HARMAN AUTOMOTIVE DIVISION

HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH BECKER-GOERING-STRASSE 16 76307 KARLSBAD, GERMANY

CONTACT FOR FCC/IC, MR. SIMON VOEGELE

TEL +49 7248 71 3667 FAX +49 7248 71 4667

E-MAIL: SIMON.VOEGELE@HARMAN.COM

BABT TCB

Balfour House, Churchfield Road, Walton-on-Thames, Surrey, KT12 2TD

Karlsbad, March 21st, 2013

Subject: RF exposure analysis for the equipment NTG5 FU (FCC ID: T8G9091; IC: 6434A-9091)

The device NTG5 FU (FCC ID: T8G9091; IC: 6434A-9091) is designed to be installed in and used in mobile exposure conditions.

The antennas used for this device must be installed to provide a separation distance of at least 20 cm from all the persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Tunon Oogele

MPE exposure limits

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure:

Frequency Range (MHz)	Power density (mW/cm²)	Averaging time (minutes)
300 – 1500	f (MHz) /1500	30
1500 - 100.000	1,0	30

The table below is excerpted from RSS-102, Issue 4, 4.2, titled "RF Limits for Devices used by the General Public":

Frequency Range (MHz)	Power density (W/m²)	Averaging time (minutes)
300 – 1500	f (MHz) /150	6
1500 - 100.000	10	6

As all the operating frequencies of this device are higher than 1500 MHz, the applicable maximum permissive exposure is: 1 mW/cm².

Using the equation $S = \frac{PG}{4\pi R^2}$ to calculate the exposure to electromagnetic fields

where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Compliance with FCC and IC maximum permissive exposure limits is demonstrated based on the following calculations:

Measured conducted output power (please refer to test reports)	Maximum antenna gain calculation		
Bluetooth: 1.68 dBm Kleer 1: -0.21 dBm Kleer 2: -0.79 dBm	Bluetooth: Type of antenna: Antenna model: Gain (without cable): Min cable length in car. Cable attenuation: Connector loss: Effective Antenna gain: Mieer: Type of antenna: Antenna gain: Balum loss: Effective antenna gain:	External OEM antenna WISI AG200 4 dBi 1,78m 0,8 dB/m (@ 2.5 GHz) 0,15 dB 2,4 dBi PCB antenna 0.5 dBi 1 dB -0.5 dBi	

Frequency band (MHz)	Mode	Frequency Range (MHz)	OUTPUT POWER (dBm)	CONDUCTED OUTPUT POWER (mW)	Antenna gain (dBi)	Antenna gain (numerical)	Duty cycle (%)	Evaluation distance (cm)	Power density (mW/cm²)	FCC/IC MPE limit (mW/cm²)	MPE RATIO
2400-2483,5	Bluetooth	2402-2480	1,68	1,472	2,4	1,74	100%	20	0,0005	1,0000	0,0005
	Kleer 1	2403-2478	0,21	0,953	-0,5	0.89	100%	20	0,0002	1,0000	0,0002
	Kleer 2	2403-2478	-0,79	0,834	-0,5	0,89	100%	20	0,0001	1,0000	0,0001

∑ of MPE ratios:

0,0008

Sincerely,

Declared by:

Harman Becker Automotive Systems GmbH

Karlsbad

(Place)

Mr. Frank Weikelmann, Director Qualification Europe

Harr	man	Becker	Auton	notive	DIVISIO Systems	Gmbl
Bet	Ker-C	Boring-	Straße	16		
763	27 K	arlabad	, Gern	nany		

Karlsbad	21.03.2013	i. V. / Ochelman	
(Place)	(Date)	(Signature)	
Mr. Roland Kohlmeyer, Dir	ector Preventive Quality	10.	
		11/1/1/	

21.03.2013

(Date)