

InterLab FCC Measurement/Technical Report on

WLAN transceiver BMW NBT (Headunit)

Report Reference: MDE_HARMAN_1013_FCCb

Test Laboratory: Borsigstr. 11 Germany 7Layers AG 40880 Ratingen

Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7Layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Ralf Mertens Vorstand • Board: Dr. H.-J. Meckelburg Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Sun	nmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adn	ninistrative Data	6
	I.1 I.2 I.3 I.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
2	Tes	t object Data	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labelling	7 8 8 9 9 9
3	Tes	t Results	10
	3.1 3.2 3.3 3.4 3.5 3.6	Occupied bandwidth Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance Power density	10 13 15 18 23 26
4	Tes	t Equipment	29
5	Pho	to Report	35
6	Set	up Drawings	35
7	FCC	and IC Correlation of measurement requirements	36
8	Ann	ex measurement plots	37
8	3.1 3.2 3.3 3.4	Occupied bandwidth Peak power output Band edge compliance conducted and Spurious RF conducted emission Power density	37 39 s 45 59

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-11 Edition) and 15 (10-1-11 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005"

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Su		§ 15.207	
	sions (AC power line	-	
		cording to ANSI C63.4	2009
OP-Mode	Setup	Port	Final Result
			N/A
FCC Part 15, Su	ubpart C	§ 15.247 (a) (1)	
Occupied bandw	idth		
The measureme	nt was performed ac	cording to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Perm.ant.connector	passed
op-mode 1g	Setup_02	Perm.ant.connector	passed
op-mode 2b	Setup_02	Perm.ant.connector	passed
op-mode 2g	Setup_02	Perm.ant.connector	passed
op-mode 3b	Setup_02	Perm.ant.connector	passed
op-mode 3g	Setup_02	Perm.ant.connector	passed
FCC Part 15, Su	ubpart C	§ 15.247 (b) (1)	
Peak power outp			
The measureme	nt was performed ac	cording to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Perm.ant.connector	passed
op-mode 1g	Setup_02	Perm.ant.connector	passed
op-mode 2b	Setup_02	Perm.ant.connector	passed
op-mode 2g	Setup_02	Perm.ant.connector	passed
op-mode 3b	Setup_02	Perm.ant.connector	passed
op-mode 3g	Setup_02	Perm.ant.connector	passed
FCC Part 15, Su	ubpart C	§ 15.247 (d)	
Spurious RF con	ducted emissions		
The measureme	nt was performed ac	cording to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Perm.ant.connector	passed
op-mode 1g	Setup_02	Perm.ant.connector	passed
op-mode 2b	Setup_02	Perm.ant.connector	passed
op-mode 2g	Setup_02	Perm.ant.connector	passed
op-mode 3b	Setup_02	Perm.ant.connector	passed

FCC Part 15,	Subpart C	§ 15.247 (d), § 15.3	§ 15.247 (d), § 15.35 (b), § 15.209		
Spurious radia	ted emissions				
The measurem	The measurement was performed according to ANSI C63.4				
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_01	Enclosure	passed		
op-mode 2b	Setup_01	Enclosure	passed		
op-mode 3b	Setup_01	Enclosure	passed		
op-mode 1g	Setup_01	Enclosure	passed		
op-mode 2g	Setup_01	Enclosure	passed		
op-mode 3g	Setup_01	Enclosure	passed		
FCC Part 15,	Subpart C	§ 15.247 (d)			
Band edge con		3 101217 (6)			
		cording to FCC § 15.31 /	10-1-11 Edition /		
ANSI C63.4	ent was performed de		2009		
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_02	Perm.ant.connector	passed		
op-mode 1g	Setup_02	Perm.ant.connector	passed		
op-mode 3b	Setup_02	Perm.ant.connector	passed		
op-mode 3g	Setup_02	Perm.ant.connector	passed		
op-mode 3b	Setup_01	Enclosure	passed		
op-mode 3g	Setup_01	Enclosure	passed		
FCC Part 15,	Subpart C	§ 15.247 (e)			
Power density	ouppuit e	3 2012-17 (C)			
	ent was performed ac	cording to FCC § 15.31	10-1-11		
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_02	Perm.ant.connector	passed		
op-mode 1g	Setup_02	Perm.ant.connector	passed		
op-mode 2b	Setup_02	Perm.ant.connector	passed		
op-mode 2g	Setup_02	Perm.ant.connector	passed		
op-mode 3b	Setup_02	Perm.ant.connector	passed		
	occup_or		Pacoca		

N/A not applicable (the EUT is powered by DC, vehicular use only)

layers

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Perm.ant.connector

Responsible for Accreditation Scope:

op-mode 3g

Setup_02

Responsible for Test Report:

Je. Jullih

passed

Administrative Data 1

1.1 Testing Laboratory

Company Name:	7Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz 2012-03-14

Report Template Version:

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Marco Kullik

Date of Test(s): Date of Report:

1.3 Applicant Data

Company Name:

Address:

Contact Person:

1.4 Manufacturer Data

Company Name:

please see applicant data

Becker-Göring-Straße 16

76307 Karlsbad

Mr. Stefan Blaschek

2012-03-08 to 2012-04-20

Harman Becker Automotive Systems

2012-04-27

GmbH

Germany

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test:	WLAN transceiver
Type Designation:	NBT
Kind of Device:	Car Radio (Headunit)
(optional)	
Voltage Type:	DC
Voltage Level:	12 V
Tested Modulation Types:	DBPSK; OFDM: BPSK;

General product description:

The WLAN (Wireless Local Area Network) Transceiver is operating in the 2.4 GHz ISM band in the range 2412.0 – 2462.0 MHz and uses the Direct Sequence Spread Spectrum (DSSS) Modulation. It supports the modes IEEE 802.11b and IEEE 802.11g.

The EUT provides the following ports:

Ports

Permanent antenna connector WLAN Permanent antenna connector Bluetooth Permanent antenna connector GPS Car Connector APIX Display USB (3x) Ethernet FM1/AM FM2 Enclosure Video in

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	WLAN	NBT	-	D3	Bios Control	-
(Code:	transceiver					
43080a01)						
Remark: EUT	A is equipped w	ith an external a	ntenna (gain =	-5.8 dBi includ	ing cable attenu	uation).
EUT B	WLAN	NBT	-	D3	Bios Control	-
(Code:	transceiver					
43080b01)						
Remark: EUT I	B is equipped w	ith a permanent	antenna conne	ctor.		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC I D
AE 1	External Antenna	External BT/WLAN Antenna	-	-	-	-
AE 2	External Antenna	External GPS Antenna	-	-	-	_
AE 3	FM antenna	FM antenna	-	-	-	-
AE 4	Fakra / USB cables	Fakra / USB cables	-	-	-	_
AE 5	Fakra / Ethernet cable	Fakra / Ethernet cable	-	-	-	-
AE 6	Video IN cable	Video IN cable	-	-	-	_
AE 7	Cable Harness (incl. DC power line)	Cable Harness (Car Connector)	-	-	-	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX1	µMost Board	µMost Board	-	_	-	_

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + all AEs + AUX1	setup for radiated measurements
Setup_02	EUT B + AE7 + AUX1	setup for conducted measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1b	TX-mode, the EUT transmits on the lowest	Worst case data rate 1 Mbps,
	channel (2412 MHz)	WLAN Mode 802.11b
op-mode 1g	TX-mode, the EUT transmits on the lowest	Worst case data rate 6 Mbps,
	channel (2412 MHz)	WLAN Mode 802.11g
op-mode 2b	TX-mode, the EUT transmits on the mid	Worst case data rate 1 Mbps,
	channel (2437 MHz)	WLAN Mode 802.11b
op-mode 2g	TX-mode, the EUT transmits on the mid	Worst case data rate 6 Mbps,
	channel (2437 MHz)	WLAN Mode 802.11g
op-mode 3b	TX-mode, the EUT transmits on the	Worst case data rate 1 Mbps,
	highest channel (2462 MHz)	WLAN Mode 802.11b
op-mode 3g	TX-mode, the EUT transmits on the	Worst case data rate 6 Mbps,
	highest channel (2462 MHz)	WLAN Mode 802.11g

The OUT was connected to a Laptop via Serial/USB connection. The OUT could be set into WLAN Test Modes (Local TX Mode) by using the program "Wireless Tool" provided by the applicant.

2.7 Product labelling

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Occupied bandwidth

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz

- Video Bandwidth (VBW): 300 kHz
- Span: 30 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

3.1.3 Test Protocol

Temperature:	24 °C
Air Pressure:	1017 hPa
Humidity:	37 %

Op. Mode	Setup	Port		
op-mode 1b	Setup_02	Perm.ant.connector		
6 dB bandwidth MHz		Remarks		
10.164		_		
Remark: Please see annex for the measurement plot.				

Op. Mode	Setup	Port	
op-mode 1g	Setup_02	Perm.ant.connector	
6 dB bandwidth MHz		Remarks	
16.656		_	
10.030			
	annex for the measu	urement plot.	
	annex for the measu	urement plot.	
	annex for the measu	urement plot. Port	
Remark: Please see			
Remark: Please see	Setup	Port	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Perm.ant.connector
6 dB bandwidth MHz		Remarks
16.596		_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 3b	Setup_02	Perm.ant.connector	
6 dB bandwidth MHz		Remarks	
9.984		_	
Remark: Please see annex for the measurement plot.			

Op. Mode	Setup	Port	
op-mode 3g	Setup_02	Perm.ant.connector	
6 dB bandwidth MHz		Remarks	
16.656		_	
Remark: Please see annex for the measurement plot.			

Test result: Occupied bandwidth 3.1.4

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 1b	passed	
	op-mode 1g	passed	
	op-mode 2b	passed	
	op-mode 2g	passed	
	op-mode 3b	passed	
	op-mode 3g	passed	

3.2 Peak power output

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW) = = > Maximum Output Power: 30 dBm

3.2.3 Test Protocol

Temperature:	23 °C
Air Pressure:	1009 hPa
Humidity:	38 %

Op. Mode	Setup	Port
op-mode 1b	Setup_02	Perm.ant.connector

Output power (RMS) dBm	Remarks
18.66	The EIRP including antenna gain (-5.8 dBi) is 12.86 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 1g	Setup_02	Perm.ant.connector	
Output power		Pomarks	

Output power (RMS) dBm	Remarks	
18.96	The EIRP including antenna gain (-5.8 dBi) is 13.16 dBm	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 2b	Setup_02	Perm.ant.connector	
Output power (RMS) dBm		Remarks	
17.92		EIRP including antenna gain (-5.8 dBi) is 12.12 dBm	
Remark: Please see	e annex for the meas	urement plot.	
Op. Mode	Setup	Port	
op-mode 2g	Setup_02	Perm.ant.connector	
Output power (RMS) dBm		Remarks	
18.59	The	The EIRP including antenna gain (-5.8 dBi) is 12.79 dBm	
	e annex for the meas		
Remark: Please see	e annex for the meas	urement plot.	
Remark: Please see	e annex for the meas	urement plot. Port	
Remark: Please see Op. Mode op-mode 3b Output power	e annex for the meas Setup Setup_02	urement plot. Port Perm.ant.connector	
Remark: Please see Op. Mode op-mode 3b Output power (RMS) dBm 17.91	e annex for the meas Setup Setup_02	urement plot. Port Perm.ant.connector Remarks EIRP including antenna gain (-5.8 dBi) is 12.11 dBm	
Remark: Please see Op. Mode op-mode 3b Output power (RMS) dBm 17.91	e annex for the meas Setup Setup_02 The	urement plot. Port Perm.ant.connector Remarks EIRP including antenna gain (-5.8 dBi) is 12.11 dBm	
Remark: Please see Op. Mode op-mode 3b Output power (RMS) dBm 17.91 Remark: Please see	e annex for the meas Setup Setup_02 The e annex for the meas	Port Perm.ant.connector Remarks EIRP including antenna gain (-5.8 dBi) is 12.11 dBm surement plot.	
Remark: Please see Op. Mode op-mode 3b Output power (RMS) dBm 17.91 Remark: Please see Op. Mode	e annex for the meas Setup Setup_02 The e annex for the meas Setup	Port Perm.ant.connector Remarks EIRP including antenna gain (-5.8 dBi) is 12.11 dBm urement plot. Port	

Remark: Please see annex for the measurement plot.

3.2.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 3b	passed
	op-mode 3g	passed

3.3 Spurious RF conducted emissions

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold
- Frequency range: 30 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.5). This value is used to calculate the 20 dBc limit.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.3.3 Test Protocol

Temperature:	24 °C
Air Pressure:	1017 hPa
Humidity:	37 %

Op. Mode	Setup	Port
op-mode 1b	Setup_02	Perm.ant.connector

dBm			
-35.68	-5.20	-25.09	10.59
•			

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_02	Perm.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB
6885	-35.49	-8.28	-28.26	7.23

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 2b	Setup_02	Perm.ant.conne	ctor	
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB
6885	-35.27	-4.24	-24.33	10.94

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Perm.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB
6885	-35.27	-8.50	-28.40	6.87

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

6936

Op. Mode	Setup	Port		
op-mode 3b	Setup_02	Perm.ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB
6885	-35.30	-2.84	-22.94	12.36

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 3g	Setup_02	Perm.ant.conne	ctor	
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB

-8.14 -35.46 Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Test result: Spurious RF conducted emissions 3.3.4

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 3b	passed
	op-mode 3g	passed

-28.14

7.32

3.4 Spurious radiated emissions

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: ANSI C63.4-2009

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4–2009 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The test was performed at the distance of 3 m between the EUT and the receiving antenna. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The radiated emissions measurements were made in a typical installation configuration. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF–Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
 Detector: Peak-Maxhold
- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 μs
- Turntable angle range: -180° to 180°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 45°
- Height variation range: 1 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $+/-22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -22.5° to + 22.5° around the determined value
- Height variation range: -0.25m to + 0.25m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m) + 30 dB
0.49 – 1.705	24000/F(kHz)	30	Limit (dBµV/m) + 10 dB
1.705 – 30	30	30	Limit (dBµV/m) + 10 dB

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.4.3 Test Protocol

Temperature:	21 °C
Air Pressure:	1033 hPa
Humidity:	35 %

3.4.3.1 Measurement up to 30 MHz

Op. Mode	Setup		Р	ort				
op-mode 2	o Setup_	01	E	nclosure				
Antenna Position	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Margin to limit dB	Margin to limit dB	
		PK	AV	PK	AV	PK	AV	
0°	_			_	_	_	_	l
90°	_	-	-	-	-	-	_	

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. The found peak at 91.2 / 99.2 kHz is an emission from the loop antenna's power supply.

3.4.3.2 Measurement above 30 MHz

Op. Mode	Setup	Po	ort					
op-mode 1	o Setup_	.01 Er	nclosure					
Polari- sation	Frequency MHz	Corrected valu dBµV/m	-	Limit dBuV	Limit dBuV	Limit dBuV	Margin to	Margin to
Sation	IVITZ	ασμν/π		ивµv /m	ивµv /m	ивµv /m	limit	limit

			-		∕m	∕m	∕m	limit dB	limit dB
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	282.24	-	29.2	-	-	46.0	-	16.8	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup			Port					
op-mode 2	o Setup_	01	l	Enclosur	e				
Polari- sation	Frequency MHz		Corrected value dBµV/m			Limit dBµV ∕m	Limit dBµV ∕m	Margin to limit dB	Margin to limit dB
		QP	QP PK AV			PK	AV	QP/PK	AV
Hor. + Vert.	31.98	-	27.4	_	_	40.0	-	12.6	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port	
op-mode 3b	Setup_01	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV∕m			Limit dBµV ∕m	Limit dBµV ∕m	Limit dBµV ∕m	Margin to limit dB	Margin to limit dB
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	-	-	-	-	-	74.0	54.0	_	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

	Op. Mode	Setup			Port					
-	op-mode 1	g Setup_	01		Enclosur	е				
	Polari- sation	Frequency MHz	Cor	Corrected value dBµV/m			Limit dBµV ∕m	Limit dBµV ∕m	Margin to limit dB	Margin to limit dB
			QP	PK	AV	QP	PK	AV	QP/PK	AV
	Hor. + Vert.	_	-	-	-	-	74.0	54.0	_	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Port Op. Mode Setup op-mode 2g Setup_01 Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV ∕m	Limit dBµV ∕m	Limit dBµV ∕m	Margin to limit dB	
		QP	PK	AV	QP	PK	AV	QP/PK	T
Hor. + Vert.	-	-	-	-	-	74.0	54.0	-	Τ

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3g	Setup_01	Enclosure

op-mode 3g

Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV∕m			Limit dBµV ∕m	Limit dBµV ∕m	Limit dBµV ∕m	Margin to limit dB	Margin to limit dB
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	-	-	-	-	-	74.0	54.0	_	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Test result: Spurious radiated emissions 3.4.4

FCC Part 15, Subpart C Op. Mode Result

	Result
op-mode 1b	passed
op-mode 2b	passed
op-mode 3b	passed
op-mode 1g	passed
op-mode 2g	passed
op-mode 3g	passed
	op-mode 1b op-mode 2b op-mode 3b op-mode 1g op-mode 2g

Margin to limit dB AV _

3.5 Band edge compliance

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.5.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The EUT is set to transmit on the lowest channel (2412 MHz). The lower band edge is 2400 MHz and the EUT is set to transmit on the highest channel (2462 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak

- RBW / VBW = 100 / 300 kHz

2. Show compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

3.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.5.3 Test Protocol

3.5.3.1 Lower band edge Conducted measurement

Temperature:	24 °C
Air Pressure:	1017 hPa
Humidity:	37 %

Op. Mode	Setup	Port
op-mode 1b	Setup_02	Perm.ant.connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin to limit dB
2400.00	-43.12	-5.09	-25.09	18.03
Demarky Please see appear for the measurement plet				

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 1g	Setup_02	Perm.ant.co	nnector	
F actorian and	Manager and stalling	Defenses velve	1 :	Manaia ta linait

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin to limit dB
2400.00	-37.77	-8.26	-28.26	9.51
	a			

Remark: Please see annex for the measurement plot.

3.5.3.2 Higher band edge

Conducted measurement

Temperature:	24 °C
Air Pressure:	1017 hPa
Humidity:	37 %

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Perm.ant.connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin to limit dB
2483.50	-44.01	-2.94	-22.94	21.07
Demarky Diagon and annoy for the manufament plat				

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3g	Setup_02	Perm.ant.connector

Frequency	Measured value	Reference value	Limit	Margin to limit
MHz	dBm	dBm	dBm	dB
2483.50	-44.10	-8.14	-28.14	

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature:	21 °C
Air Pressure:	1033 hPa
Humidity:	35 %

Op. Mode	Setup	Port
op-mode 3b	Setup_01	Enclosure

Frequency MHz	Polari- sation		ed value V/m	Limit dBµV∕m	Limit dBµV∕m	Margin to limit dB	Margin to limit dB
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	49.4	37.2	74.0	54.0	24.6	16.8

Remark: Please see annex for the measurement plot.

Op. Mode	Setup		Port				
op-mode 3g	g Setup_	01	Enclo	osure			
Frequency MHz	Polari- sation		ed value V/m	Limit dBµV∕m	Limit dBµV/m	Margin to limit dB	Margin to limit dB
		PK	AV	РК	AV	РК	AV

2483.50Hor. + Vert.51.339.4Remark: Please see annex for the measurement plot.

3.5.4 Test result: Band edge compliance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 3 b	passed
	op-mode 3 g	passed

74.0

54.0

22.7

14.6

3.6 Power density

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.6.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold
- Resolution Bandwidth (RBW): 3 kHz
- Video Bandwidth (VBW): 30 kHz
- Sweep Time: Coupled

3.6.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.3 Test Protocol

Temperature:	24 °C
Air Pressure:	1017 hPa
Humidity:	37 %

Op. Mode	Setup	Port	
op-mode 1b	Setup_02	Perm.ant.connector	
Power density dBm/3 kHz		Remarks	
-23.27		_	
Domark · Dloaso soc	e annex for the measu	irement plot	
Kennark. Flease see			
Kemark. Flease see			
Op. Mode	Setup	Port	
Op. Mode	Setup	Port	
Op. Mode op-mode 1g Power density	Setup	Port Perm.ant.connector	

Op. Mode	Setup	Port	
op-mode 2b	Setup_02	Perm.ant.connector	
Power density dBm/3 kHz		Remarks	
-22.46		_	
Bomark: Bloaso sor	e annex for the measu	irement nlot	
Remain. Flease see			
Remark. Flease see			
Op. Mode	Setup	Port	
Op. Mode	Setup	Port	
Op. Mode	Setup	Port	
Op. Mode op-mode 2g	Setup	Port Perm.ant.connector	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 3b	Setup_02	Perm.ant.connector	
Power density dBm/3 kHz		Remarks	
-16.93		_	
Remark: Please se	e annex for the measu	urement plot.	
	C . I	Devid	
Op. Mode	Setup	Port	
op-mode 3g	Setup_02	Perm.ant.connector	

Power density dBm/3 kHz	
-21.62	

Remark: Please see annex for the measurement plot.

3.6.4 Test result: Power density

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 3b	passed
	op-mode 3g	passed

Remarks

_

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 3
Manufacturer:	Frankonia
Description:	Anechoic Chamber for radiated testing
Туре:	10.58x6.38x6.00 m ³

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ FCC listing 96716 3m Part15/18 IC listing 3699A-1 3m	none	Frankonia 2011/01/11 2014/01/10 2011/02/07 2014/02/06
Controller Innco 2000	CO 2000	CO2000/328/1247 406/L	0 Innco innovative constructions GmbH
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID:	Lab 3
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical dipole	VUBA 9117 Standard Calibration Standard Calibration	9117-108	Schwarzbeck 2008/10/27 2013/10/26 2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.0 2	01- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.0 2	02- Rosenberger Micro-Coax
Double-ridged horn	HF 906 Calibration Details	357357/001	Rohde & Schwarz GmbH & Co. KG Last Execution Next Exec.
	Standard Calibration		2009/04/16 2012/04/15

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2009/04/28 2012/04/27
Dreheinheit	DE 325		HD GmbH
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2009/05/27 2012/05/26
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 26,5 GHz	3160-09	9910-1184	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 3
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Broadband Power Divide SMA (Aux)	er1515 / 93459	LN673	Weinschel Associates
Digital Multimeter 01 (Multimeter)	Voltcraft M-3860M	IJ096055	Conrad Electronics
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(Multimeter)	Customized calibration		2011/10/19 2013/10/18
Digital Oscilloscope [SA2] (Aux)	TDS 784C	B021311	Tektronix GmbH
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	9 WRCA800/960-6EEK	24	Wainwright
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
ThermoHygro_01 (Aux)	430202	none	Fischer Feingerätebau K. Fischer GmbH
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Description: Lab 3 Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

-				
Single Device Name	Туре	Serial Number	Manufacturer	
Bluetooth Signalling Uni CBT	t CBT	100589	Rohde & Schw KG	arz GmbH & Co.
	Standard calibration		2011/11/24	2014/11/23
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schw KG	varz GmbH & Co.
	Standard calibration		2011/11/28	2014/11/27
Digital Radio Test Set	6103E	2359	Racal Instrum	ents, Ltd.
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schw KG	arz GmbH & Co.
	Standard calibration <i>HW/SW Status</i>		2011/05/26 Date of Start	2013/05/25 Date of End
	B11, B21V14, B21-2, B41, B52V14, B5 B53-2, B56V14, B68 3v04, PCMCIA, U Software: K21 4v21, K22 4v21, K23 4v21, K24 4 K43 4v21, K53 4v21, K56 4v22, K57 4 K59 4v22, K61 4v22, K62 4v22, K63 4 K65 4v22, K66 4v22, K67 4v22, K68 4 Firmware: μP1 8v50 02.05.06	65V04 v21, K42 4v21, v22, K58 4v22, v22, K64 4v22,		
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schw KG	varz GmbH & Co.
	Standard calibration		2011/12/07	2014/12/06
	HW/SW Status		Date of Start	Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B5 B54V14, B56V14, B68 3v04, B95, PCM SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05 SW:	ICIA, U65V02 ∨11, K27 4∨10,	2007/01/02 2008/11/03	
Ventor Signal Constant	K62, K69	100012	Dobdo & Sabu	arz Cmbll & Ca
Vector Signal Generator	SIVIUZUUA	100912	Konde & Schw	arz GmbH & Co.

Test Equipment Emission measurement devices

Lab ID:	Lab 3
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Sensor	NRV-Z1	836219/005	Rohde & Schwarz GmbH & Co. KG
Powermeter	NRVS	836333/064	Rohde & Schwarz GmbH & Co. KG
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	standard calibration		2011/05/12 2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2011/12/05 2013/12/04
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 du	uring calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID:	Lab 6
Description:	Ex-Tech 520
Serial Number:	05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
(manimeter)	Customized calibration		2011/10/18 2013/10/17

Test Equipment Shielded Room 07

Lab ID:	Lab 6
Description:	Shielded Room 4m x 6m

Test Equipment T/H Logger 04

Lab ID:	Lab 6
Description:	Lufft Opus10
Serial Number:	7481

Single Devices for T/H Logger 04

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 04 (Environ)	7481	Lufft Mess- und Regeltechnik GmbH

Test Equipment Temperature Chamber 01

Lab ID:	Lab 6
Manufacturer:	see single devices
Description:	Temperature Chamber KWP 120/70
Type:	Weiss
Serial Number:	see single devices

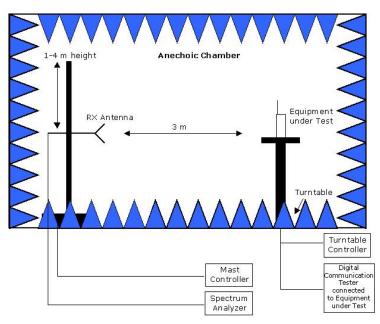
Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
Weiss 01	Specific calibration		2010/03/16 2012/03/15

Test Equipment WLAN RF Test Solution

Lab ID:	Lab 6
Manufacturer:	7 layers AG
Description:	Regulatory WLAN RF Tests
Type:	WLAN RF
Serial Number:	001

Single Devices for WLAN RF Test Solution


Single Device Name	Туре	Serial Number	Manufacturer	
Arbitrary Waveform Generator	TGA12101	284482	2013/06/20	
Power Meter NRVD	NRVD Standard Calibration	832025/059	2011/06/14 2012/06/13	
Power Sensor NRV Z1 A	PROBE	832279/013		
	Standard Calibration		2011/06/14 2012/06/13	
Power Supply	NGSM 32/10 Standard Calibration	2725	2011/06/15 2013/06/14	
Rubidium Frequency Normal MES	Datum MFS	002	Datum GmbH	
Normal WF3	Standard Calibration		2011/08/17 2012/08/16	
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG	
Signal Generator	SMP03	833680/003	Rohde & Schwarz GmbH & Co.KG	
	Standard Calibration		2009/06/23 2012/06/22	
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG	
	Standard calibration FSU FW Update to v4.61 SP3, K5 v4.60	and K73 v4.61	2011/05/11 2012/05/10 2011/12/05	
TOCT Switching Unit	Switching Unit	030106	7 layers, Inc.	
TOCT Switching Unit (loan unit)	Switching Unit	030101	7 layers, Inc.	
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017		
	Standard Calibration		2010/06/23	

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber: Measurements below 1 GHz: Semi-anechoic, conducting ground plane.

Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

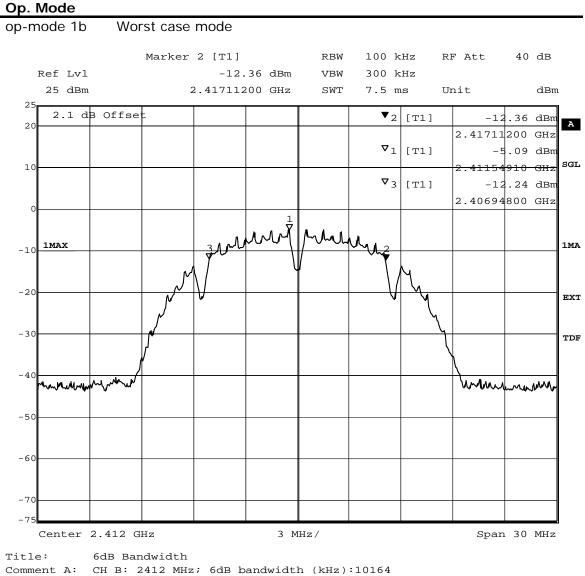
7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements for WLAN equipment and Digital Apparatus from FCC and IC standards.

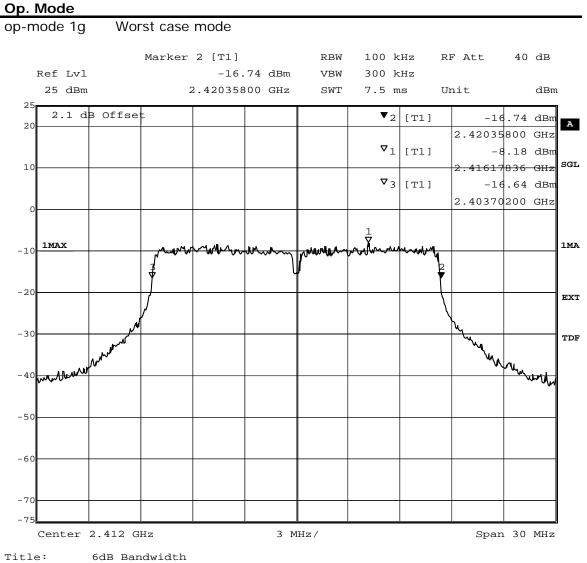
WLAN equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC mains	§ 15.207	RSS-Gen: 7.2.4
Occupied bandwidth	§ 15.247 (a) (1)	RSS-210: A8.1
Peak power output	§ 15.247 (b) (1)	RSS-210: A8.4
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen: 6; RSS-210: A8.5
Spurious radiated emissions	§ 15.247 (d)	RSS-Gen: 6; RSS-210: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210: A8.5
Power density	§ 15.247 (e)	RSS-210: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen: 7.1.2

Digital Apparatus


Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§ 15.107	ICES-003
Spurious Radiated Emissions	§ 15.109	ICES-003

8 Annex measurement plots


8.1 Occupied bandwidth

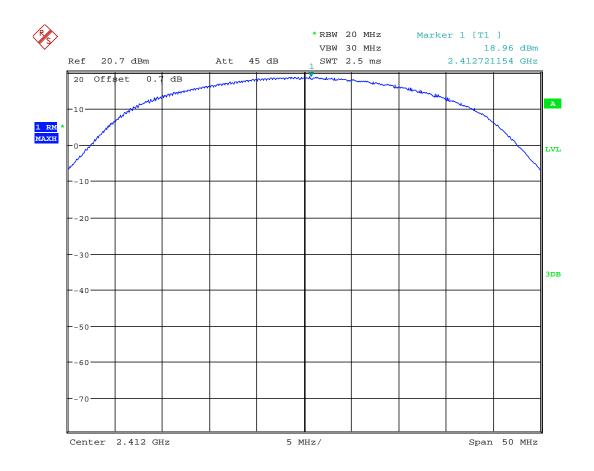
8.1.1 Occupied bandwidth operating mode 1


```
Date: 5.APR.2012 16:51:54
```


Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):16656 Date: 5.APR.2012 19:26:08

8.2 Peak power output

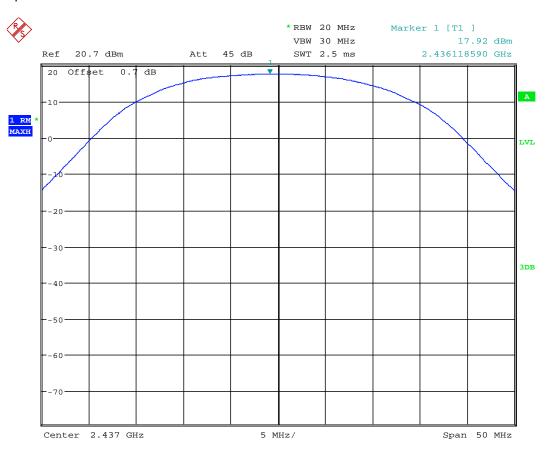
8.2.1 Peak power output operating mode 1



Date: 20.APR.2012 09:41:40

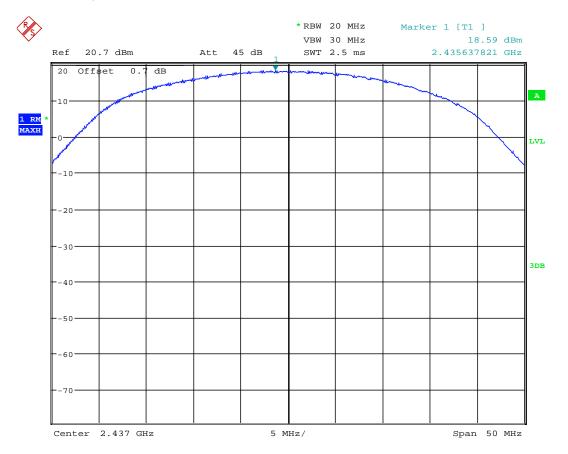
Op. Mode

op-mode 1g


Date: 20.APR.2012 09:30:12

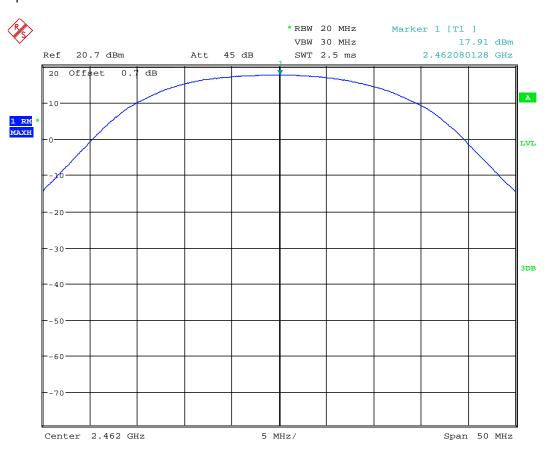
8.2.2 Peak power output operating mode 2

op-mode 2b



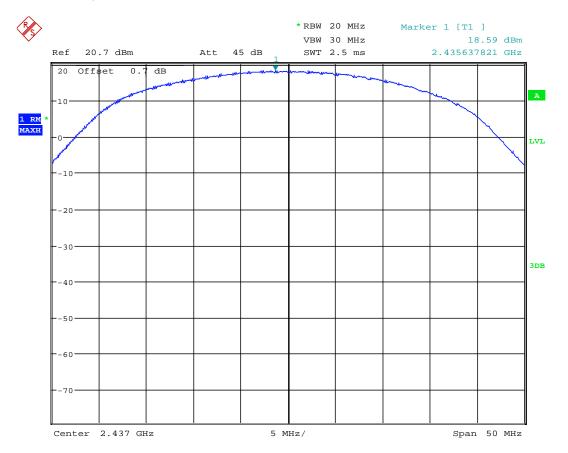
Date: 20.APR.2012 09:23:38

Op. Mode


Date: 20.APR.2012 09:28:21

8.2.3 Peak power output operating mode 3

op-mode 3b

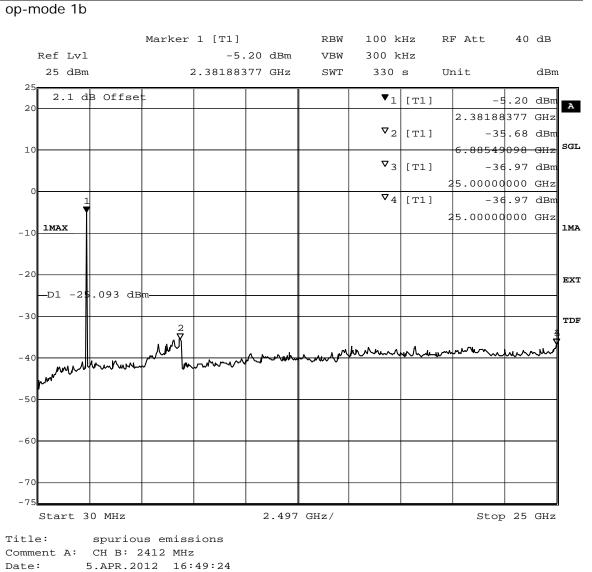


Date: 20.APR.2012 09:25:12

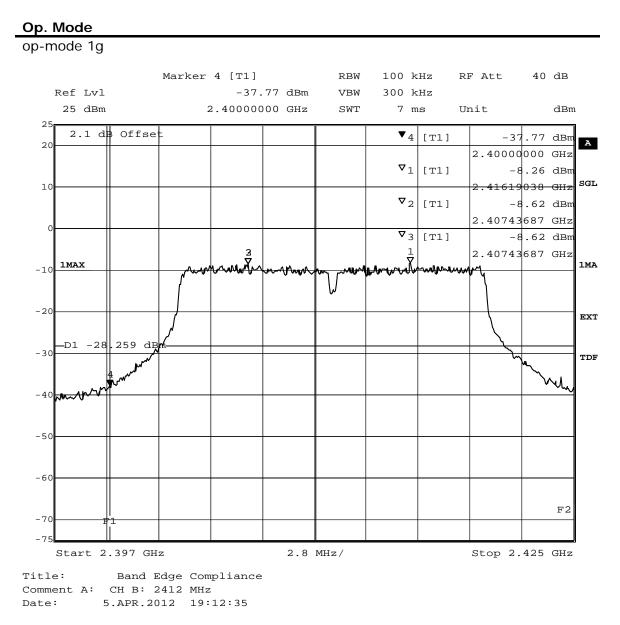
Op. Mode

Date: 20.APR.2012 09:28:21

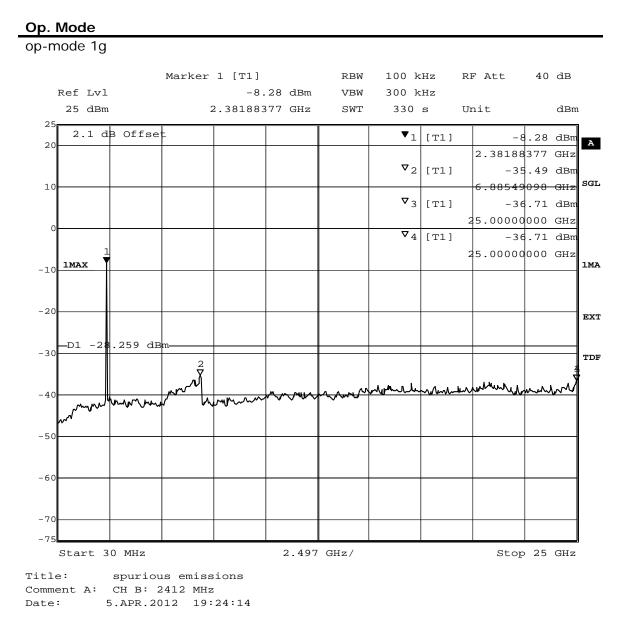
8.3 Band edge compliance conducted and Spurious RF conducted emissions


8.3.1 Band edge compliance conducted operating mode 1b

Dp. Mode							
p-mode 1b							
	Marker 4 [T1]]	RBW	100 k	Hz H	RF Att	40 dB
Ref Lvl		3.12 dBm	VBW	300 k			
25 dBm	2.40000000 GHz		SWT	7 m		Jnit	dBm
25 2.1 dB Off	a de la contraction de la cont			T .			
20 2.1 08 011	sec			▼ 4	[T1]		3.12 dBm
				$\mathbf{\nabla}_1$	[1]		0000 GHz
				• 1	[T1]		5.09 dBm
10				Σa	r		5507 GHZ
				∇ ₂	[T1]		5.14 dBm
0							4309 GHz
			$\frac{1}{\nabla} \frac{2}{\nabla}$	∇ ₃	[T1]		3.86 dBm
-10 1MAX	Δ	m	1 / / /	v3 MMy		2.41804	1208 GHz 1
-10			\mathbf{N}		∑ Z		
			ω		Λ		
-20					_V_`		E
D1 -25.093	dBm						
						1	
-30	Ţ,						г
	/					1	
	~~ /					+	
-40 volument						V V	Winner
-50							
-50							
-60							
							F2
-70 <u>F1</u>							
-75							
Start 2.397	GHz	2.8	MHZ/			Stop 2	.425 GHz
	d Edge Complianc	e					
omment A: CH B							
ate: 5.APR	.2012 16:37:45						


8.3.2 Spurious RF conducted emission operating mode 1b

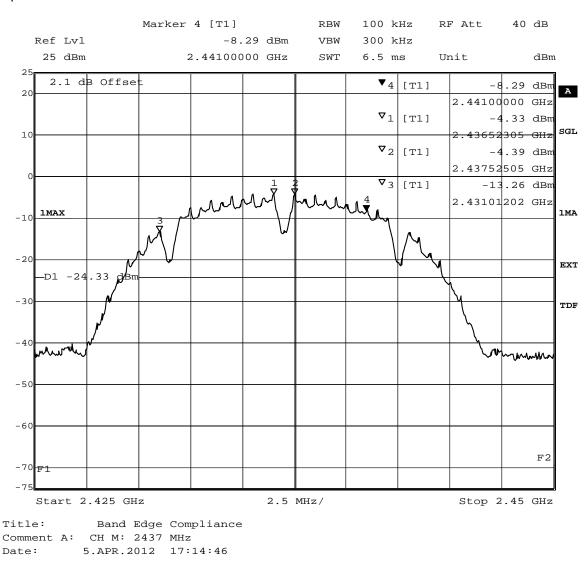
Op. Mode



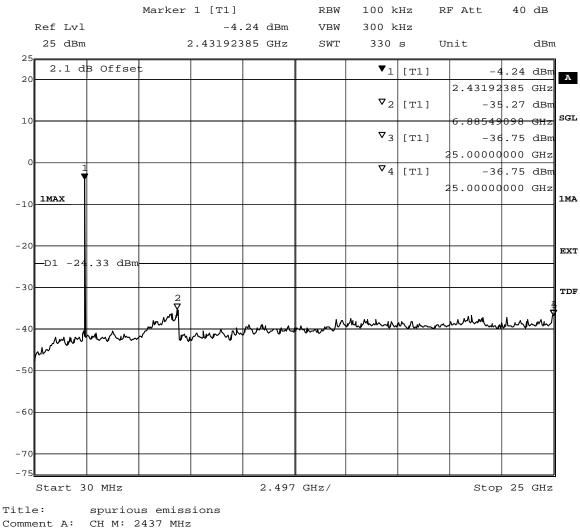
8.3.3 Band edge compliance conducted operating mode 1g

8.3.4 Spurious RF conducted emission operating mode 1g

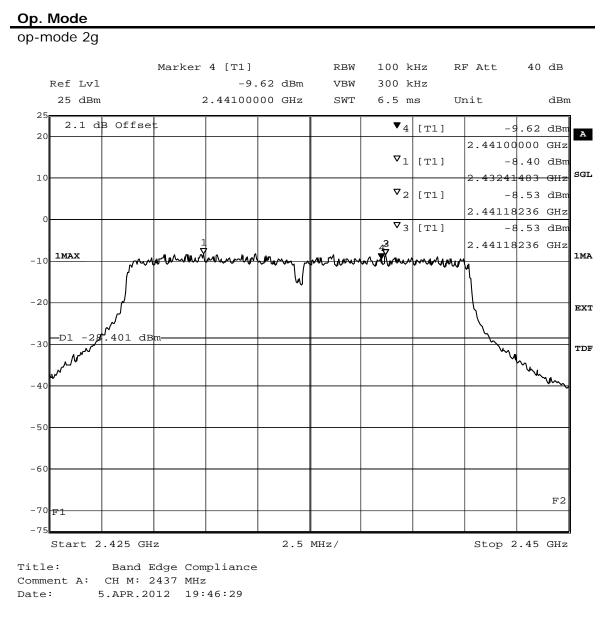
Test report Reference: MDE_HARMAN_1013_FCCb


Page 48 of 60

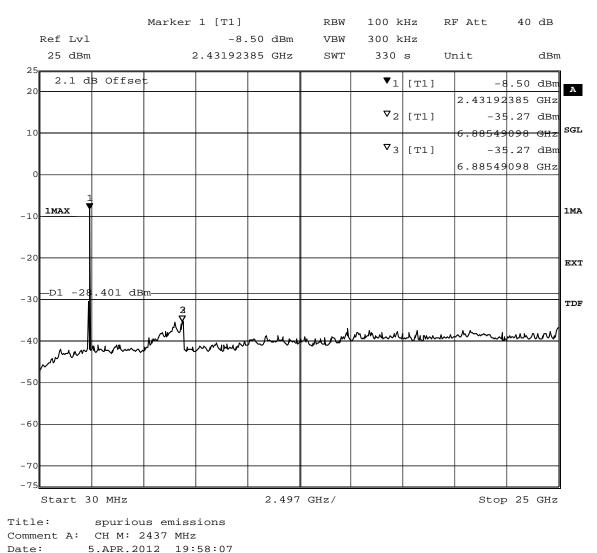
8.3.5 Spurious RF conducted emissions operating mode 2b


Op. Mode

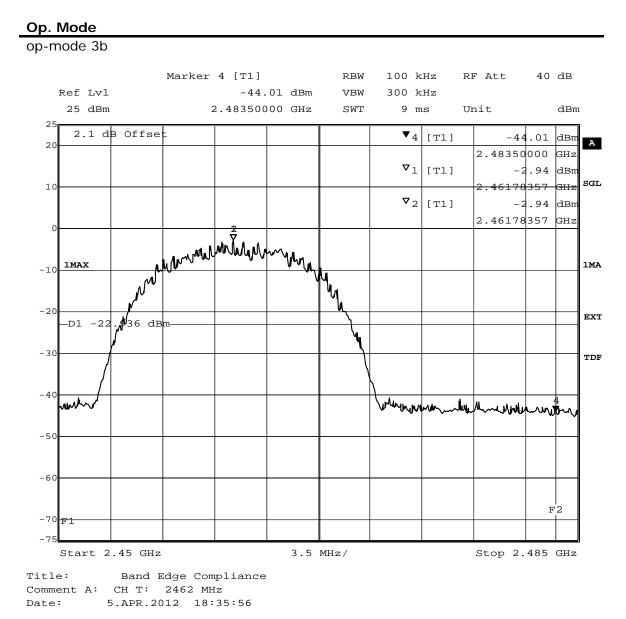
(determination of reference value for spurious emissions measurement)

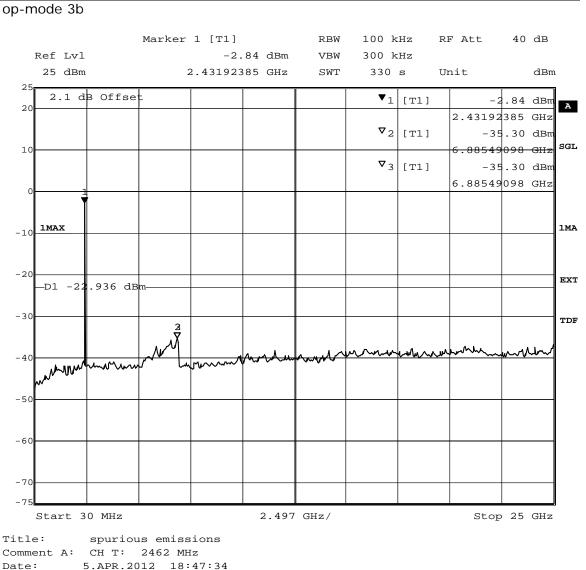


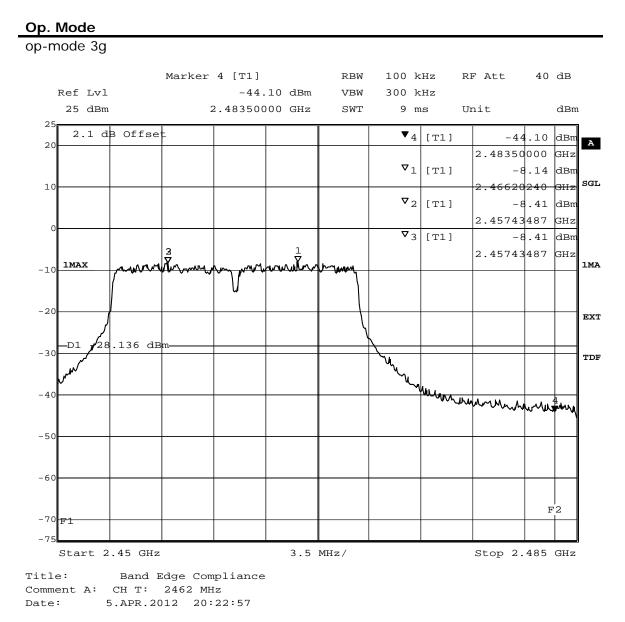
Date: 5.APR.2012 17:26:24



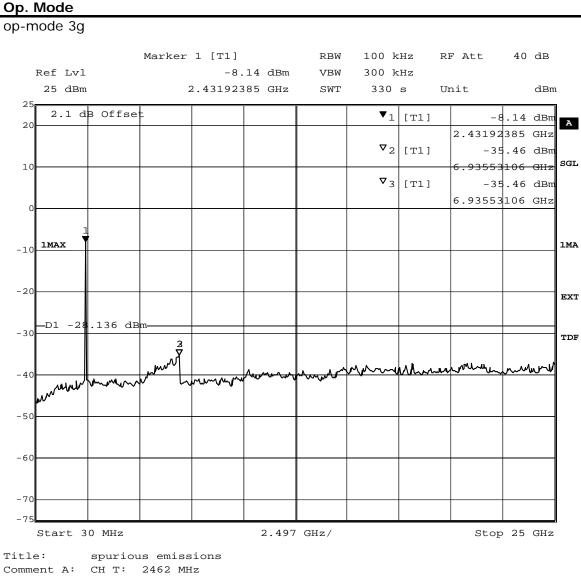
8.3.6 Spurious RF conducted emissions operating mode 2g


(determination of reference value for spurious emissions measurement)


8.3.7 Band edge compliance conducted operating mode 3b


8.3.8 Spurious RF conducted emission operating mode 3b

Op. Mode

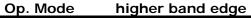


8.3.9 Band edge compliance conducted operating mode 3g

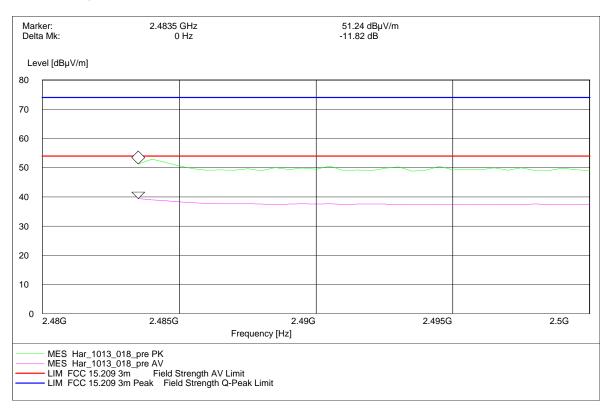
8.3.10 Spurious RF conducted emission operating mode 3g

Comment A: CH T: 2462 MHz Date: 5.APR.2012 20:34:36

8.3.11 Band edge compliance radiated operating mode 3

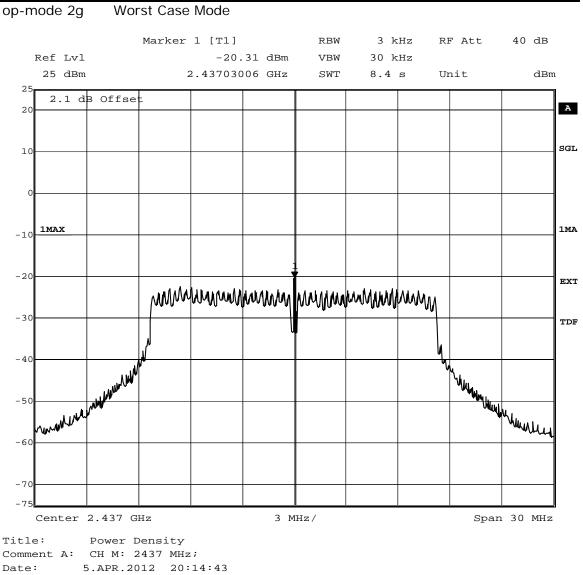

Op. Mode	hiaher	band edge
- p		and ange

op-mode 3b Marker: Delta Mk: 2.4835 GHz 49.39 dBµV/m 0 Hz -12.15 dB Level [dBµV/m] 80 70 60 $\langle \rangle$ 50 40 30 20 10 0 2.48G 2.485G 2.49G 2.495G 2.5G Frequency [Hz] MES Har_1013_015_pre PK MES Har_1013_015_pre AV LIM FCC 15.209 3m Field Strength AV Limit LIM FCC 15.209 3m Peak Field Strength Q-Peak Limit

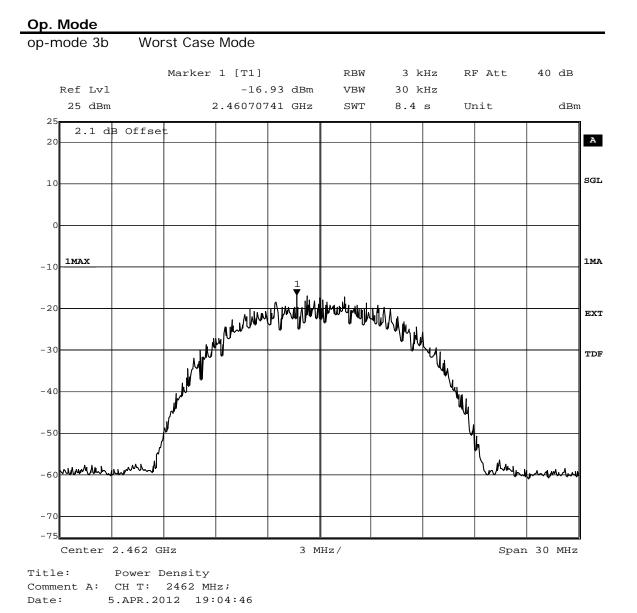

Radiated measurement (higher band edge)

Test report Reference: MDE_HARMAN_1013_FCCb

op-mode 3g



Radiated measurement (higher band edge)



8.4 Power density

