

A Test Lab Techno Corp.

Changan Lab : No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C. Tel : 886-3-271-0188 / Fax : 886-3-271-0190

SAR EVALUATION REPORT

Test Report No.	:	0805FS17		
Applicant	:	RTX Consumer Products Hong Kong Limited		
EUT Type	:	DECT Messenger		
FCC ID	:	T7HRTX8055		
Trade Name	:	NEC		
Model Name	:	M155		
Battery Type	:	Li-ion Battery (3.7V , 400mAh)		
Dates of Test	:	May. 27 ~ May. 28, 2008		
Test Environment	:	Ambient Temperature : 22 \pm 2 $^{\circ}$ C		
		Relative Humidity : 40 - 70 %		
Test Specification	:	Standard C95.1-1999		
		IEEE Std. 1528-2003		
Max. SAR	:	0.131 W/kg UPCS Body SAR		
Test Lab	:	Changan Lab		

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- 2. The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full.

Measurement Center Manager

Sam Chuang 20080602

Page 1 of 36

Testing Engineer

Contents

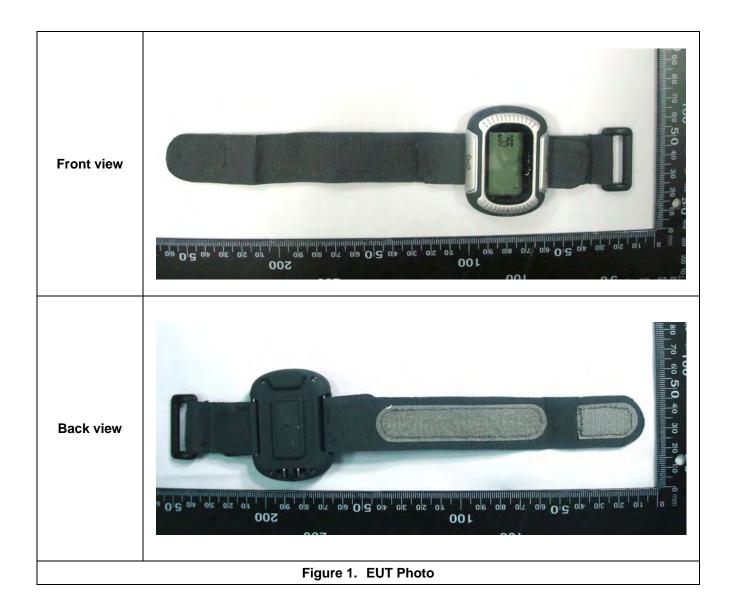
1.	Description of Equipment Under Test (EUT)3		
2.	Other Accessories	5	
3.	Introduction	6	
4.	SAR Definition	7	
5.	SAR Measurement Setup	8	
6.	System Components	10	
	6.1 DASY5 E-Field Probe System		
	6.2 Data Acquisition Electronic (DAE) System		
	6.3 Robot	13	
	6.4 Measurement Server		
	6.5 Device Holder for Transmitters	14	
	6.6 Phantom - SAM v4.0		
	6.7 Data Storage and Evaluation	15	
7.	Test Equipment List	18	
8.	Tissue Simulating Liquids	19	
	8.1 Liquid Confirmation	20	
9.	Measurement Process	22	
	9.1 Device and Test Conditions	22	
	9.2 System Performance Check	23	
	9.3 Dosimetric Assessment Setup	25	
	9.4 Spatial Peak SAR Evaluation	27	
10.	Measurement Uncertainty	28	
11.	SAR Test Results Summary	30	
	11.1 Body SAR Measurement	30	
	11.2 EUT Setup up Photo	32	
	11.3 Std. C95.1-1999 RF Exposure Limit	34	
12.	Conclusion	35	
13.	References	36	

Appendix

- Appendix A System Performance Check
- Appendix B SAR Measurement Data
- Appendix C Calibration

1. <u>Description of Equipment Under Test (EUT)</u>

Applicant :


RTX Consumer Products Hong Kong Limited 11/F, CAC Tower, 165 Hoi Bun Road, Kwun Tong, Kowloon. Hong Kong

Manufacturer	: In-Tech Electronics Ltd
Manufacturer Address	: 2 Qihang Industrial Park, Haoxiang Road Shajing, Baoan,
	Shenzhen, P.R.C
ЕИТ Туре	: DECT Messenger
FCC ID	: T7HRTX8055
Trade Name	: NEC
Model Name	: M155
Battery Type	: Li-ion Battery (3.7V,400mAh)
Test Device	· Production Unit
Tx Frequency	: 1921.536 -1928.448 MHz(UPCS)
Max. RF Conducted Power	: 0.096 W (19.84 dBm) UPCS
Max. SAR Measurement	: 0.131 W/kg UPCS Body SAR
HW Version	: NA
SW Version	: NA
Antenna Type	Fixed Type
Antenna Gain	: 0dBi
Device Category	: Portable
RF Exposure Environment	: General Population / Uncontrolled
Battery Option	: Standard
Application Type	: Certification

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

Page 3 of 36 Rev.00

2. Other Accessories

Figure 2. Charger & AC Adapter

3. <u>Introduction</u>

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **RTX Consumer Products Hong Kong Limited Trade Name : NEC Model(s) : M155**. The test procedures, as described in American National Standards, Institute C95.1 - 1999 [1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

4. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (P). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 3).

$$SAR = \frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 3. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where :

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

*Note :

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

5. <u>SAR Measurement Setup</u>

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Measurement Server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The PC consists of the Intel Core(TM)2 CPU @1.86GHz computer with Windows XP system and SAR Measurement Software DASY5, Post Processor SEMCAD, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection...etc. is connected to the Electro-optical converter (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the Measurement Server.

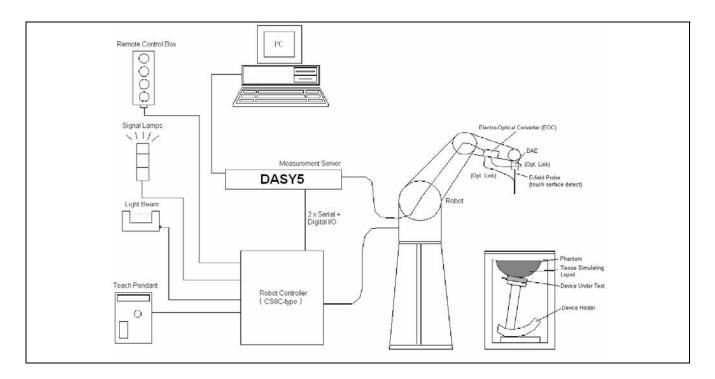


Figure 4. SAR Lab Test Measurement Setup

The DAE4 (or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [3].

6. <u>System Components</u>

6.1 DASY5 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 or ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

6.1.1 E-Field Probe Specification

Construction	Symmetrical design with triangular core	
	Built-in optical fiber for surface detection	
	System	
	Built-in shielding against static charges	
	PEEK enclosure material	
	(resistant to organic solvents, e.q., glycol)	
Calibration	In air from 10 MHz to 6 GHz	
	In brain and muscle simulating tissue at	
	frequencies of 450MHz, 900MHz, 1800MHz, 1950MHz,	
	2000MHz and 2450MHz (accuracy $\pm 8\%$)	
	Calibration for other liquids and frequencies upon request	
Frequency	10 MHz to $>$ 6 GHz; Linearity: ±0.2 dB	
	(30 MHz to 3 GHz)	
Directivity	± 0.3 dB in brain tissue (rotation around probe axis)	
	± 0.5 dB in brain tissue (rotation normal probe axis)	
Dynamic Range	10 μ W/g to > 100mW/g; Linearity: ±0.2dB	
Surface Detection	± 0.2 mm repeatability in air and clear liquids	
	over diffuse reflecting surface(ET3DV6 only)	
Dimensions	Overall length: 330mm	
	Tip length: 20mm	
	Body diameter: 12mm	
	Tip diameter: 2.5mm	
	Distance from probe tip to dipole centers: 1.0mm	
Application	General dosimetry up to 6GHz	
	Compliance tests of mobile phones	
	Fast automatic scanning in arbitrary phantoms	

Figure 5. E-field Probe

Figure 6. Probe setup on robot

6.1.2E-Field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure described in (4) with accuracy better than ±10%. The spherical isotropy was evaluated with the procedure described in (5) and found to be better than ±0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1GHz, and in a wave guide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathsf{SAR} = \mathsf{C}\frac{\Delta T}{\Delta t}$$

Where :

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

 ΔT = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where :

 σ = Simulated tissue conductivity,

 $\boldsymbol{\rho}$ = Tissue density (kg/m³).

6.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor :	Intel Core(TM)2 CPU
Clock Speed :	@ 1.86GHz
Operating System :	Windows XP Professional

Data Converter

Features :	Signal Amplifier, multiplexer, A/D converter, and control logic	
Software :	DASY5 v5.0 (Build 119) & SEMCAD X Version 13.2 Build 87	
Connecting Lines :	Optical downlink for data and status info	
	Optical uplink for commands and clock	

6.3 Robot

Positioner :	Stäubli Unimation Corp. Robot Model: TX90X	
Repeatability :	±0.02 mm	
No. of Axis:	6	

6.4 Measurement Server

Processor :	PC/104 with a 400MHz intel ULV Celeron	
I/O-board:	Link to DAE4(or DAE3)	
	16-bit A/D converter for surface detection system	
	Digital I/O interface	
	Serial link to robot	
	Direct emergency stop output for robot	

6.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the IEEE SCC34-SC2 and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom). ***Note**: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [6]. To produce the worst-case condition (the hand

Larger DUT cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

absorbs antenna output power), the hand is omitted during the tests.

Figure 7. Device Holder

6.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Figure 8. SAM Twin Phantom

Shell Thickness	2 ±0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	810×1000×500 mm (H×L×W)	

Table 1. Specification of SAM v4.0

6.7 Data Storage and Evaluation

6.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA5. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

6.7.2 Data Evaluation

The DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	dcpi
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel *i* (*i* = x, y, z)

 U_i = input signal of channel *i* (*i* = x, y, z)

cf = crest factor of exciting field (DASY parameter)

*dcp*_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated :

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes :

$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

with V_i = compensated signal of channel *i* (*i* = x, y, z) *Norm*_{*i*} = sensor sensitivity of channel i (*i* = x, y, z) $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

- a_{ij} = sensor sensitivity factors for H-field probes
- f = carrier frequency [GHz]
- E_i = electric field strength of channel *i* in V/m
- Hi = magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [NEC/m]

 ρ = equivalent tissue density in g/cm³

***Note**: that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

7. <u>Test Equipment List</u>

Manufacturer Name of Equipment		Type/Model	Serial Number	Calibration	
		- JPS/ III GOOI		Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV3	3150	Jan. 09, 2008	Jan. 09, 2009
SPEAG	2000MHz System Validation Kit	D2000V3	1008	Mar. 18, 2008	Mar. 18, 2009
SPEAG	Data Acquisition Electronics	DAE4	779	Nov. 30, 2007	Nov. 30, 2008
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	SAM V4.0	TP-1150	NCR	NCR
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/C/01	NCR	NCR
SPEAG	Software	DASY5 V5.0 Build 119	N/A	NCR	NCR
SPEAG	Software	SEMCAD V13.2 Build 87	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 011 AA	1025	NCR	NCR
R & S	Wireless Communication Test Set	CMU200	112387	Oct. 24, 2007	Oct. 24, 2008
Agilent	ENA Series Network Analyzer	E5071B	MY42402996	Oct. 23, 2007	Oct. 23, 2008
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR	NCR
R&S	Power Sensor	NRP-Z22	100179	Apr. 23, 2008	Apr. 23, 2009
Agilent	Signal Generator	8648C	3847A05201	Jul. 03, 2007	Jul. 03, 2008
Agilent	Dual Directional Coupler	778D	50334	NCR	NCR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	NCR
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NCR	NCR

Table 2. Test Equipment List

8. <u>Tissue Simulating Liquids</u>

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8720ES Network Analyzer.

INGREDIENT	FREQUENCY		
	HSL1.9GHz (Head)	MSL1.9GHz (Body)	
Water	55.41%	69.79%	
DGBE	44.51%	30.00%	
Salt	0.08%	0.20%	

Table 3. Recipes for Head & Body Tissue Simulating Liquids

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	Не	ad	Body		
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 - 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	
(ε _r = relative pe	rmittivity, $\boldsymbol{\sigma} = c$	onductivity and	ρ = 1000 kg/m	³)	

Table 4. Tissue dielectric parameters for head and body phantoms

8.1 Liquid Confirmation

8.1.1 Parameters

Liquid Verify								
Ambient	Ambient Temperature: 22 ± 2 °C; Relative Humidity: 40 -70%							
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date
2000MHz	00001411-	22.0	٤r	53.3	50.90	-4.50%	±5%	May 27 2009
Body	2000MHz	22.0	σ	1.52	1.56	2.63%	±5%	May. 27, 2008
	Table 5. Measured Tissue dielectric parameters for body phantoms							

8.1.2 Liquid Depth

The liquid level was during measurement 15cm $\pm 0.5 \text{cm}.$

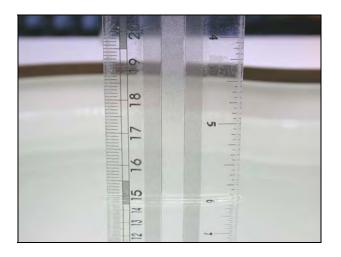


Figure 9. Head-Tissue-Simulating-Liquid

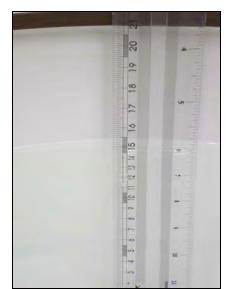


Figure 10. Body-Tissue-Simulating-Liquid

9. <u>Measurement Process</u>

9.1 Device and Test Conditions

The Test Device was provided by **RTX Consumer Products Hong Kong Limited** for this evaluation. The spatial peak SAR values were assessed for the lowest, middle and highest channels defined by UPCS (Ch0 = 1928.448MHz, Ch2 = 1924.992MHz, Ch4 = 1921.536MHz) systems. The antenna(s), battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

Usage		Operates with test mode by client						
Distance between antenna axis at the joint and the liquid surface:		For Body, EUT Top to phantom 0mm separation. For Body, EUT Bottom to phantom 0mm separation. For Body, EUT Left & Right Side to phantom 0mm separation.						
Simulating human He	ad/Body	Body	Body					
EUT Battery		Fully-charged with Li-ion batteries.						
	Channel		Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)			
Conducted power Highest Cl		hannel - 0	1928.448	19.75	19.74			
	Middle Channel - 2		1924.992	19.75	19.74			
Lowest Ch		hannel - 4	1921.536	19.84	19.83			

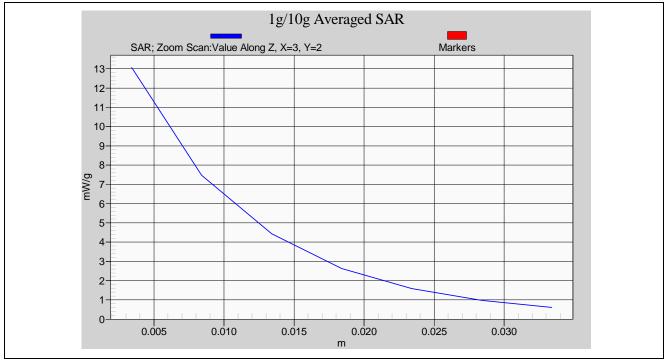
Note: The EUT take Li-ion battery as its power source. Each test was preceded under the condition of fully-charged EUT.

9.2 System Performance Check

9.2.1 Symmetric Dipoles for System Validation

Construction	Symmetrical dipole with I/4 balun enables measurement
	of feed point impedance with NWA matched for use near
	flat phantoms filled with head simulating solutions
	Includes distance holder and tripod adaptor Calibration
	Calibrated SAR value for specified position and input
	power at the flat phantom in head simulating solutions.
Frequency	450, 900, 1800, 1950, 2000, 2450, 5200, 5600, 5800MHz
Return Loss	> 20 dB at specified validation position
Power Capability	> 100 W (f < 1GHz); > 40 W (f > 1GHz)
Options	Dipoles for other frequencies or solutions and other
	calibration conditions are available upon request
Dimensions	D450V2 : dipole length 270 mm; overall height 330 mm
	D900V2 : dipole length 149 mm; overall height 330 mm
	D1800V2 : dipole length 72 mm; overall height 300 mm
	D1950V2 : dipole length 62 mm; overall height 300 mm
	D2000V2 : dipole length 65 mm; overall height 300 mm
	D2000V2 : dipole length 65 mm; overall height 300 mm D2450V2 : dipole length 51.5 mm; overall height 300 mm

Figure 11. Validation Kit


9.2.2 Validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 2000MHz.

Validat	ion kit	Mixture Type	SA [mV	R₁g V/g]	SAR _{10g} [mW/g]		Date of Calibration	
D2000V2	-SN1008	Body	43	3.6	22.36		Mar. 18, 2008	
Frequency (MHz)	Power			Drift (dB)	Difference percentage		Date	
(11112)		(mW/g)	(mW/g)	(ub)	1g	10g		
2000	250mW	10.8	5.58	0.041	-0.9 %	-0.2 %	May 27, 2009	
(Body)	Normalize to 1 Watt	43.2	22.32	0.041	-0.9 %	-0.2 %	May. 27, 2008	

Detail results see Appendix A.

Z-axis Plot of System Performance Check

Body -Tissue-Simulating-Liquid 2000MHz

9.3 Dosimetric Assessment Setup

9.3.1 Body - Worn Test Position

Body-Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. For this test :

- The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the phantom in a normal operating position.
- Since this EUT doesn't supply any body-worn accessory to the end user, a distance of 2 mm was tested to confirm the necessary "minimum SAR separation distance". (*Note : This distance includes the 2 mm phantom shell thickness.)

9.3.2 Measurement Procedures

The evaluation was performed with the following procedures :

- Surface Check : A surface check job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.
- **Reference :** The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.
- Area Scan : The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was 15 mm × 15 mm.
- Zoom Scan : Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures 5 x 5 x 7 points in a 32 x 32 x 30 mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.
- **Drift :** The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

9.4 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of (32×32×30)mm³ (5×5×7 points). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

10. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 21.9 \%$ [8].

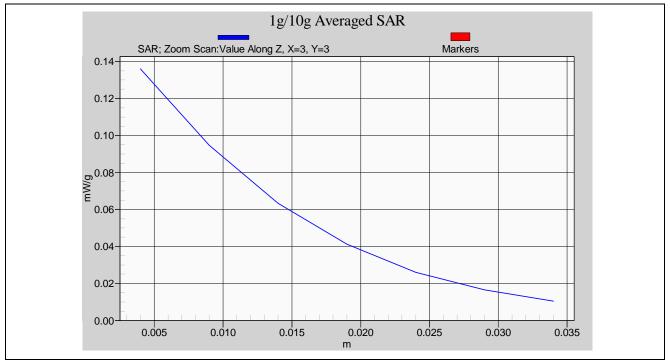
According to Std. C95.3 [9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC [10], typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Error Description	Uncertainty value	Prob. Dist.	Div.	(<i>ci</i>) 1g	(<i>ci</i>) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	± 5.9 %	Ν	1	1	1	± 5.9 %	± 5.9 %	
Axial Isotropy	± 4.7 %	R		0.7	0.7	± 1.9 %	± 1.9 %	∞
Hemispherical Isotropy	± 9.6 %	R	$\sqrt{3}$	0.7	0.7	± 3.9 %	± 3.9 %	8
Boundary Effects	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	8
Linearity	± 4.7 %	R	$\sqrt{3}$	1	1	± 2.7 %	± 2.7 %	∞
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	∞
Readout Electronics	± 0.3 %	N	1	1	1	± 0.3 %	± 0.3 %	∞
Response Time	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %	∞
Integration Time	± 2.6 %	R	$\sqrt{3}$	1	1	± 1.5 %	± 1.5 %	∞
RF Ambient Noise	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
RF Ambient Reflections	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
Probe Positioner	± 0.4 %	R	$\sqrt{3}$	1	1	± 0.2 %	± 0.2 %	∞
Probe Positioning	± 2.9 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
Max. SAR Eval.	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	∞
Test Sample Related				•			•	
Device Positioning	± 2.9 %	Ν	1	1	1	± 2.9 %	± 2.9 %	145
Device Holder	± 3.6 %	Ν	1	1	1	± 3.6 %	± 3.6 %	5
Power Drift	± 5.0 %	R	$\sqrt{3}$	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Setup				•	•			
Phantom Uncertainty	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	2.3 %	∞
Liquid Conductivity (target)	± 5.0 %	R	$\sqrt{3}$	0.64	0.43	± 1.8 %	1.2 %	∞
Liquid Conductivity (meas.)	± 2.5 %	N	1	0.64	0.43	± 1.6 %	1.1 %	∞
Liquid Permittivity (target)	± 5.0 %	R	$\sqrt{3}$	0.6	0.49	± 1.7 %	1.4 %	∞
Liquid Permittivity (meas.)	± 2.5 %	N	1	0.6	0.49	± 1.5 %	1.2 %	∞
Combined Std. Uncertainty					± 10.9 %	± 10.7 %	387	1
Expanded STD Uncertainty					± 21.9 %	± 21.4 %		

Table 6. Uncertainty Budget of DASY

11. SAR Test Results Summary


11.1 Body SAR Measurement

	rature (°C)): <u>22 -</u>	± 2	Re	lative HUM	IDITY (%):	40 - 70		
Liquid : Mixture	Type:	MSL	2000	Lic De	<u>22.0</u> 15				
Measuremen Crest F	-	1			be S/N:	-	3150		
Frequen	су	Battery	Phantom	Accessory	SAR _{1g}	Power Drift	Amb.	Remark	
MHz	СН	Duttory	Position	, lococcely	[mW/g]	(dB)	Temp.		
1928.448	0	Li-ion	Flat	N/A	0.079	0.076	22.0	EUT Bottom to Phantom	
1928.448	0	Li-ion	Flat	N/A	0.131	0.042	22.0	EUT Top to Phantom	
1928.448	0	Li-ion	Flat	N/A	0.00612	0.099	22.0	EUT Left side to Phantom	
1928.448	0	Li-ion	Flat	N/A	0.00405	0.106	22.0	EUT Right side to Phantom	
1924.992	2	Li-ion	Flat	N/A	0.076	-0.012	22.0	EUT Bottom to Phantom	
1921.536	4	Li-ion	Flat	N/A	0.075	0.00533	22.0	EUT Bottom to Phantom	
Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						1.6 W/kg Averaged	g (mW/g) over 1 gr		

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Body SAR Measurement _ EUT Top to phantom (0mm) _ CH 0

11.2 EUT Setup up Photo

Figure 12. Body SAR Test Setup _ Bottom to Phantom (0mm space)

Figure 13. Body SAR Test Setup _ Top to Phantom (0mm space)

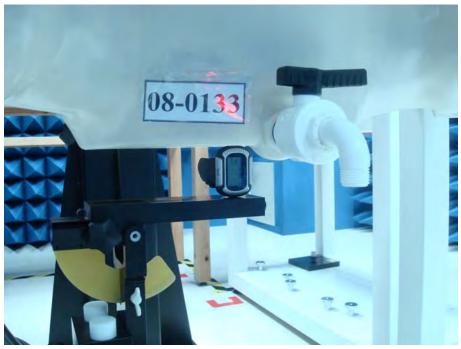


Figure 14. Body SAR Test Setup _ Left Side to Phantom (0mm space)

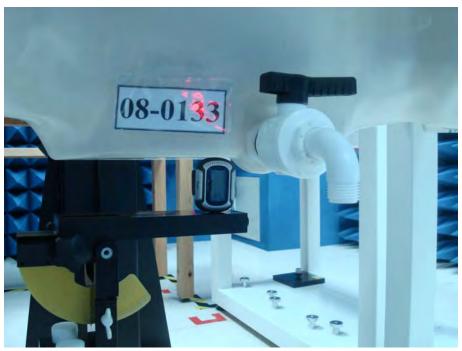


Figure 15.Body SAR Test Setup _ Right Side to Phantom (0mm space)

11.3 Std. C95.1-1999 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg) or (mW/g)	Occupational Controlled Exposure (W/kg) or (mW/g)		
Spatial Peak SAR* (head)	1.60	8.00		
Spatial Peak SAR** (Whole Body)	0.08	0.40		
Spatial Peak SAR*** (Partial-Body)	1.60	8.00		
Spatial Peak SAR**** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

 Table 7. Safety Limits for Partial Body Exposure

Notes :

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments : are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments : are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

12. <u>Conclusion</u>

The SAR test values found for the portable mobile phone **RTX Consumer Products Hong Kong Limited Trade Name : NEC** Model(s) : M155 are below the maximum recommended level of 1.6 W/kg (mW/g).

13. <u>References</u>

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "*Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields*", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Poković, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "*E-field probe with improved isotropy in brain simulating liquids*", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "*Multivariate Interpolation Of Large Sets Of Scattered Data*", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, Aug. 1992.
- [10]CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

See following Attached Pages for System Performance Check.

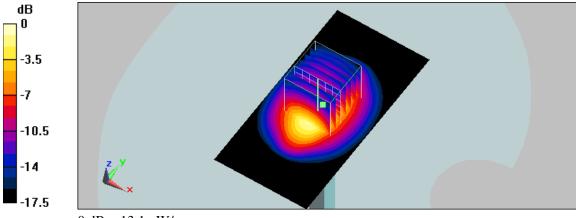
Date/Time: 5/27/2008 9:06:30 AM

System Performance Check at 2000MHz_20080527_Body

DUT: Dipole 2000 MHz; Type: D 2000V2; Serial: D2000V2 - SN:1008

Communication System: CW; Frequency: 2000 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2000 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

System Performance Check at 2000MHz/Area Scan (41x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.2 mW/g

System Performance Check at 2000MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.9 V/m; Power Drift = 0.041 dB Peak SAR (extrapolated) = 19.5 W/kg SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.58 mW/g Maximum value of SAR (measured) = 13.1 mW/g

 $0 \, dB = 13.1 \, mW/g$

Appendix B - SAR Measurement Data

See following Attached Pages for SAR Measurement Data.

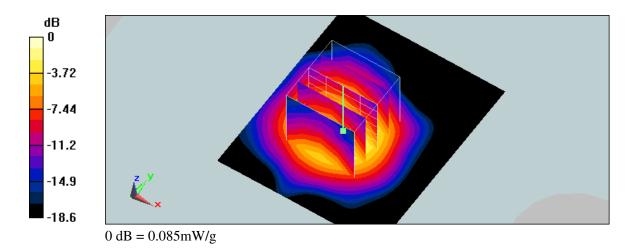
Date/Time: 5/28/2008 12:33:37 AM

Flat_DECT_CH0_Bottom Close Body

DUT: M155; Type: DECT Messenger; FCC ID: T7HRTX8055

Communication System: DECT; Frequency: 1928.448 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1928.448 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.098 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 7.29 V/m; Power Drift = 0.076 dB Peak SAR (extrapolated) = 0.114 W/kg SAR(1 g) = 0.079 mW/g; SAR(10 g) = 0.046 mW/g Maximum value of SAR (measured) = 0.085 mW/g

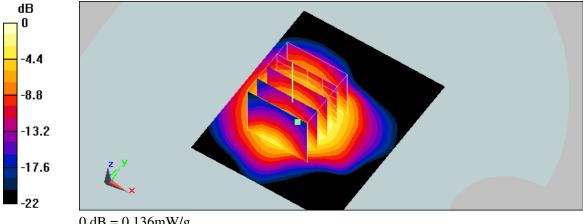
Date/Time: 5/28/2008 1:19:01 AM

Flat_DECT_CH0_Top Close Body

DUT: M155; Type: DECT Messenger; FCC ID: T7HRTX8055

Communication System: DECT; Frequency: 1928.448 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1928.448 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.156 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.91 V/m; Power Drift = 0.042 dB Peak SAR (extrapolated) = 0.198 W/kgSAR(1 g) = 0.131 mW/g; SAR(10 g) = 0.077 mW/gMaximum value of SAR (measured) = 0.136 mW/g

 $0 \, dB = 0.136 \, mW/g$

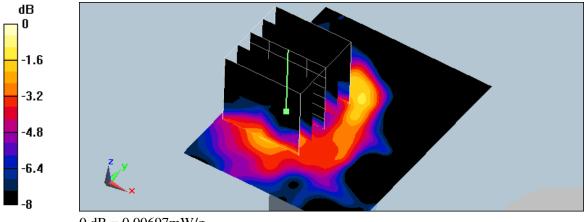
Date/Time: 5/28/2008 2:12:00 AM

Flat_DECT_CH0_Left side Close Body

DUT: M155; Type: DECT Messenger; FCC ID: T7HRTX8055

Communication System: DECT; Frequency: 1928.448 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1928.448 MHz; σ = 1.51 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (71x91x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.00739 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.22 V/m; Power Drift = 0.099 dB Peak SAR (extrapolated) = 0.011 W/kg SAR(1 g) = 0.00612 mW/g; SAR(10 g) = 0.00298 mW/g Maximum value of SAR (measured) = 0.00697 mW/g

 $0 \, dB = 0.00697 \, mW/g$

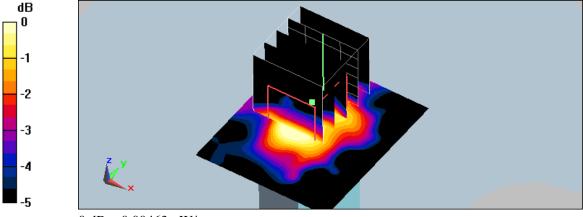
Date/Time: 5/28/2008 3:17:21 AM

Flat_DECT_CH0_Right side Close Body

DUT: M155; Type: DECT Messenger; FCC ID: T7HRTX8055

Communication System: DECT; Frequency: 1928.448 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1928.448 MHz; σ = 1.51 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (61x71x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.00504 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 1.8 V/m; Power Drift = 0.106 dB Peak SAR (extrapolated) = 0.00766 W/kg SAR(1 g) = 0.00405 mW/g; SAR(10 g) = 0.00227 mW/g Maximum value of SAR (measured) = 0.00463 mW/g

 $0 \, dB = 0.00463 \, mW/g$

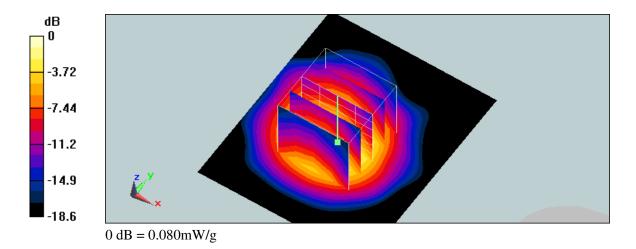
Date/Time: 5/28/2008 12:47:48 AM

Flat_DECT_CH2_Bottom Close Body

DUT: M155; Type: DECT Messenger; FCC ID: T7HRTX8055

Communication System: DECT; Frequency: 1924.992 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1924.992 MHz; σ = 1.51 mho/m; ε_r = 51.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.095 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 7.53 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 0.108 W/kg SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.044 mW/g Maximum value of SAR (measured) = 0.080 mW/g

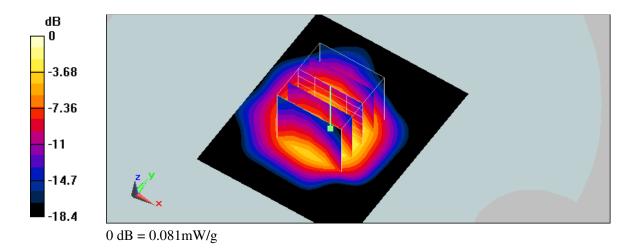
Date/Time: 5/28/2008 1:01:06 AM

Flat_DECT_CH4_Bottom Close Body

DUT: M155; Type: DECT Messenger; FCC ID: T7HRTX8055

Communication System: DECT; Frequency: 1921.536 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1921.536 MHz; σ = 1.51 mho/m; ε_r = 51.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 11/30/2007
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.097 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.5 V/m; Power Drift = 0.00533 dB Peak SAR (extrapolated) = 0.108 W/kg SAR(1 g) = 0.075 mW/g; SAR(10 g) = 0.044 mW/g Maximum value of SAR (measured) = 0.081 mW/g

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D2000V3 SN:1008 Calibration No.D2000V3-1008_Mar08
- Probe _ ET3DV3SN:3150 Calibration No.ET3-3150_Jan08
- DAE _ DAE4 SN:779Calibration No.DAE4-779_Nov07

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client ATL (Auden)

Certificate No: D2000V2-1008_Mar08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	D2000V2 - SN:1008		
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 18, 2008		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence p	onal standards, which realize the physical units of robability are given on the following pages and are y facility: environment temperature (22 ± 3)°C and	e part of the certificate.
	TE critical for calibration)		
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards		Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736)	Scheduled Calibration Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ID #		Oct-08 Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736)	Oct-08 Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718)	Oct-08 Oct-08 Aug-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718)	Oct-08 Oct-08 Aug-08 Aug-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID #	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 Name	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) Function	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

Certificate No: D2000V2-1008_Mar08

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2000 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.9 mW / g
SAR normalized	normalized to 1W	43.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	41.8 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.54 mW / g
		5.54 mW / g 22.2 mW / g

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.3 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	10.9 mW / g
SAR normalized	normalized to 1W	43.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	42.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.59 mW / g
SAR normalized	normalized to 1W	22.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	21.9 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 1.1 jΩ	
Return Loss	- 35.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω + 0.5 jΩ	
Return Loss	- 29.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

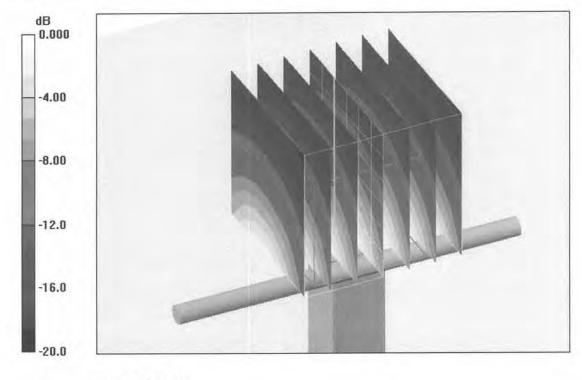
Manufactured by	SPEAG
Manufactured on	May 27, 2003

DASY4 Validation Report for Head TSL

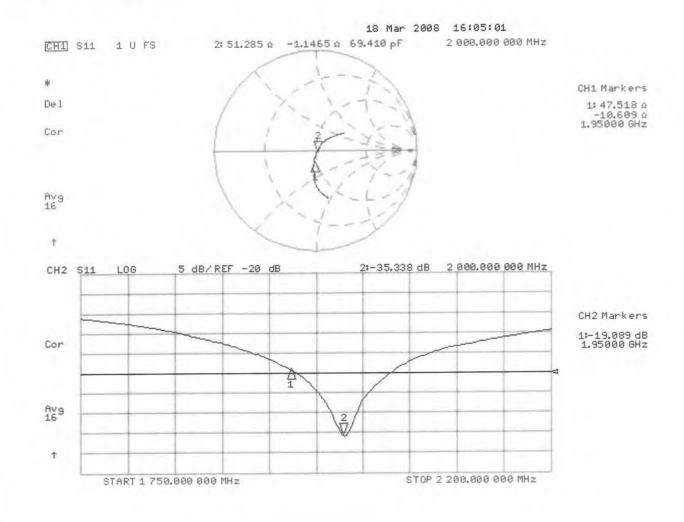
Date/Time: 18.03.2008 16:43:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2000 MHz; Type: D2000V2; Serial: D2000V2 - SN:1008


Communication System: CW; Frequency: 2000 MHz;Duty Cycle: 1:1 Medium: HSL1950; Medium parameters used: f = 2000 MHz; σ = 1.45 mho/m; ϵ_r = 38; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

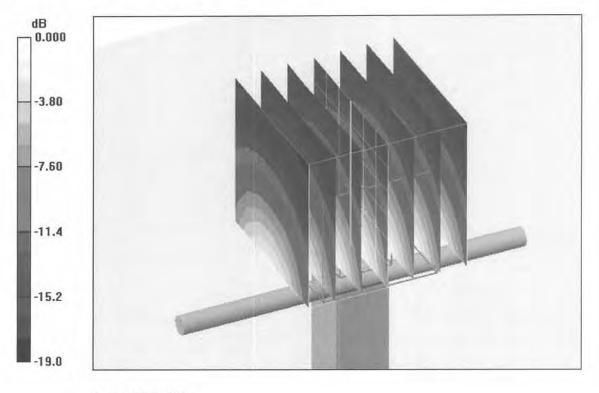

- Probe: ES3DV2 SN3025; ConvF(4.78, 4.78, 4.78); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.0 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 20.7 W/kg SAR(1 g) = 10.9 mW/g; SAR(10 g) = 5.54 mW/g Maximum value of SAR (measured) = 12.9 mW/g

0 dB = 12.9mW/g

Impedance Measurement Plot for Head TSL

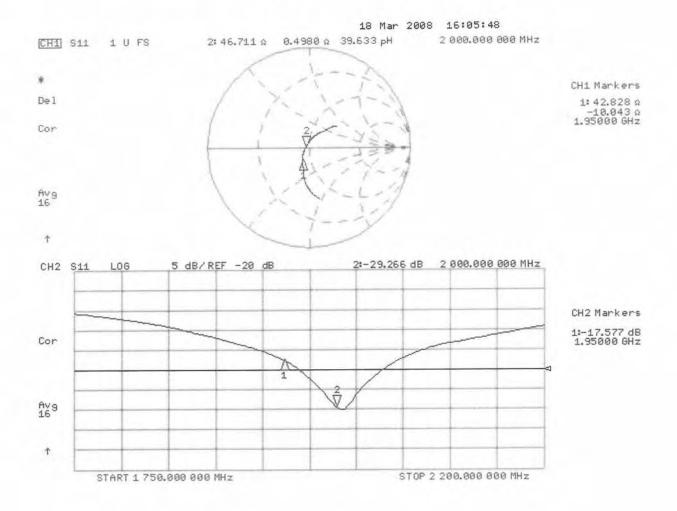

NeGiti1: ໃກເຮັບໄດ້ຮ່ວຍ, Paratt for Pade TSI Medium parameters used: f = 2000 MHz; σ = 1.6 mho/m; ϵ_r = 52; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.45, 4.45, 4.45); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.7 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 10.9 mW/g; SAR(10 g) = 5.59 mW/g Maximum value of SAR (measured) = 13.2 mW/g



0 dB = 13.2mW/g

Certificate No: D2000V2-1008_Mar08

Page 8 of 9

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3150_Jan08

Accreditation No.: SCS 108

S

Client	ATL	(Auden)	
		the second second second second	

Calibration procedure(s)		150	
	QA CAL-01.v6 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	January 9, 2008		
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (M8	TE critical for calibration)	ory facility: environment temperature (22 ± 3)°C and	Scheduled Calibration
Primary Standards Power meter E4419B	ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670)	Mar-08
ower sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
	MY41498087	29-Mar-07 (METAS, No. 217-00670)	
ower sensor E4412A			Mar-08
enter rentered entropy	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Mar-08 Aug-08
eference 3 dB Attenuator	SN: S5054 (3c) SN: S5086 (20b)		
Reference 3 dB Attenuator Reference 20 dB Attenuator		8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720)	Aug-08 Mar-08 Aug-08
teference 3 dB Attenuator teference 20 dB Attenuator teference 30 dB Attenuator teference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08)	Aug-08 Mar-08 Aug-08 Jan-09
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720)	Aug-08 Mar-08 Aug-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08)	Aug-08 Mar-08 Aug-08 Jan-09
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Aug-08 Mar-08 Aug-08 Jan-09 Apr-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID #	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Aug-08 Mar-08 Aug-08 Jan-09 Apr-08 Scheduled Check
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Oct-07)	Aug-08 Mar-08 Aug-08 Jan-09 Apr-08 Scheduled Check In house check: Oct-09
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Aug-08 Mar-08 Aug-08 Jan-09 Apr-08 Scheduled Check In house check: Oct-09 In house check: Oct-08
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) Function	Aug-08 Mar-08 Aug-08 Jan-09 Apr-08 Scheduled Check In house check: Oct-09 In house check: Oct-08

Certificate No: ES3-3150_Jan08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3150 Jan08

January 9, 2008

ES3DV3 SN:3150

Probe ES3DV3

SN:3150

Manufactured: Calibrated: June 12, 2007 January 9, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3150_Jan08

January 9, 2008

DASY - Parameters of Probe: ES3DV3 SN:3150

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.24 ± 10.1%	μ V/(V/m) ²	DCP X	89 mV
NormY	1.25 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV
NormZ	1.24 ± 10.1%	μ V/(V/m) ²	DCP Z	98 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.0	6.8
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

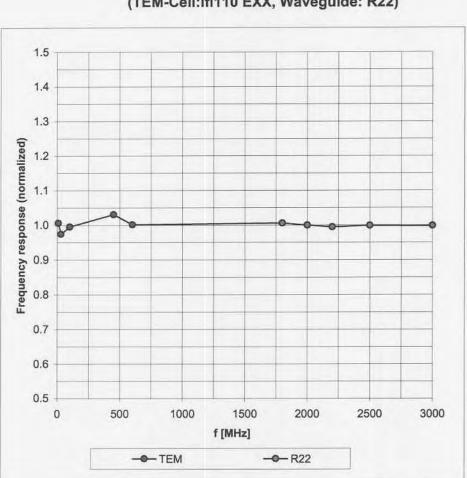
1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.5	7.2
SAR _{be} [%]	With Correction Algorithm	0.3	0.6

Sensor Offset

TSL

Probe Tip to Sensor Center

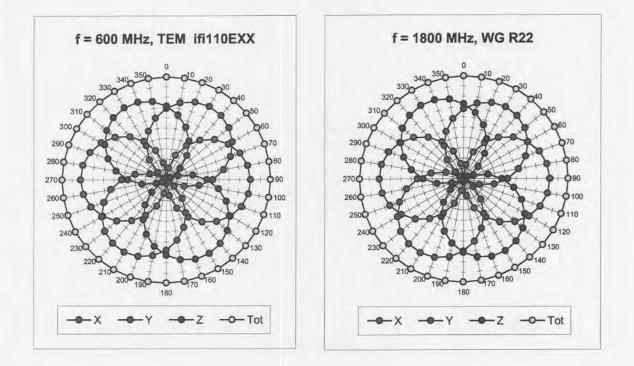

2.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

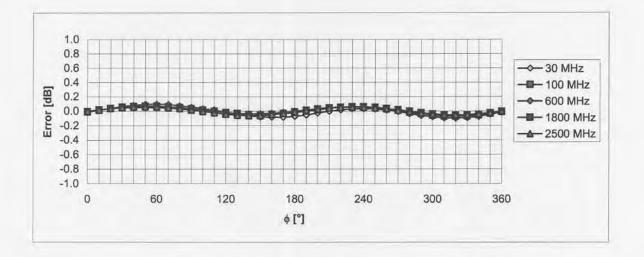
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

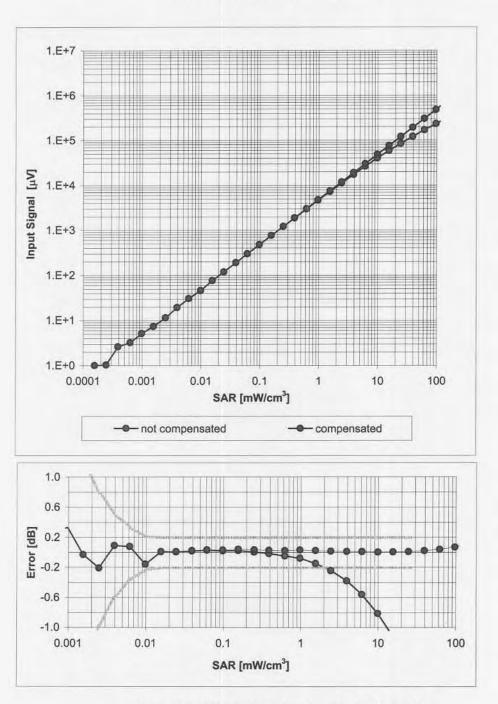
January 9, 2008


Frequency Response of E-Field

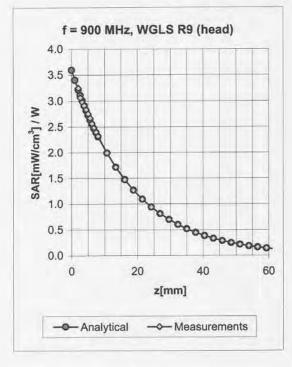
(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

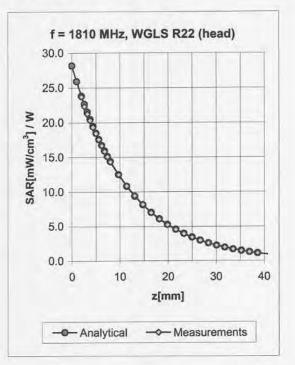
Certificate No: ES3-3150_Jan08


January 9, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

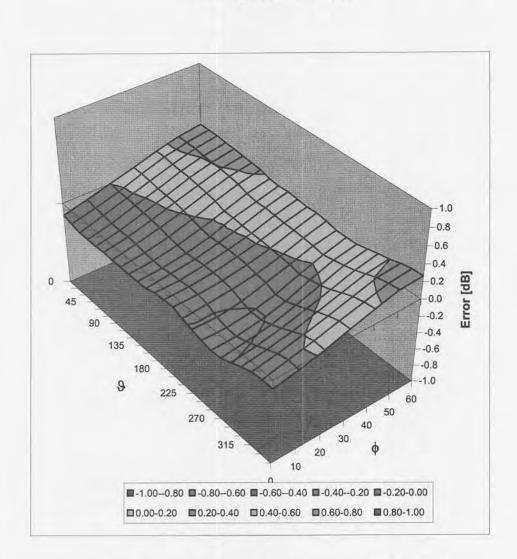


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.77	1.35	6.23 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.89	1.24	5.11 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.66	1.48	4.84 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.63	1.52	4.54 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.80	1.30	6.00 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.96	1.12	4.95 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.76	1.29	4.55 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.63	1.48	4.19 ± 11.8% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3150_Jan08

Deviation from Isotropy in HSL Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory Schmid & Partner Engineering AG _{Zeughausstrasse} 43, 8004 Zurich, 5		HAC-MRA (C C Z	 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accreditatio The Swiss Accreditation Service is Multilateral Agreement for the reco	one of the signatories	to the EA	on No.: SCS 108
Client ATL (A	ruolen)	Certificate	No: DAE4-779_Nov07
CALIBRATION CE	RTIFICATE		
Object	DAE4 - SD 000 D	04 BG - SN: 779	
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	lure for the data acquisition ele	ectronics (DAE)
Calibration date:	November 30, 200	07	
Condition of the calibrated item	In Tolerance		
	d in the closed laboratory	obability are given on the following pages rfacility: environment temperature (22 ± 3	
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001	SN: 6295803 SN: 0810278	04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465)	Oct-08 Oct-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	25-Jun-07 (SPEAG, in house check)	In house check Jun-08
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Technician	A. Neffer
Approved by:	Fin Bomholt	R&D Director	iv. Relieur
			Issued: November 30, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE

Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Reso	olution nominal			
High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DAOV measurement	noromotore: Aut	to Zoro Timo: 3	soc. Measuring	time: 3 sec

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.367 ± 0.1% (k=2)	403.591 ± 0.1% (k=2)	403.822 ± 0.1% (k=2)
Low Range	3.97765 ± 0.7% (k=2)	3.96449 ± 0.7% (k=2)	$3.98429 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	83 ° ± 1 °
---	------------

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.1	0.00
Channel X + Input	20000	20006.71	0.03
Channel X - Input	20000	-20000.39	0.00
Channel Y + Input	200000	200000.5	0.00
Channel Y + Input	20000	20003.40	0.02
Channel Y - Input	20000	-19997.93	-0.01
Channel Z + Input	200000	200000.1	0.00
Channel Z + Input	20000	20004.76	0.02
Channel Z - Input	20000	-20002.27	0.01

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	200.18	0.09
Channel X - Input	200	-200.54	0.27
Channel Y + Input	2000	1999.9	0.00
Channel Y + Input	200	200.20	0.10
Channel Y - Input	200	-200.13	0.06
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	198.86	-0.57
Channel Z - Input	200	-200.95	0.47

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.93	-6.03
	- 200	6.78	5.47
Channel Y	200	13.74	12.68
	- 200	-14.43	-14.38
Channel Z	200	2.46	1.41
	- 200	-3.80	-4.27

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	2.10	-0.74
Channel Y	200	0.76	-	2.81
Channel Z	200	-1.70	-0.57	-

Certificate No: DAE4-779_Nov07

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15628	16435
Channel Y	15822	16748
Channel Z	16264	16116

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.15	-1.88	1.72	0.52
Channel Y	-1.21	-3.52	1.65	0.67
Channel Z	-1.21	-2.77	-0.09	0.40

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	201.5
Channel Y	0.1999	201.2
Channel Z	0.2000	201.4

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9