FCC Part 15C

Measurement And Test Report For

DIT DIGITAL CO., LTD.

Unit 2514, Yuecai Bldg. No. 188 Jing Shan Rd, Zhuhai, China

Model: N7405JV

May 03, 2012

This Report Concerns:	Equipment Type: IP Camera
Report Number:	MTI120425001RF
Test Engineer:	Bill Chen Jason Zheng Jason Zheng
Reviewed By:	Jason Zheng Jason Zheng
Approved & Authorized By:	Hebe Lee Hebe Lee
Test Date:	Apr 26- May 03,2012
Prepared By:	MTI Technology Laboratory Ltd. 10F, Yinxing Business Hotel, Xixiang Road, Bao'an District, Shenzhen, P,R.China. Tel: +86-755-8885 0135 Fax: +86-755-8885 0136

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of MTI Technology Laboratory Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 RELATED SUBMITTAL(S) / GRANT (S)	
1.3 TEST METHODOLOGY	
1.4 Test Facility	5
2. SYSTEM TEST CONFIGURATION	6
2.1 EUT Configuration.	6
2.2 EUT EXERCISE	6
2.3 GENERAL TEST PROCEDURES	
2.4 LIST OF MEASURING EQUIPMENTS USED	7
3. SUMMARY OF TEST RESULTS	8
4. ANTENNA REQUIREMENT	
4.1 STANDARD APPLICABLE	
4.2 Antenna Connected Construction	9
5. CONDUCTED EMISSION MEASUREMENT	
5.1 LIMITS OF CONDUCTED EMISSION	
5.2 Test Setup Diagram	
5.3 Instrument Setting	
5.4 TEST EQUIPMENT LIST AND DETAILS	
5.5 TEST PROCEDURE	
6. 6DB BANDWIDTH MEASUREMENT	
6.1 LIMITS OF 6DB BANDWIDTH MEASUREMENT	
6.3 TEST EQUIPMENT LIST AND DETAILS	
6.4 Test Procedure	
6.5 Test Result	
7. MAXIMUM PEAK OUTPUT POWER	
7.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	
7.2 EUT SETUP	
7.3 TEST EQUIPMENT LIST AND DETAILS	
7.4 Test Procedure	18
7.5 Test Result	19
8. POWER SPECTRAL DENSITY MEASUREMENT	23
8.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	23
8.2 EUT SETUP	
8.3 TEST EQUIPMENT LIST AND DETAILS	
8.4 TEST PROCEDURE	
8.5 Test Result	-
HIGH CHANNEL	27
9. BAND EDGES MEASUREMENT	
9.1 LIMITS OF BAND EDGES MEASUREMENT	
9.2 TEST EQUIPMENT LIST AND DETAILS	
9.3 TEST PROCEDURE	
10. RADIATED EMISSION MEASUREMENT	
10.1 LIMITS OF RADIATED EMISSION MEASUREMENT	
10.2 EUT SETUP	
TO.O TEST EQUIFIVENTED FAND DETAILS	აა

10.4 Test Procedure	34
10 5 Test Result	3/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Applicant: DIT DIGITAL CO., LTD.

Address of applicant: Unit 2514, Yuecai Bldg. No. 188 Jing Shan Rd,

Zhuhai, China

Manufacturer: DIT DIGITAL CO., LTD.

Address of manufacturer: Unit 2514, Yuecai Bldg. No. 188 Jing Shan Rd,

Zhuhai, China

Equipment Under Test: IP Camera
Tested Model No.: N7405JV

Trade Name: KARE

FCC ID: T8N7405JV

Type of Modulation: CCK, OFDM

Frequency Band: 2412~2462 MHz for 802.11b/g

Number of Channels: 11 for 802.11b/g

Channel Separation: 5MHz

EIRP Power: 16.13 dBm

Power Supply: 120V/60Hz

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Related Submittal(s) / Grant (s)

This submittal(s) is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, and 15.247 rules.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 Test Facility

All measurement required was performed at laboratory of NTEK Testing Technology Co., Ltd., at 1/F, Building E, Fenda Science Park Sanwei Community, Xixiang Street, Baoan District, Shenzhen, Guangdong

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 238937

NTEK Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 238937.

Report No.: MTI1210425001RF

Page 5 of 40

2. SYSTEM TEST CONFIGURATION

The tests documented in this report were performed in accordance with ANSI C63.4-2003 and FCC CFR 47 Part 15 Subpart C.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

Report No.: MTI1210425001RF

2.4 List of Measuring Equipments Used

Items	Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Calibration Period
			•			
1	EMI Test Receiver	ROHDE & SCHWARZ	ESI 26	100079	2011/11/18	1 year
2	Horn Antenna	R/S	CH14- H052	1091698	2011/11/18	1 year
3	3m Semi- Anechoic Chamber	ETS	N/A	N/A	2011/11/18	1 year
			•			
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCS30	100038	2011/11/18	1 year
2	EMI Test Receiver	ROHDE & SCHWARZ	ESI 26	100009	2011/11/18	1 year
3	Receiver/ Spectrum Analyzer	ROHDE & SCHWARZ	ESCI	100106	2011/11/18	1 year
4	Spectrum Analyzer	Agilent	E7405A	US41160415	2011/11/18	1 year
5	Artificial Mains	ROHDE & SCHWARZ	ESH2-Z5	100028	2011/11/18	1 year
6	Pulse Limiter	ROHDE & SCHWARZ	ESHSZ2	100044	2011/11/18	1 year
7	LISN	COM Power	LI-200	12212	2011/11/18	1 year
8	LISN	COM Power	LI-200	12019	2011/11/18	1 year
9	3m/5m Semi- Anechoic Chamber	ETS	N/A	N/A	2011/11/18	1 year
10	Ultra-Broadband Antenna	R/S	HL562	100015	2011/11/18	1 year
11	Horn Antenna	R/S	HF906	100039	2011/11/18	1 year
12	RF Test Panel	R/S	TS / RSP	335015/ 0017	N/A	N/A
13	Turntable	ETS	2088	2149	N/A	N/A
14	Antenna Mast	ETS	2075	2346	N/A	N/A

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
15.203/15.247(b)/(c)	Antenna Requirement	Pass
15.207	AC Power Line Conducted Emission	Pass
15.247(a)(2)	Spectrum Bandwidth of a Direct Sequence Spread Spectrum System	Pass
15.247(e)	Power Spectral Density	Pass
15.247(b)(1)	Maximum Peak Output Power	Pass
15.247(d)	Band Edges Emission	Pass
15.247(d)	Radiated Emission	Pass

Report No.: MTI1210425001RF Page 8 of 40

4. ANTENNA REQUIREMENT

4.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

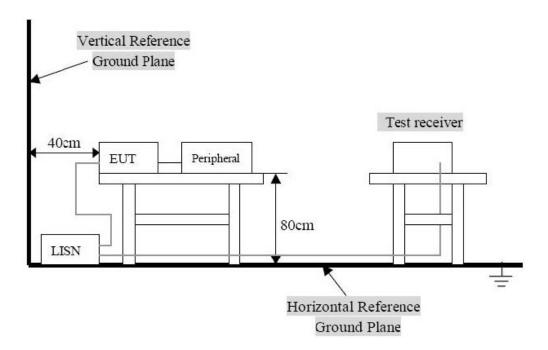
If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

4.2 Antenna Connected Construction

The antennas used in this product are PIFA. PIFA antenna with WNC connector, The maximum Gain of the antenna is 2.50dBi.

Report No.: MTI1210425001RF Page 9 of 40


5. CONDUCTED EMISSION Measurement

5.1 Limits of Conducted Emission

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits (d	BuV)
i requested realige (iiii 2)	Quasi-Peak	Average
0.150~0.500	66~56	56∼46
0.500~5.000	56	46
5.000~30.00	60	50

5.2 Test Setup Diagram

5.3 Instrument Setting

The test receiver was set with the following configurations:

Test Receiver Setting:

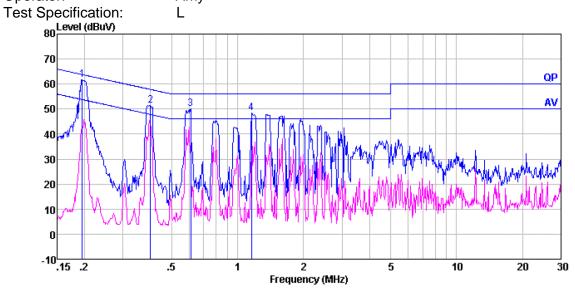
Report No.: MTI1210425001RF Page 10 of 40

5.4 Test Equipment List and Details

See section 2.4 of this report.

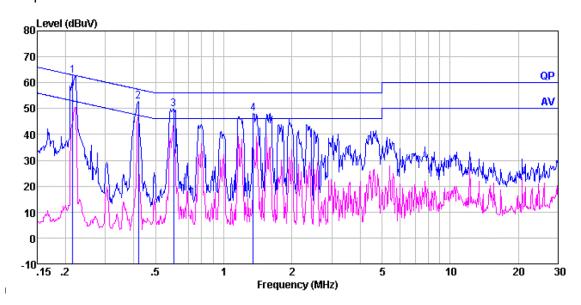
5.5 Test Procedure

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISN. The LISN should provide 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.


5.6 Test Result

Detailed information please refers to the following page.

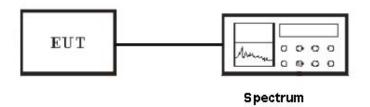
According to the data in this section, the EUT complied with the FCC 15.207 Conducted margin for a Class B device, with the worst margin reading of:


-0.26 dBµV at 0.215 MHz in the Neutral mode, peak detector, 0.15-30MHz

EUT: IP Camera M/N: N7405JV Operator: Amy

	Freq		LISN Factor				Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4	0.400 0.611	61.13 50.80 49.57 47.74	0.58 0.53	0.10 0.10	51.48 50.20	63.80 57.86 56.00 56.00	-6.38 -5.80	Peak Peak

EUT: IP Camera M/N: N7405JV Operator: Amy Test Specification: N


	Freq		LISN Factor					Remark
_	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4	0.419 0.601	62.00 51.97 49.23 47.55		0.10 0.10	52.64 49.86	57.46 56.00	-4.82 -6.14	Peak Peak

6. 6dB Bandwidth Measurement

6.1 Limits of 6dB Bandwidth Measurement

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2 EUT Setup

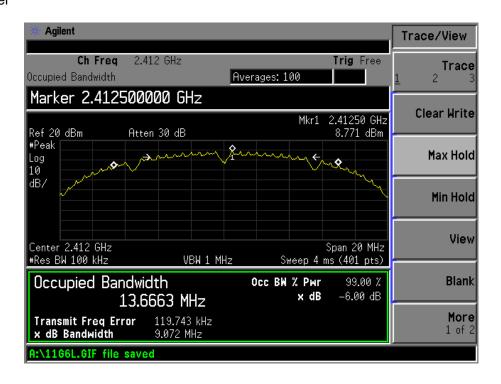
6.3 Test Equipment List and Details

See section 2.4.

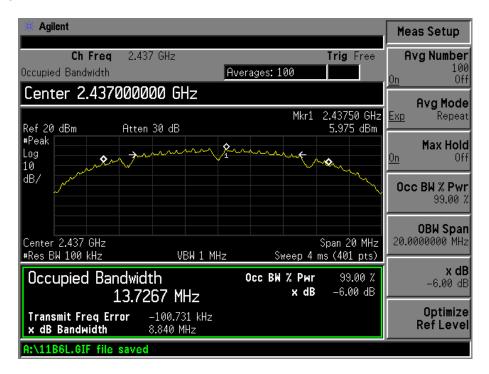
6.4 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. The spectrum analyzer as RBW=100 KHz (1 % of Bandwidth.), Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.

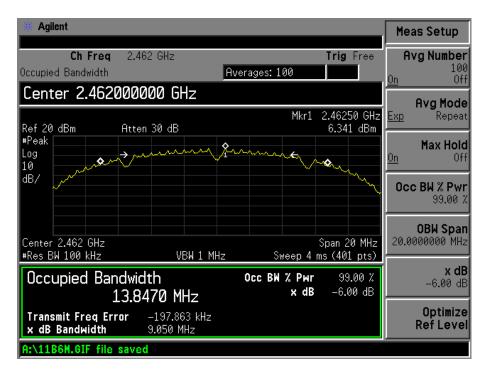
6.5 Test Result

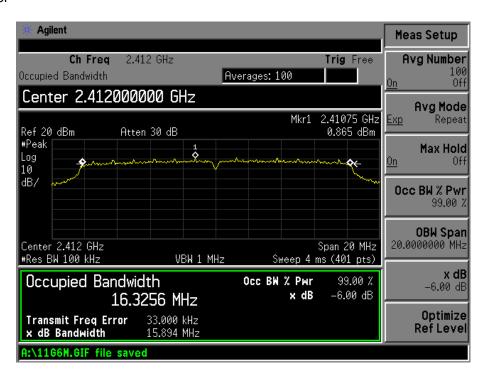

PASS

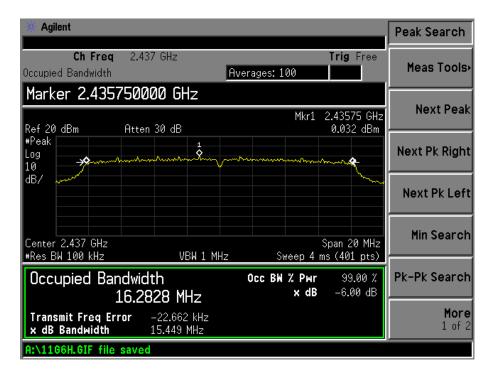
Detailed information, Please refer to the following pages.

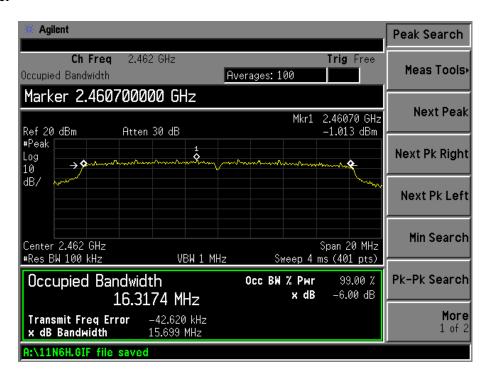

Test mode	Frequency MHz	6 dB Bandwidth kHz	Limit kHz
	2412	9072	500
802.11b	2437	8840	500
	2462	9050	500
	2412	15894	500
802.11g	2437	15449	500
	2462	15699	500

Report No.: MTI1210425001RF Page 14 of 40


For 802.11b Low Channel

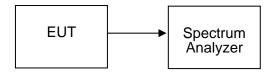

Middle Channel


High Channel


For 802.11g Low Channel

Middle Channel

High Channel



7. Maximum Peak Output Power

7.1 Limits of Maximum Peak Output Power Measurement

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.4.

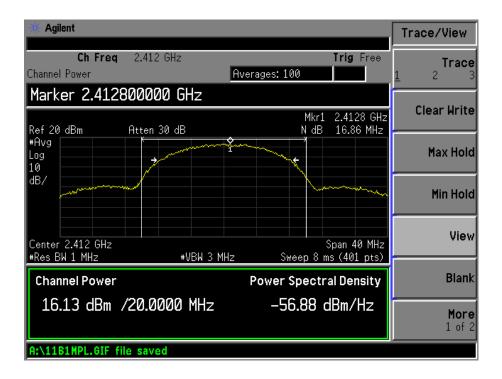
7.4 Test Procedure

According to section 15.247(b)-power output of the KDB-558074 (2005), the method #1 of the power output option2 was used, the following is the measurement procedure.

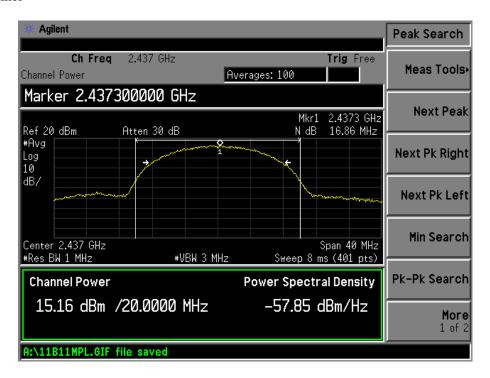
- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz, Set VBW \geq 3 MHz.
- 3. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.
- 4. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".
- 5. Trace average 100 traces in power averaging mode.
- 6. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.

7.5 Test Result

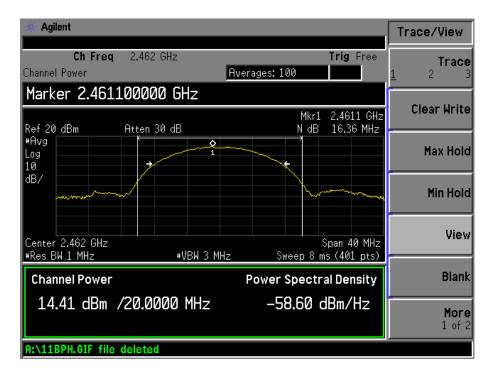
PASS

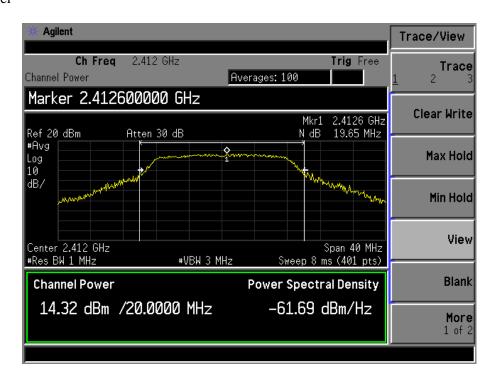

802.11b:

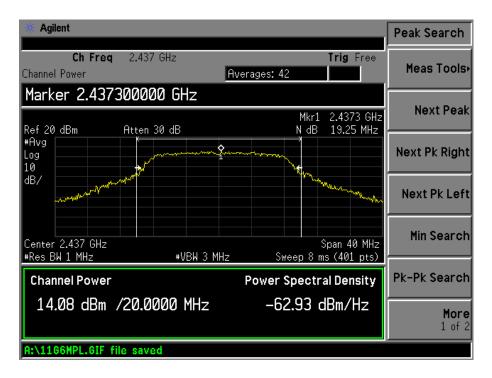
Channel No.	Frequency (MHz)	PEAK POWEROUTPUT (dBm)	PEAK POWEROUTPUT (W)	PEAK POWER LIMIT (W)	PASS/FAIL
LOW	2412	16.13	0.0410	1	PASS
Mid	2437	15.16	0.0328	1	PASS
High	2462	14.41	0.0276	1	PASS

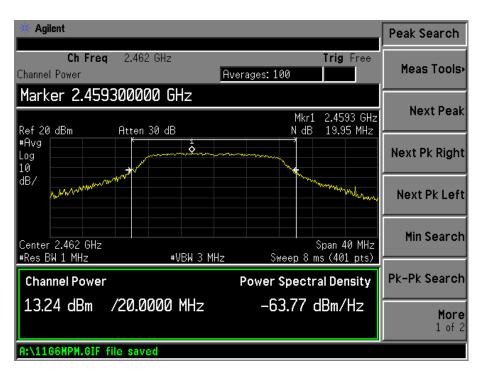

802.11g:

Channel No.	Frequency (MHz)	PEAK POWEROUTPUT (dBm)	PEAK POWEROUTPUT (W)	PEAK POWER LIMIT (W)	PASS/FAIL
LOW	2412	14.32	0.0270	1	PASS
Mid	2437	14.08	0.0256	1	PASS
High	2462	13.24	0.0211	1	PASS


For 802.11b Low Channel

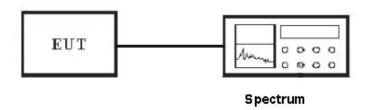

Middle Channel


High Channel


For 802.11g Low Channel

Middle Channel

High Channel



8. Power Spectral Density Measurement

8.1 Limits of Power Spectral Density Measurement

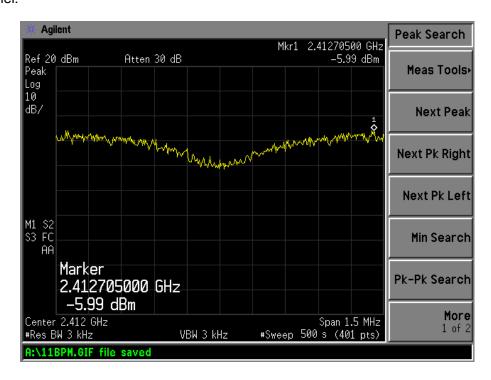
According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.2 EUT Setup

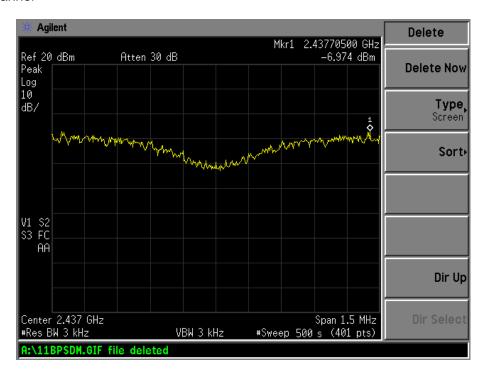
8.3 Test Equipment List and Details

See section 2.4.

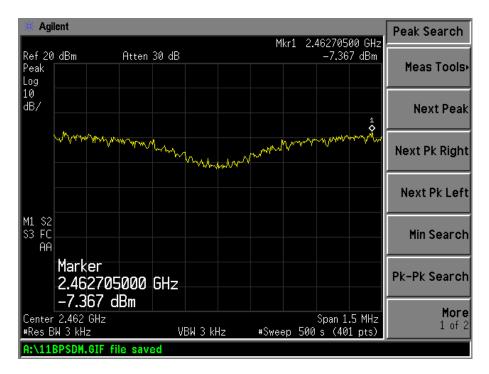
8.4 Test Procedure

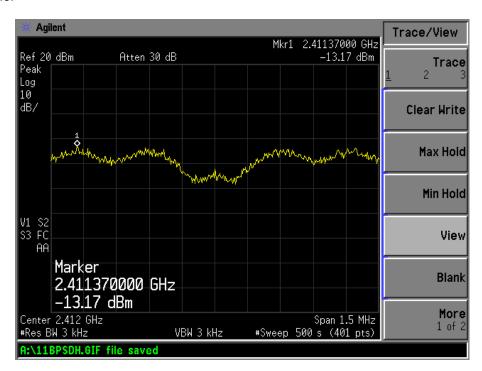

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3kHz RBW/VBW, set sweep time = span/3kHz. The power spectral density was measured and recorded. The sweep time is allowed to be longer than span/3kHz for a full response of the mixer in the spectrum analyzer.

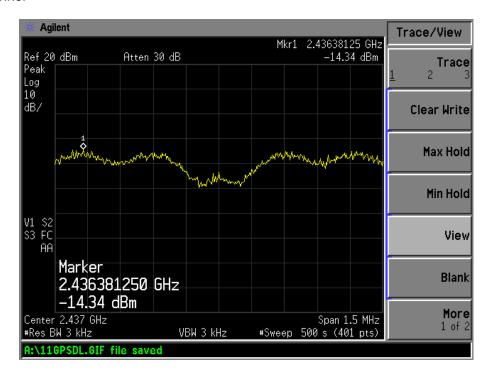
8.5 Test Result

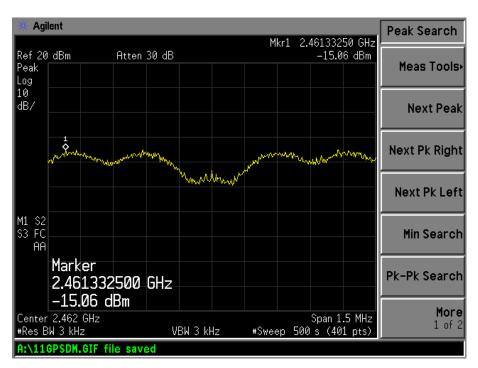

PASS

Test mode	Test channel	Reading dBm/3kHz	Limit dBm/3kHz
	Low channel (2412MHz)	-5.99	8
802.11b	Middle channel (2437MHz)	-6.97	8
	High channel (2462MHz)	-7.37	8
	Low channel (2412MHz)	-13.17	8
802.11g	Middle channel (2437MHz)	-14.34	8
	High channel (2462MHz)	-15.06	8


IEEE 802.11b Low Channel:


Middle Channel


High Channel


For 802.11g Low Channel

Middle Channel

High Channel

9. Band Edges Measurement

9.1 Limits of Band Edges Measurement

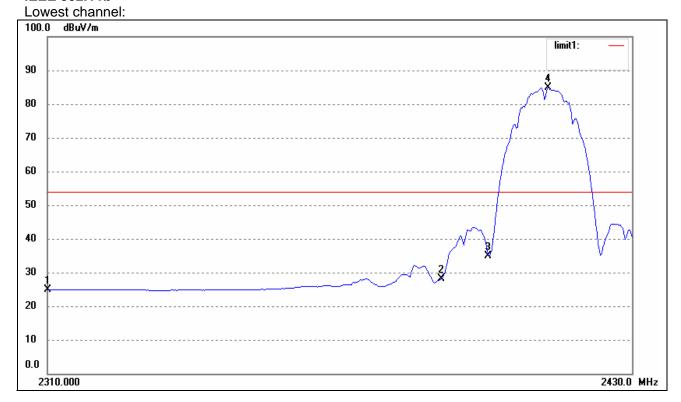
According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

9.2 Test Equipment List and Details

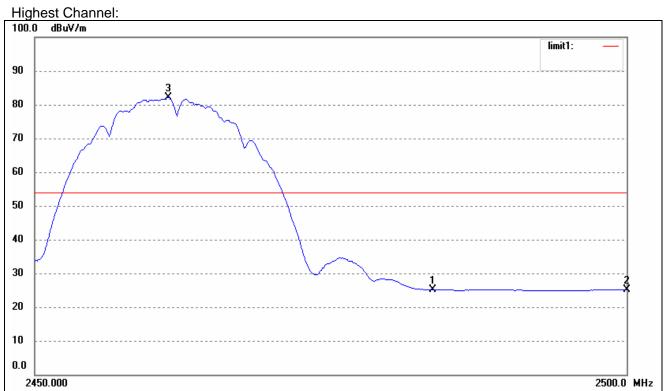
See section 2.4.

9.3 Test Procedure

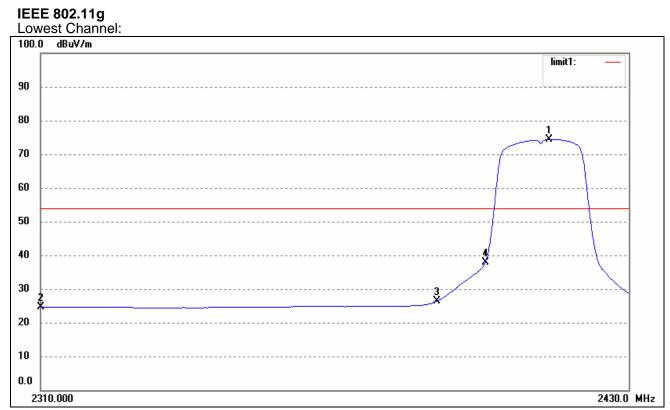
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded. The spectrum plots (Peak RBW=VBW=100kHz; Average RBW=1MHz, VBW=10Hz) are attached on the following pages.

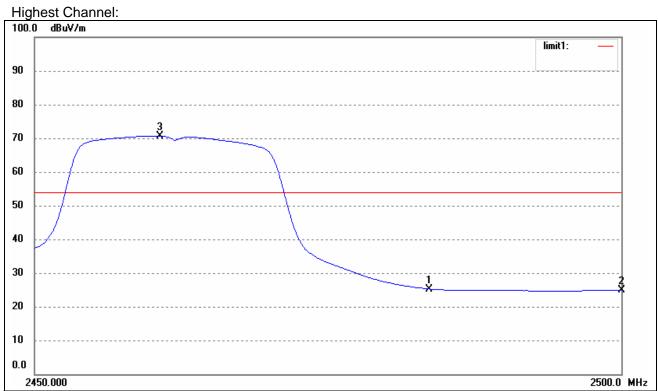

9.4 Test Result

PASS


Test mode	Frequency MHz	Limit dBuV /dB	Result	
	2390.00	<54dBuv	Pass	
802.11b	2400.00	>20dB	Pass	
	2483.50	<54dBuv	Pass	
	2390.00	<54dBuv	Pass	
802.11g	2400.00	>20dB	Pass	
	2483.50	<54dBuv	Pass	

Report No.: MTI1210425001RF


IEEE 802.11b


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	29.59	-4.65	24.94	54.00	-29.06	Average Detector
	2310.000	32.07	-4.65	27.42	74.00	-46.58	Peak Detector
2	2390.000	32.63	-4.46	28.17	54.00	-25.83	Average Detector
	2390.000	35.47	-4.46	31.01	74.00	-42.99	Peak Detector

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	29.34	-4.23	25.11	54.00	-28.89	Average Detector
	2483.500	31.88	-4.23	27.65	74.00	-46.35	Peak Detector
2	2500.000	29.38	-4.18	25.20	54.00	-28.80	Average Detector
	2500.000	31.83	-4.18	27.65	74.00	-46.35	Peak Detector

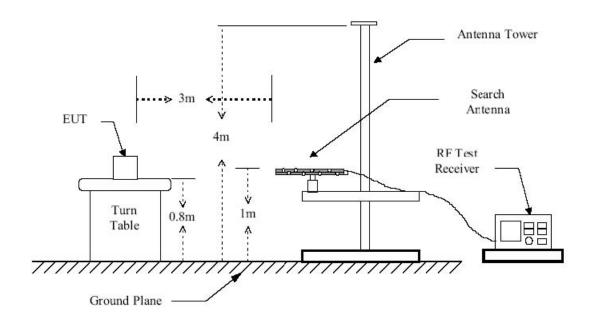
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
2	2310.000	29.29	-4.65	24.64	54.00	-29.36	Average Detector
	2310.000	33.01	-4.65	28.36	74.00	-45.64	Peak Detector
3	2390.000	30.87	-4.46	26.41	54.00	-27.59	Average Detector
	2390.000	33.57	-4.46	29.11	74.00	-44.89	Peak Detector

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	29.47	-4.23	25.24	54.00	-28.76	Average Detector
	2483.500	31.89	-4.23	27.66	74.00	-46.34	Peak Detector
2	2500.000	29.03	-4.18	24.85	54.00	-29.15	Average Detector
	2500.000	31.31	-4.18	27.13	74.00	-46.87	Peak Detector

10. Radiated Emission Measurement

10.1 Limits of Radiated Emission Measurement

According to §15.247(c), 15.205 15.209(b) &15.35 (b), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Section 15.209: 30 - 88 MHz 40 dBuV/m @3M 88 -216 MHz 43.5 dBuV/m @3M 216 -960 MHz 46 dBuV/m @3M Above 960 MHz 54dBuV/m @3M

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

Emissions that fall in the restricted bands (15.205) must be less than 54dBuV/m otherwise the spurious and harmonics must be attenuated by at least 20dB.

10.2 EUT Setup

Radiated Measurement Setup

10.3 Test Equipment List and Details

See section 2.4.

10.4 Test Procedure

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the

highest radiation.

- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using the quasi-peak method or average method as specified and then reported in Data sheet peak mode and QP mode.

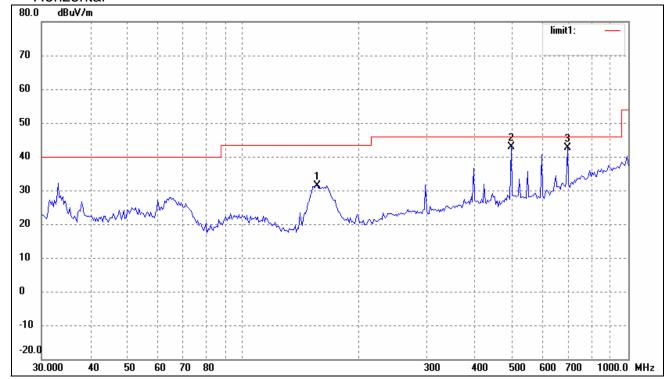
NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.

10.5 Test Result

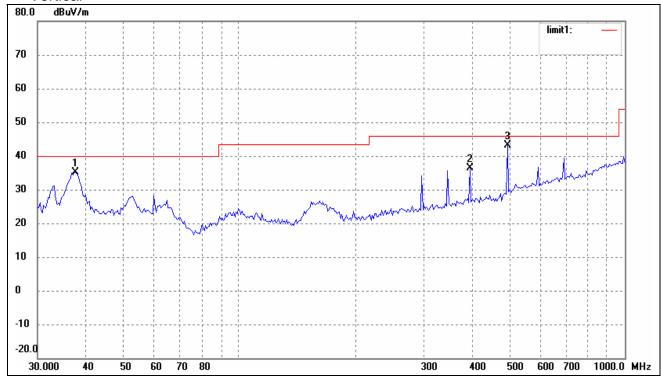
According to the data below, the <u>FCC Part 15.205, 15.209 and 15.247</u> standards, and had the worst margin of:

-1.0 dBµV at 7266.0MHz in the Vertical polarization, Transmitting 802.11n/HT40 Middle Channel test mode with, 30 MHz to 25 GHz, 3Meters

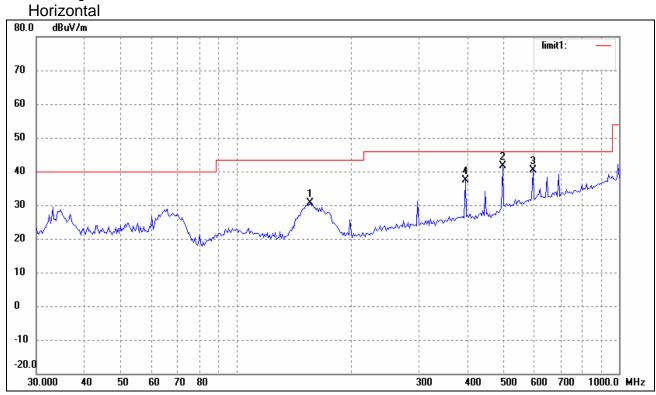

We have scanned the 10th harmonic from 9KHz to the EUT.

Detailed information please see the following page.

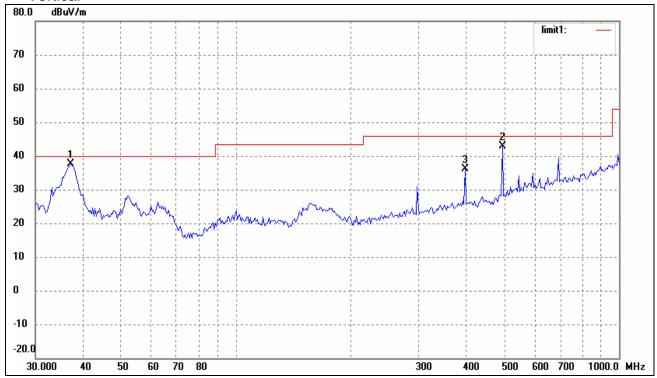
Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.


Spurious Emission From 30 MHz to 1 GHz 802.11b-Middle CH

Horizontal


No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	155.9101	27.11	4.35	31.46	43.50	-12.04	247	100	peak
2	495.9344	28.91	14.01	42.92	46.00	-3.08	44	100	peak
3	694.4174	25.18	17.45	42.63	46.00	-3.37	66	100	peak

Vertical


No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	37.5479	27.74	7.47	35.21	40.00	-4.79	225	100	peak
2	396.2415	24.89	11.37	36.26	46.00	-9.74	48	100	peak
3	495.9344	29.24	14.01	43.25	46.00	-2.75	77	100	peak

802.11g-Middle CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	155.9101	26.31	4.35	30.66	43.50	-12.84	305	100	peak
2	495.9344	27.50	14.01	41.51	46.00	-4.49	4	100	peak
3	595.1329	23.88	16.55	40.43	46.00	-5.57	24	100	peak
4	396.2415	25.96	11.37	37.33	46.00	-8.67	44	100	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	37.0249	30.28	7.33	37.61	40.00	-2.39	255	100	peak
2	495.9344	28.92	14.01	42.93	46.00	-3.07	37	100	peak
3	396.2415	24.65	11.37	36.02	46.00	-9.98	47	100	peak

Spurious Emission Above 1GHz

For 802.11b

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
				Low Cl	nannel (10	to 25GHz	z)			
4824.0	PK	43.4	122	V	34.1	5.2	33.0	49.72	74	-24.3
4824.0	PK	35.2	32	Н	34.1	5.2	33.0	41.48	74	-32.5
7236.0	PK	42.7	36	V	37.4	6.1	33.5	52.74	74	-21.3
7236.0	PK	35.1	45	Н	37.4	6.1	33.5	45.11	74	-28.9
4824.0	AV	41.2	122	V	34.1	5.2	33.0	47.53	54	-6.5
4824.0	AV	32.8	32	Н	34.1	5.2	33.0	39.05	54	-15.0
7236.0	AV	40.4	36	V	37.4	6.1	33.5	50.44	54	-3.6
7236.0	AV	33.0	45	Н	37.4	6.1	33.5	43.00	54	-11.0
]	Middle (Channel (1	G to 25GF	Hz)			
4874.0	PK	41.9	60	V	34.1	5.2	33.0	48.23	74	-25.8
4874.0	PK	34.2	222	Н	34.1	5.2	33.0	40.45	74	-33.6
7311.0	PK	42.7	180	V	37.4	6.1	33.5	52.67	74	-21.3
7311.0	PK	35.4	182	Н	37.4	6.1	33.5	45.35	74	-28.7
4874.0	AV	40.6	60	V	34.1	5.2	33.0	46.88	54	-7.1
4874.0	AV	31.9	222	Н	34.1	5.2	33.0	38.21	54	-15.8
7311.0	AV	40.2	180	V	37.4	6.1	33.5	50.20	54	-3.8
7311.0	AV	33.1	182	Н	37.4	6.1	33.5	43.11	54	-10.9
				High C	hannel (10	G to 25GH:	z)			
4924.0	PK	43.6	272	V	34.1	5.2	33.0	49.89	74	-24.1
4924.0	PK	34.9	43	Н	34.1	5.2	33.0	41.20	74	-32.8
7386.0	PK	42.3	90	V	37.4	6.1	33.5	52.33	74	-21.7
7386.0	PK	35.0	221	Н	37.4	6.1	33.5	45.01	74	-29.0
4924.0	AV	41.3	272	V	34.1	5.2	33.0	47.58	54	-6.4
4924.0	AV	32.8	43	Н	34.1	5.2	33.0	39.10	54	-14.9
7386.0	AV	41.2	90	V	37.4	6.1	33.5	51.22	54	-2.8
7386.0	AV	32.9	221	Н	37.4	6.1	33.5	42.88	54	-11.1

Note: Testing is carried out with frequency rang 9KHz to the tenth harmonics, which above 5th Harmonics is close to the noise base even antenna close up to 1meter distance according the measurement of ANSI C63.4.

For 802.11g

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB			
	Low Channel (1G to 25GHz)												
4824.0	PK	49.4	90	V	34.1	5.2	33.0	55.65	74	-18.4			
4824.0	PK	43.2	270	Н	34.1	5.2	33.0	49.54	74	-24.5			
7236.0	PK	44.8	180	V	37.4	6.1	33.5	54.84	74	-19.2			
7236.0	PK	37.8	45	Н	37.4	6.1	33.5	47.77	74	-26.2			
4824.0	AV	46.8	90	V	34.1	5.2	33.0	53.05	54	-1.0			
4824.0	AV	35.9	270	Н	34.1	5.2	33.0	42.16	54	-11.8			
7236.0	AV	42.2	180	V	37.4	6.1	33.5	52.19	54	-1.8			
7236.0	AV	35.8	45	Н	37.4	6.1	33.5	45.80	54	-8.2			
	_	_]	Middle (Channel (1	G to 25GF	Hz)	_					
4874.0	PK	48.8	45	V	34.1	5.2	33.0	55.12	74	-18.9			
4874.0	PK	43.2	270	Н	34.1	5.2	33.0	49.48	74	-24.5			
7311.0	PK	43.7	45	V	37.4	6.1	33.5	53.66	74	-20.3			
7311.0	PK	37.6	180	Н	37.4	6.1	33.5	47.56	74	-26.4			
4874.0	AV	47.6	45	V	34.1	5.2	33.0	53.80	54	-0.2			
4874.0	AV	35.8	270	Н	34.1	5.2	33.0	42.06	54	-11.9			
7311.0	AV	42.2	45	V	37.4	6.1	33.5	52.22	54	-1.8			
7311.0	AV	35.6	180	Н	37.4	6.1	33.5	45.62	54	-8.4			
				High C	hannel (10	G to 25GH	z)						
4924.0	PK	48.3	270	V	34.1	5.2	33.0	54.63	74	-19.4			
4924.0	PK	42.8	45	Н	34.1	5.2	33.0	49.12	74	-24.9			
7386.0	PK	44.0	180	V	37.4	6.1	33.5	53.98	74	-20.0			
7386.0	PK	36.8	45	Н	37.4	6.1	33.5	46.77	74	-27.2			
4924.0	AV	46.5	270	V	34.1	5.2	33.0	52.78	54	-1.2			
4924.0	AV	36.6	45	Н	34.1	5.2	33.0	42.86	54	-11.1			
7386.0	AV	42.8	180	V	37.4	6.1	33.5	52.83	54	-1.2			
7386.0	AV	34.9	45	Н	37.4	6.1	33.5	44.88	54	-9.1			

Note: Testing is carried out with frequency rang 9KHz to the tenth harmonics, which above 5th Harmonics is close to the noise base even antenna close up to 1meter distance according the measurement of ANSI C63.4.