.r.p. SG Signal Generator SVSWR Site-Voltage Standing Wave Ratio **EMC** ElectroMagnetic Compatibility

Vert.

EMI ElectroMagnetic Interference TR Test Receiver

ΕN European Norm Tx Transmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth EU European Union Vertical

Equipment Under Test EUT WLAN Wireless LAN

Federal Communications Commission

FHSS Frequency Hopping Spread Spectrum

Frequency Modulation

Frequency Shift Keying

GFSK Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System

GPS Global Positioning System

Frequency

Horizontal Hori.

Freq.

ICES Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers

ΙF Intermediate Frequency

ILAC International Laboratory Accreditation Conference ISED Innovation, Science and Economic Development Canada

ISO International Organization for Standardization

IAB Japan Accreditation Board LAN Local Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

Test report No. Page

: 13325697H-A-R1 : 4 of 20

Issued date FCC ID

: December 17, 2020

: T8VZKM013A

PAGE CONTENTS SECTION 4: Operation of EUT during testing......9 Radiated Emission below 30 MHz (Fundamental and Spurious Emission)14 Radiated Emission above 30 MHz (Spurious Emission)......15 -26 dB Bandwidth and 99 % Occupied Bandwidth17

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

Test report No. : 13325697H-A-R1 Page : 5 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

SECTION 1: Customer information

Company Name : ASAHI DENSO CO., LTD.

Address : 6-2-1 Somejidai, Hamakita-ku, Hamamatsu, Shizuoka 434-0046, Japan

Telephone Number : +81-53-586-7383 Facsimile Number : +81-53-584-1589 Contact Person : Tomohiro Yaguchi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : IGNITION SW Model Number : ZKM013A

Serial Number : Refer to SECTION 4.2

Rating : DC 12.0 V Receipt Date : August 18, 2020

Country of Mass-production : Thailand

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model No: ZKM013A (referred to as the EUT in this report), is the IGNITION SW.

Radio Specification

[Transmitter part]

Radio Type : Transmitter
Frequency of Operation : 134.2 kHz
Modulation : ASK

Antenna type : Coil Antenna Clock frequency (Maximum) : 4 MHz

[Receiver part]

Radio Type : Receiver

Type of Receiver : Super Heterodyne

Receiving Frequency : 315 MHz
Oscillator Frequency : 21.948717 MHz
Local Oscillator Frequency : 1st: 304.3 MHz
2nd: 10.97 MHz

2nd: 10.97 MHz 1st: 10.7 MHz

2nd: 274 kHz Antenna Type : Pattern Antenna

:

UL Japan, Inc. Ise EMC Lab.

Intermediate Frequency

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 20
Issued date : December

Issued date : December 17, 2020 FCC ID : T8VZKM013A

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on June 26, 2020 and effective July 27, 2020

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
Conducted Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 8.8</ised></fcc>	<fcc> Section 15.207 <ised> RSS-Gen 8.8</ised></fcc>	-	N/A	N/A	N/A *1)
Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 6.5, 6.12</ised></fcc>	<fcc> Section 15.209 <ised> RSS-210 7.2 RSS-Gen 8.9</ised></fcc>	Radiated	N/A	19.5 dB 134.2 kHz, 0 deg. Peak with Duty factor	Complied a)
Electric Field Strength of Spurious Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 6.5, 6.6, 6.13</ised></fcc>	<fcc> Section 15.209 <ised> RSS-210 7.3 RSS-Gen 8.9</ised></fcc>	Radiated	N/A	21.4 dB 700.000 MHz, Vertical, QP	Complied a)
-26 dB Bandwidth	<fcc> ANSI C63.10:2013 6 Standard test methods <ised></ised></fcc>	<fcc> Reference data <ised> -</ised></fcc>	Radiated	N/A	N/A	Complied b)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

b) Refer to APPENDIX 1 (data of -26 dB Bandwidth and 99 % Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage.

Instead of a new battery, DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

a) Refer to APPENDIX 1 (data of Radiated emission)

Page : 7 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
99 % Occupied Band Width	RSS-Gen 6.7	-	Radiated	N/A	N/A	-
Note: UL Japan, Inc.'s EMI Wo	rk Procedures No. 13-	-EM-W0420 and 13-E	EM-W0422.			

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Radiated emission

Kaulateu elilissio	<u>u</u>		
Measurement distance	Frequency ra	Uncertainty (+/-)	
3 m	9 kHz to 30 M	ИHz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz		4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5	5.5 dB	
	26.5 GHz to 40	GHz	5.5 dB
10 m	1 GHz to 18 C	GHz	5.2 dB

Antenna Terminal test

	Test Item	Uncertainty (+/-)
ſ	-26 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*A2LA\ Certificate\ Number:\ 5107.02\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

	Width v Donth v			Maximum	
Test site	Width x Depth x	Size of reference ground plane (m)	Other rooms	measuremen	
	Height (m)	/ horizontal conducting plane		t distance	
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m	
chamber	17.2 X 11.2 X 7.7	7.0 X 0.0	source room	10 111	
No.2 semi-anechoic	7.5 x 5.8 x 5.2	4.0 x 4.0		3 m	
chamber	7.5 X 5.0 X 5.2	7.0 A 7.0		3 III	
No.3 semi-anechoic	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation	3 m	
chamber		0.0 X 3.73	room	3 III	
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-	
No.4 semi-anechoic	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation	3 m	
chamber	12.0 X 0.3 X 3.7	0.0 X 3.73	room	3 III	
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-	
No.5 semi-anechoic	6.0 x 6.0 x 3.9	6.0 x 6.0		_	
chamber	0.0 A 0.0 A 3.7	0.0 A 0.0			
No.5 measurement	6.4 x 6.4 x 3.0	6.4 x 6.4		_	
room					
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-	
No.6 measurement	4.75 x 5.4 x 3.0	4.75 x 4.15			
room		1170 12 1120			
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-	
No.8 measurement	3.1 x 5.0 x 2.7	3.1 x 5.0	_	_	
room	3.1 X 3.0 X 2.7	3.1 X 3.0			
No.9 measurement	8.8 x 4.6 x 2.8	2.4 x 2.4			
room	0.0 A 4.0 A 2.0	2.4 A 2.4			
No.11 measurement	6.2 x 4.7 x 3.0	4.8 x 4.6		_	
room	0.2 A 4.7 A 3.0	T.O A T.O			

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2,

No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

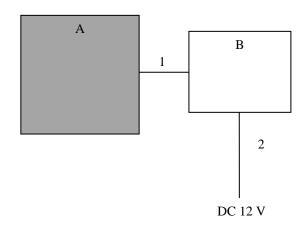
Test report No. : 13325697H-A-R1 Page : 9 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

SECTION 4: Operation of EUT during testing

4.1 Operating Modes

Test mode		Remarks			
1) Transmit	ting mode	134.2 kHz			
*EUT was set by the software as follows;					
Software:	Software: ZKM010-811 Ver1.0				
	(Date: September 2, 2020, Storage location: EUT memory)				


*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification : The system was configured in typical fashion (as a user would normally use it) for testing.

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	IGNITION SW	ZKM013A	00000002	ASAHI DENSO CO., LTD.	EUT
В	jig	-	-	ASAHI DENSO CO., LTD.	-

List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC and Signal Cable	0.5	Unshielded	Unshielded	-
2	DC Cable	2.2	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325697H-A-R1
Page : 10 of 20
Issued date : December 17, 2020
FCC ID : T8VZKM013A

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg. And 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW / VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	From 9 kHz	From 90 kHz	From 150 kHz	From 490 kHz	From 30 MHz	Abo	ove
	to 90 kHz	to 110 kHz	to 490 kHz	to 30 MHz	to 1 GHz	1 G	Hz
	and						
	From 110 kHz						
	to 150 kHz						
Instrument used			Test Receiver			Spectrum	Analyzer
Detector	PK / AV	QP	PK / AV	QP	QP	PK	AV
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz	RBW: 1 MHz	RBW: 1 MHz
						VBW: 3 MHz	VBW: 10 Hz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m	3 m	3 m

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

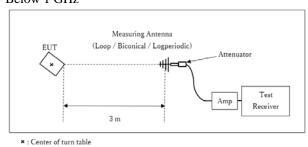
Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane.

However test results were confirmed to pass against standard limit.

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

UL Japan, Inc. Ise EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Test report No. : 13325697H-A-R1 Page : 11 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

[Test Setup] Below 1 GHz

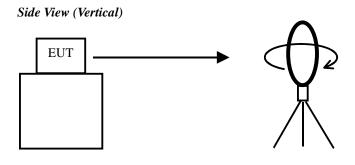
Test Distance: 3 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 1 GHz Test data : APPENDIX 1

Test result : Pass


Date: September 2, 2020 Test engineer: Junki Nagatomi

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325697H-A-R1
Page : 12 of 20
Issued date : December 17, 2020

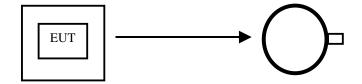
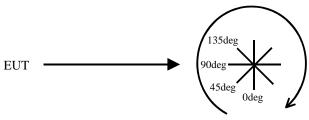

FCC ID : T8VZKM013A

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13 of 20 **Issued date** : December 17, 2020 FCC ID : T8VZKM013A

SECTION 6: -26 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26 dB Bandwidth	100 kHz	390 Hz	1.2 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX 1

Test result : Pass

SECTION 7: 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used			
99 % Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak *1)	Max Hold	Spectrum Analyzer			
Bandwidth	emission skirts	of OBW	of RBW			*1)				
*1) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %.										
	11 1 777			• •						

Peak hold was applied as Worst-case measurement.

Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

 Page
 : 14 of 20

 Issued date
 : December 17, 2020

 FCC ID
 : T8VZKM013A

APPENDIX 1: Test data

Radiated Emission below 30 MHz (Fundamental and Spurious Emission)

Report No. 13325697H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date September 2, 2020 Temperature / Humidity 22 deg. C / 62 % RH Engineer Junki Nagatomi

Mode Tx

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	82.5	19.4	-64.2	32.3	-	5.5	45.0	39.5	Fundamental
0deg	0.26840	PK	43.0	19.5	-64.2	32.3	1	-34.1	39.0	73.1	
0deg	0.40260	PK	49.8	19.5	-64.3	32.3	-	-27.3	35.5	62.8	
0deg	0.53680	QP	23.6	19.4	-24.3	32.2	-	-13.5	33.0	46.5	
0deg	0.67100	QP	40.1	19.4	-24.3	32.2	-	3.0	31.1	28.1	
0deg	0.80520	QP	25.3	19.5	-24.3	32.2	1	-11.7	29.5	41.2	
0deg	0.93940	QP	40.3	19.4	-24.3	32.2	1	3.3	28.1	24.8	
0deg	1.07360	QP	25.0	19.5	-24.3	32.2	1	-12.0	26.9	38.9	
0deg	1.20780	QP	34.8	19.5	-24.2	32.2	-	-2.2	25.9	28.1	
0deg	1.34200	QP	23.0	19.5	-24.2	32.2	-	-14.0	25.0	39.0	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	82.5	19.4	-64.2	32.3	0.0	5.5	25.0	19.5	
0deg	0.26840	PK	43.0	19.5	-64.2	32.3	0.0	-34.1	19.0	53.1	
0deg	0.40260	PK	49.8	19.5	-64.3	32.3	0.0	-27.3	15.5	42.8	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3m without Distance factor

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	82.5	19.4	15.9	32.3	-	85.5	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Page : 15 of 20 Issued date : December 17, 2020 FCC ID : T8VZKM013A

Radiated Emission above 30 MHz (Spurious Emission)

Report No. 13325697H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date September 2, 2020 Temperature / Humidity 22 deg. C / 62 % RH Engineer Junki Nagatomi

Mode Tx

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	40.000	QP	21.9	14.8	7.3	28.6	15.4	40.0	24.6	
Hori.	80.000	QP	22.1	7.0	7.9	28.6	8.5	40.0	31.5	
Hori.	100.000	QP	21.7	10.1	8.2	28.5	11.4	43.5	32.1	
Hori.	300.000	QP	21.4	13.5	10.1	27.8	17.2	46.0	28.9	
Hori.	500.000	QP	21.5	17.7	11.4	29.2	21.4	46.0	24.6	
Hori.	700.000	QP	21.6	19.6	12.6	29.3	24.5	46.0	21.5	
Vert.	40.000	QP	21.9	14.8	7.3	28.6	15.4	40.0	24.6	
Vert.	80.000	QP	22.1	7.0	7.9	28.6	8.5	40.0	31.5	
Vert.	100.000	QP	21.7	10.1	8.2	28.5	11.4	43.5	32.1	
Vert.	300.000	QP	21.4	13.5	10.1	27.8	17.2	46.0	28.9	
Vert.	500.000	QP	21.5	17.7	11.4	29.2	21.4	46.0	24.6	
Vert.	700.000	QP	21.7	19.6	12.6	29.3	24.6	46.0	21.4	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator) - Gain(Amplifier)$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

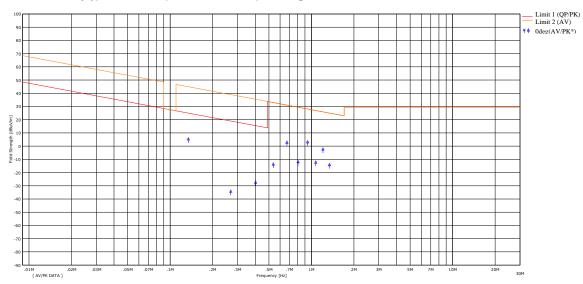
^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 13325697H-A-R1 Page : 16 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

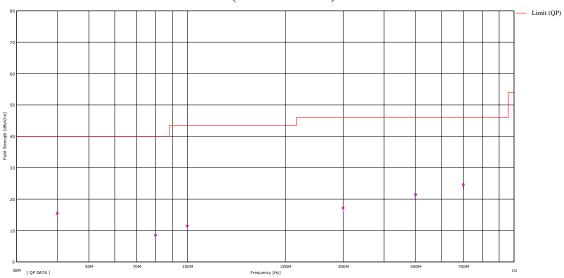
Radiated Emission Plot data, Worst case

Report No. 13325697H Test place Ise EMC Lab.


Semi Anechoic Chamber No.3

September 2, 2020 22 deg. C / 62 % RH Temperature / Humidity Engineer Junki Nagatomi

Mode


(below 30MHz)

FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

* Data above 490 kHz were measured using a QP detector.

(above 30MHz)

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

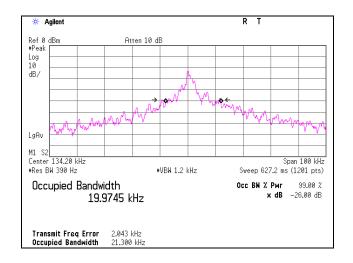
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325697H-A-R1
Page : 17 of 20

Issued date : December 17, 2020 FCC ID : T8VZKM013A

-26 dB Bandwidth and 99 % Occupied Bandwidth


Report No. 13325697H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date September 2, 2020
Temperature / Humidity 22 deg. C / 62 % RH
Engineer Junki Nagatomi

Mode Tx

-26 dB Bandwidth	99 % Occupied Bandwidth				
[kHz]	[kHz]				
21.300	19.9745				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13325697H-A-R1 Page : 18 of 20

 Page
 : 18 of 20

 Issued date
 : December 17, 2020

 FCC ID
 : T8VZKM013A

APPENDIX 2: Test instruments

Test equipment

Test Item		LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/07/2020	12
RE	MMM-08	141532	DIGITAL HITESTER	Hioki	3805	51201197	01/06/2020	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	_
	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAT-95	142314	Attenuator	Pasternack	PE7390-6	D/C 1504	06/17/2020	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	1915	08/13/2020	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MLA-22	141266	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-191	08/13/2020	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/10/2020	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/18/2020	12
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/21/2019	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	11/25/2019	12
RE	MCC-112	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/ RFM-E321(SW)	-/00640	07/06/2020	12
RE	MCC-219	159670	Coaxial Cable	UL Japan Inc.	-	-	11/28/2019	12
RE	MHF-24	141295	High Pass Filter 0.15- 30MHz	Rohde & Schwarz	EZ-25/3	100041	02/04/2020	12
RE	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/07/2019	12
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/10/2020	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Spurious emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN