

TEST REPORT

Applicant: RTX Hong Kong Ltd.

Address: 8/F Corporation Square,8 Lam Lok Street, Kowloon Bay, Kowloon, Hong Kong

FCC ID: T7HCT8951

IC: 4979B-CT8951

HVIN: VCH8200 Product Name: Headset

Standard(s): FCC PART 15D RSS-213, ISSUE 3, MARCH 2015 RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2 ANSI C63.17-2013

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR231060700-00

Date Of Issue: 2023/12/06

Reviewed By: Calvin Chen

Cabin Chen

Title: RF Engineer

Approved By: Sun Zhong

Sun Zhong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION	7
1.2.1 EUT Operation Condition:	
1.2.2 Support Equipment List and Details	7
1.2.3 Support Cable List and Details 1.2.4 Block Diagram of Test Setup	
1.3 MEASUREMENT UNCERTAINTY	
2. SUMMARY OF TEST RESULTS	
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 CONDUCTED EMISSIONS	
3.1.1 Applicable Standard	
3.1.2 EUT Setup 3.1.3 EMI Test Receiver Setup	
3.1.4 Test Procedure	12
3.1.5 Corrected Amplitude & Margin Calculation	
3.2 EMISSION BANDWIDTH:	
3.2.1 Applicable Standard	
3.2.2 EUT Setup 3.2.3 Test Procedure	
3.3 PEAK TRANSMIT POWER:	
3.3.1 Applicable Standard	14
3.3.2 EUT Setup	
3.3.3 Test Procedure	
3.4.1 Applicable Standard	
3.4.2 EUT Setup	15
3.4.3 Test Procedure	15
3.5 Emission Inside and Outside the Sub-band:	
3.5.1 Applicable Standard	
3.5.2 EUT Setup 3.5.3 Test Procedure	
3.6 FREQUENCY STABILITY:	
3.6.1 Applicable Standard	21
3.6.2 EUT Setup	21
3.6.3 Test Procedure	
3.7.1 Applicable Standard 3.7.2 EUT Setup	
3.7.3 Test Procedure	

Page 3 of 74

Report No.: CR231060700-00

4. TEST DATA AND RESULTS	
4.1 CONDUCTED EMISSIONS	28
4.2 Emission Bandwidth:	29
4.3 PEAK TRANSMIT POWER:	32
4.4 Power Spectral Density:	35
4.5 Emission Inside and Outside the Sub-band:	
4.6 FREQUENCY STABILITY:	66
4.7 SPECIFIC REQUIREMENTS FOR UPCS DEVICE:	68
5. EUT PHOTOGRAPHS	73
6. TEST SETUP PHOTOGRAPHS	74

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR231060700-00	Original Report	2023/12/06

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Headset
Trade Name:	Vocovo
EUT Model:	VCH8200
Operation Frequency:	1921.536-1928.448 MHz
Maximum Peak Output Power (Conducted):	20.29dBm
Modulation Type:	GFSK
Rated Input Voltage:	DC 5V from Charger or DC 3.8V from battery
Serial Number:	RE: 2CD4-1 RF: 2CD4-2
EUT Received Date:	2023/10/18
EUT Received Status:	Good

Antenna Information Detail▲:

Antenna	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
ANT1	Monopole	50	1920-1930MHz	0.5 dBi
ANT2	Monopole	50	1920-1930MHz	-0.9 dBi

The Method of §15.203 Compliance:

Antenna was permanently attached to the unit.

Antenna use a unique type of connector to attach to the EUT.

Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Accessory Information:

Accessory Description	Manufacturer	Model
/	/	/

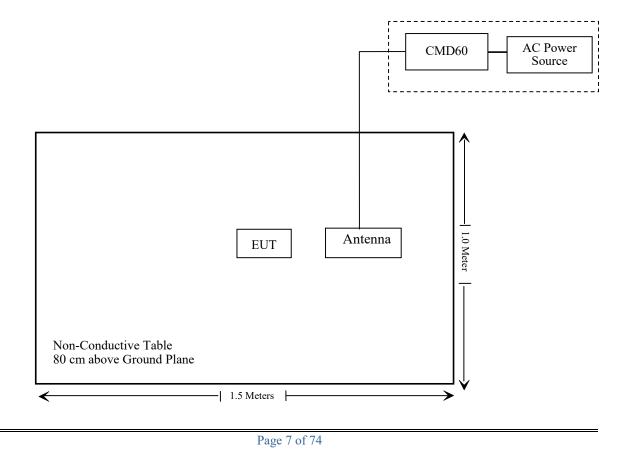
1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

EUT Operation Mode: The system was configured for testing in Engineering Mode, which w provided by the manufacturer.		
Equipment Modifications:	No	
EUT Exercise Software: No		
The engineering mode was provided by manufacturer. The maximum power was configured default, that was		

provided by the manufacturer \blacktriangle :

1.2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Rohde & Schwarz	Digital Radio Communication Tester	CMD 60M	846956/010

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

1.2.4 Block Diagram of Test Setup

For Radiated Emission

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	$\pm 0.61 dB$
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
FCC § 15.315, § 15.207 RSS-213 Clause 5.4	Conducted Emission	Not Applicable
FCC § 15.323 (a) RSS-213 Clause 5.5	Emission Bandwidth	Compliant
FCC § 15.319 (c) RSS-213 Clause 5.6	Peak Transmit Power	Compliant
FCC § 15.319 (d) RSS-213 Clause 5.7	Power Spectral Density	Compliant
FCC § 15.323 (d) RSS-213 Clause 5.8	Emission Inside and Outside the sub-band	Compliant
FCC § 15.323 (f) RSS-213 Clause 5.3	Frequency Stability	Compliant
FCC § 15.323 (c)(e) & § 15.319 (f) RSS-213 Clause 5.1 & 5.2	Specific Requirements for UPCS	Compliant
FCC § 15.317, § 15.203 RSS-Gen Clause 6.8	Antenna Requirement	Compliant

Note: EUT have two antennas, pre-scan output power of the two antennas, the worst case ANT 1 was select to test.

3. REQUIREMENTS AND TEST PROCEDURES

3.1 Conducted Emissions

3.1.1 Applicable Standard

FCC§15.315

An unlicensed PCS device that is designed to be connected to the public utility (AC) power line must meet the limits specified in §15.207.

RSS-213 Clause 5.4

The limits of AC power line conducted emissions are given in RSS-Gen.

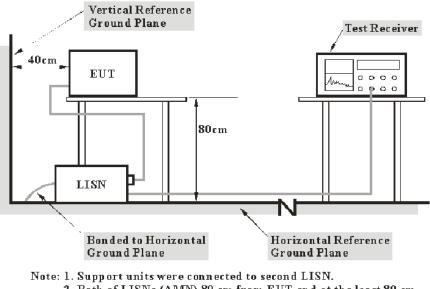
RSS-Gen Clause 8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Frequency	Conducted limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹	
0.5 - 5	56	46	
5 - 30	60	50	

Table 4 - AC power-line conducted emissions limits


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

(a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.

(b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

3.1.2 EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.315, FCC 15.207 and RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported for each of the current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductors.

3.1.5 Corrected Amplitude & Margin Calculation

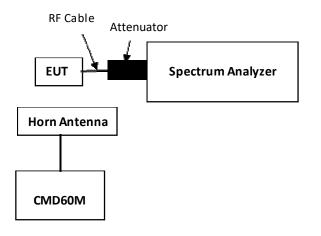
The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.2 Emission Bandwidth:


3.2.1 Applicable Standard

FCC §15.323 (a)

Operation shall be contained within the 1920–1930 MHz band. The emission bandwidth shall be less then 2.5 MHz and greater than 50 kHz.

RSS-213 Clause 5.5 The emission bandwidth shall not be less than 50 kHz nor more than 2.5 MHz.

3.2.2 EUT Setup

3.2.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.3

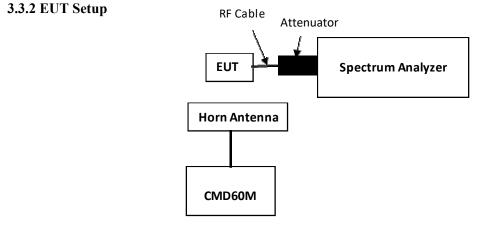
Table 3—Spectrum analyzer settings for measurement of e	emissions bandwidth B
---	------------------------------

RBW	Approximately 1% of the emission bandwidth (a rough estimate may
	be obtained from peak power level measurement, or use
	manufacturer's declared value)
Video bandwidth	\geq 3 × the RBW
Center frequency	Nominal center frequency of channel
Span	$\geq 2 \times$ the expected emission bandwidth
Sweep time	Coupled to frequency span and RBW
Amplitude scale	Log
Detection	Peak detection with maximum hold enabled

Record the maximum level of the modulated carrier. Find the two furthest frequencies above and below the frequency of the maximum level of the modulated carrier where the signal level is 26 dB below the peak level of the carrier. The difference in frequency between these two frequencies is the emission bandwidth.

If after measuring the emission bandwidth, it is found that the RBW used was not approximately 1% of the emission bandwidth, then adjust the RBW and repeat the procedure until the correct RBW is used. If the spectrum analyzer has fixed values of RBW, the one that is the nearest to 1% of the emission bandwidth is acceptable, provided it is no less than 0.5% of the emission bandwidth and no greater than 2% of the emission bandwidth.

3.3 Peak Transmit Power:


3.3.1 Applicable Standard

FCC §15.319 (c)

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

RSS-213 Clause 5.6

Peak transmit power shall not exceed 100 μ W multiplied by the square root of the occupied bandwidth in hertz. The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

3.3.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.2

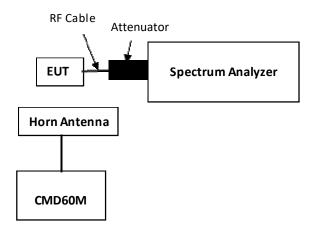
The resolution bandwidth (RBW) setting for this test must be adjusted by repeating this test and using increasing values of the RBW until there are negligible changes (within ± 0.5 dB) in the measured values of the maximum power.

Table 2—Spectrum ar	nalvzer settings for	determining the pea	k power

RBW	≥ Emission bandwidth
Video bandwidth	≥RBW
Span	Zero
Center frequency	Nominal center frequency of transmit carrier
Amplitude scale	Log (linear may be used if analyzer has sufficient linear dynamic range
	and accuracy)
Detection	Peak detection
Trigger	Video
Sweep rate	Sufficiently rapid to permit the transmit pulse to be resolved accurately

3.4 Power Spectral Density:

3.4.1 Applicable Standard


FCC §15.319 (d)

Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

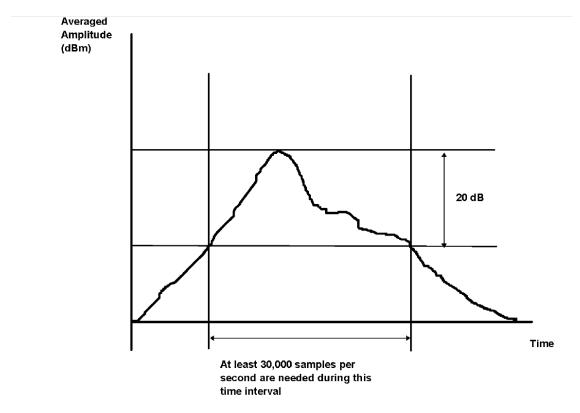
RSS-213 Clause 5.7

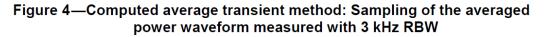
The peak-hold power spectral density of transmitters shall not exceed 12 mW per any 3 kHz bandwidth. As an alternative to the peak-hold power spectral density, the time-averaged power spectral density may be measured and it shall not exceed 3 mW per any 3 kHz bandwidth.

3.4.2 EUT Setup

3.4.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.5


The EUT transmit data sequence and mode of operation shall be representative of that encountered in normal operation, so that transient effects associated with transmission bursts or data content are captured by the PSD measurement.


RBW	3 kHz
Video bandwidth	\geq 3 × RBW
Span	Zero span at frequency with the maximum level (frequency determined
	in 6.1.3 if the same type of signal (continuous versus burst) was used
	in 6.1.3)
Center frequency	Spectral peak as determined in 6.1.3
Sweep time	For burst signals, sufficient to include essentially all of the maximum
	length burst at the output of a 3 kHz filter (e.g., maximum input burst
	duration plus 600 µs). For continuous signals, 20 ms.
Amplitude scale	Log power
Detection	Sample detection and averaged for a minimum of 100 sweeps
Trigger	External or internal

For burst-type signals, arrange to measure the wideband burst duration of each burst analyzed and compute the mean duration.

Determine the level that is 20 dB below the first peak. Record the power-averaged waveform between the 20 dB threshold levels around the first peak with at least 30 000 samples per second as shown in Figure 4. Multiple wideband bursts may produce the waveform between -20 dB peaks; these must be included in the determination of the average burst length. If there is no level that is 20 dB below the peak, then analyze the complete sweep and include all of the wideband waveform that occurs during the sweep time in the computation of average burst length.

Sum the values of the sample points (in linear units of power) and divide by the sample frequency to obtain the total pulse energy in the 3 kHz bandwidth, then divide by the average duration of the wideband input pulse to obtain the average pulse power.

3.5 Emission Inside and Outside the Sub-band:

3.5.1 Applicable Standard

FCC §15.323 (d)

Emissions outside the band shall be attenuated below a reference power of 112 milliwatts as follows: 30 dB between the band and 1.25 MHz above or below the band; 50 dB between 1.25 and 2.5 MHz above or below the band; and 60 dB at 2.5 MHz or greater above or below the band. Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

RSS-213 Clause 5.8 Emissions outside the 1920-1930 MHz Band

Emissions outside the 1920-1930 MHz band shall be attenuated below a reference power of 112 milliwatts (-9.5 dBW) by at least:

• 30 dB between the band edges and 1.25 MHz above and below the band edges;

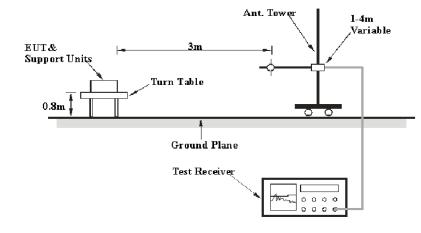
• 50 dB between 1.25 MHz and 2.5 MHz above or below the band edges; and

 \bullet 60 dB at 2.5 MHz or greater above or below the band edges.

Emissions inside the 1920-1930 MHz Band

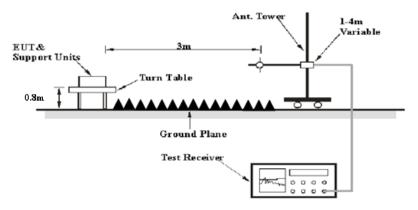
Emissions inside the 1920-1930 MHz band shall be attenuated below the transmit power permitted for that device, as follows:

• 30 dB between the frequencies 1B and 2B measured from the centre of the occupied bandwidth;

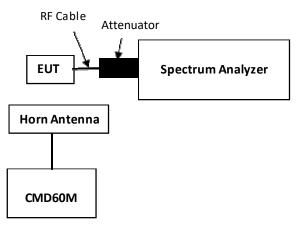

• 50 dB between the frequencies 2B and 3B measured from the centre of the occupied bandwidth; and

• 60 dB between the frequencies 3B and band edge;

Where B is the occupied bandwidth in hertz.


3.5.2 EUT Setup

Radiated Emission Below 1GHz:


Page 17 of 74

Radiated Emission Above 1GHz:

The radiated emission tests were performed in the 3 meters test site.

RF Conducted Emission:

3.5.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.6

In-band emission:

In the region between 1B and 2B from the center of the RF carrier, the measured emission level (measured with 1% of emission bandwidth) shall not exceed 30 dB below the permitted peak power for the EUT.

In the region between 2B and 3B from the center of the RF carrier, the measured emission level shall not exceed 50 dB below the permitted peak power for the EUT.

Table 5—Spectrum analyzer settings for measuring in-band emissions

RBW	Approximately 1% of the emission bandwidth (B)
Video bandwidth	$3 \times \text{RBW}$
Sweep time	The sweep time shall be sufficiently slow that the swept
_	frequency rate shall not exceed one RBW per three
	transmit bursts.
Number of sweeps	Sufficient to stabilize the trace
Amplitude scale	Log
Detection	Peak detection and max hold enabled
Span	Approximately equal to 3.5 B

In the region between 3B and the UPCS band edge, as measured from the center of the RF carrier, the measured emission level shall not exceed 60 dB below the permitted peak power for the EUT.

Out-band emission:

Out-of-band tests shall be performed with the RF carrier set to the lowest and highest carriers defined by the EUT. The spectrum analyzer settings for in-band unwanted emissions in 6.1.6.1 also apply to out-of-band emissions. The EUT shall pass the tests of item a), item b), and either item c) or item d), as follows:

a) In the region between the band edges and 1.25 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -9.5 dBm.

b) In the region between 1.25 and 2.5 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -29.5 dBm.

c) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed -39.5 dBm.

d) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed the limits of 47CFR15.209. Measurement shall be made as a radiated test.

UPCS devices, in general, include digital circuitry not directly associated with the radio transmitter and are subject to the requirements for unintentional radiators as described in 47CFR15.109, for both in-band and out-of-band emissions. These emissions shall be measured with the EUT operating in receive and transmit modes. For the transmit mode, do not measure within 3.75 MHz or 3B, whichever is the largest, of the edges of the band. Emissions that are directly caused by digital circuits in the transmit path do not have to meet 47CFR15.109 limits, but shall meet those limits as mentioned in the preceding list.

For Radiated Emission:

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

All emissions under the average limit and under the noise floor have not recorded in the report.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

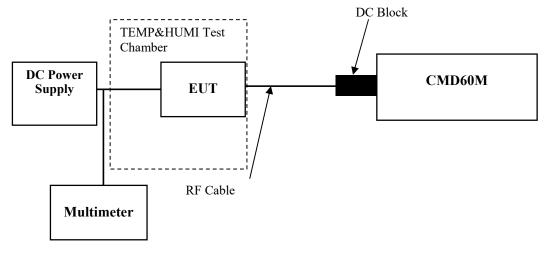
Result = Reading + Factor Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.6 Frequency Stability:

3.6.1 Applicable Standard


FCC §15.323(f)

The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ± 10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to $+50^{\circ}$ C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

RSS-213 Clause 5.3

The carrier frequency stability shall be maintained within ± 10 ppm ($\pm 0.001\%$).

3.6.2 EUT Setup

3.6.3 Test Procedure

According to ANSI C63.17-2013 Section 6.2.1.2

This test does not apply to an EUT that is capable only of operating from a battery. For a mains-powered EUT, the mean value of the carrier frequency shall be measured at the power supply voltage extremes of row 1 of Table 7.

Table 7—Test parameters for carrier-frequency stability testing

Temperature	Supply voltage
20 °C + 2 °C	85% to 115% of
$20^{-1}C \pm 2^{-1}C$	declared nominal voltage
-20 °C ± 2 °C	All declared nominal(s)
$+50 \ ^{\circ}C \pm 2 \ ^{\circ}C$	All declared nominal(s)

During test, the equipment shall be placed in the boxes and set the temperature to the specified requirement until the thermal balance has been reached.

3.7 Specific Requirements For UPCS Device:

3.7.1 Applicable Standard

FCC §15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. The provisions in this section are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

FCC §15.323(c)

Devices must incorporate a mechanism for monitoring the time and spectrum windows that its transmission is intended to occupy. The following criteria must be met:

(1) Immediately prior to initiating transmission, devices must monitor the combined time and spectrum windows in which they intend to transmit for a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period.

(2) The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

(3) If no signal above the threshold level is detected, transmission may commence and continue with the same emission bandwidth in the monitored time and spectrum windows without further monitoring. However, occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

(4) Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which time the access criteria must be repeated.

(5) If access to spectrum is not available as determined by the above, and a minimum of 20 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level may be accessed. A device utilizing the provisions of this paragraph must have monitored all access channels defined for its system within the last 10 seconds and must verify, within the 20 milliseconds (40 milliseconds for devices designed to use a 20 milliseconds frame period) immediately preceding actual channel access that the detected power of the selected time and spectrum windows is no higher than the previously detected value. The power measurement resolution for this comparison must be accurate to within 6 dB. No device or group of co-operating devices located within 1 meter of each other shall during any frame period occupy more than 6 MHz of aggregate bandwidth, or alternatively, more than one third of the time and spectrum windows defined by the system.

(6) If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

(7) The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission and have a maximum reaction time less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds. If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

(8) The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

(9) Devices that have a power output lower than the maximum permitted under this subpart may increase their monitoring detection threshold by one decibel for each one decibel that the transmitter power is below the maximum permitted.

(10) An initiating device may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows. If both the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

(11) An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within one meter) transmitter of the same system, may monitor the portions of the time and spectrum windows in which they intend to receive over a period of at least 10 milliseconds. The monitored time and spectrum window must total at least 50 percent of the 10 millisecond frame interval and the monitored spectrum must be within 1.25 MHz of the center frequency of channel(s) already occupied by that device or co-located co-operating devices. If the access criteria is met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.

(12) The provisions of (c)(10) or (c)(11) of this section shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices. ANSI C63.17 2013 §6.2 Frequency and time stability and §7.Monitoring tests and §8.Time and spectrum window access procedure.

According to RSS-213 §5.1&§5.2 type of modulation and access protocol Equipment certified under this standard shall use digital modulation. In order to provide equitable access to the radio frequency spectrum, the licence-exempt PCS device must possess an access protocol.

FCC §15.323(e)

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this band shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

RSS-213 Clause 5.1

Equipment certified under this standard shall use digital modulation. Both asynchronous and isochronous operations are permitted within the band 1920-1930 MHz.

RSS-213 Clause 5.2

In order to provide equitable access to the radio frequency spectrum, the LE-PCS device must possess an access protocol as described below.

LE-PCS devices shall automatically discontinue transmission in case of absence of information to transmit or operational failure. This is not intended to preclude the transmission of control and signaling information or the use of repetitive codes employed by certain digital technologies to complete frame or burst intervals. Devices must incorporate a mechanism for monitoring the time and spectrum windows that their transmission is intended to occupy. The following criteria must be met:

(1) Immediately prior to initiating a transmission, devices must monitor the combined time and spectrum window that they intend to use to verify if the channel is free for at least 10 ms for systems designed to use a 10 ms or shorter frame period, or at least 20 ms for systems designed to use a 20 ms frame period.

(2) The monitoring threshold must not be more than 30 dB above the thermal noise power (KTB) of a bandwidth equivalent to the occupied bandwidth of the device.

(3) If no signal above the threshold level is detected, transmission may commence and continue with the same bandwidth in the monitored time and spectrum windows without further monitoring. Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 h is not permitted without repeating the access criteria.

(4) Once access to specific combined time and spectrum windows is obtained, an acknowledgement from a system participant must be received by the initiating transmitter within 1 s or transmission must cease.

Periodic acknowledgements must be received at least every 30 s or transmission must cease.

Channels used exclusively for control and signalling information may transmit continuously for 30 s without receiving an acknowledgement, at which time the access criteria must be repeated.

(5) If access to spectrum is not available as determined by the above, and a minimum of 20 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level may be accessed.

A device utilizing the provisions of this paragraph 5.2(5) must have monitored all access channels defined for its system within the last 10 s and must verify, within the 20 ms (40 ms for devices designed to use a 20 ms frame period) immediately preceding actual channel access, that the detected power of the selected time and spectrum windows is no higher than the previously detected value.

The power measurement resolution bandwidth for this comparison must be accurate to within 6 dB.

No device or group of cooperating devices located within 1 m of each other shall during any frame period occupy more than 6 MHz of aggregate bandwidth, or alternatively, more than one third of the time and spectrum windows defined by the system.

(6) If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 ms, commencing from the time when the channel becomes available.

(7) The monitoring system bandwidth must be equal to or greater than the occupied bandwidth of the intended transmission. Note: Testing of the monitoring system bandwidth is not required if the designed bandwidth from the manufacturer is available and given in the test report.

The maximum reaction time of the monitor shall be less than $50\sqrt{(1.25/\text{occupied bandwidth in MHz)}} \ \mu s$ for signals at the applicable threshold level but shall not be required to be less than 50 µs. If a signal of 6 dB or more above the threshold level is detected, the maximum reaction time shall be $35\sqrt{(1.25/\text{occupied bandwidth in MHz)}} \ \mu s$ but shall not be required to be less than $35 \ \mu s$.

(8) The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location. Note: A monitoring antenna of the same model (and manufacturer) as the transmitting antenna is considered equivalent. An antenna not of the same model but of the same type (e.g. both are horn antennas of different manufacturers) is considered equivalent if the main beam antenna gains are within 3 dB of each other. Both antennas are to be installed to point at the same general coverage area.

(9) Devices that have a power output lower than the maximum permitted under this standard may increase their detection threshold by 1 dB for each 1 dB that the transmitter power is below the maximum permitted.

(10) A device initiating a communication (hereafter called an initiating device) may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting in the receive time and spectrum window monitored by the initiating device.

(11) An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within 1 m) transmitter of the same system, may monitor the portions of the time and spectrum window in which they are to receive over a period of at least 10 ms.

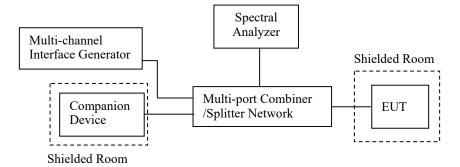
The monitored time and spectrum window must total at least 50% of the 10 ms frame interval and the monitored spectrum must be within 1.25 MHz of the centre frequency of channel(s) already occupied by that device or co-located cooperating devices.

If the access criteria are met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.

(12) The provisions of paragraphs 5.2(10) and (11) shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices.

(13) The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this sub-band shall be 20 ms/X where X is a positive whole number.

Each device that implements time division for the purpose of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm).


Each device that further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm.

The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the 2 ends of such a communication link shall not exceed 25 μ s for any 2 consecutive transmissions.

Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

Report No.: CR231060700-00

3.7.2 EUT Setup

3.7.3 Test Procedure

1) Monitoring Time

According to ANSI C63.17-2013 Section 7.3.3

2) Lower Monitoring Threshold

According to ANSI C63.17- 2013 Section 7.3.1

3) Maximum Transmit Period

According to ANSI C63.17-2013 Section 8.2.2

4) System Acknowledgement

According to ANSI C63.17-2013 Section 8.1, 8.2

5) Least Interfered Channel (LIC)

According to ANSI C63.17- 2013 Section 7.3.2, 7.3.3

6) Random waiting

According to ANSI C63.17- 2013 Section 8.1.2 or 8.1.3

7) Monitoring Bandwidth and Reaction Time

According to ANSI C63.17- 2013 Section 7.4, 7.5

8) Monitoring Antenna

According to ANSI C63.17- 2013 Section 4

9) Monitoring threshold relaxation

According to ANSI C63.17-2013 Section 4

10) Duplex Connections

According to ANSI C63.17-2013 Section 8.3

Page 26 of 74

11) Alternative monitoring interval

According to ANSI C63.17- 2013 Section 8.4

12) Frame Repetition Stability Frame Period and Jitter

According to ANSI C63.17- 2013 Section 6.2.2, 6.2.3

4. TEST DATA AND RESULTS

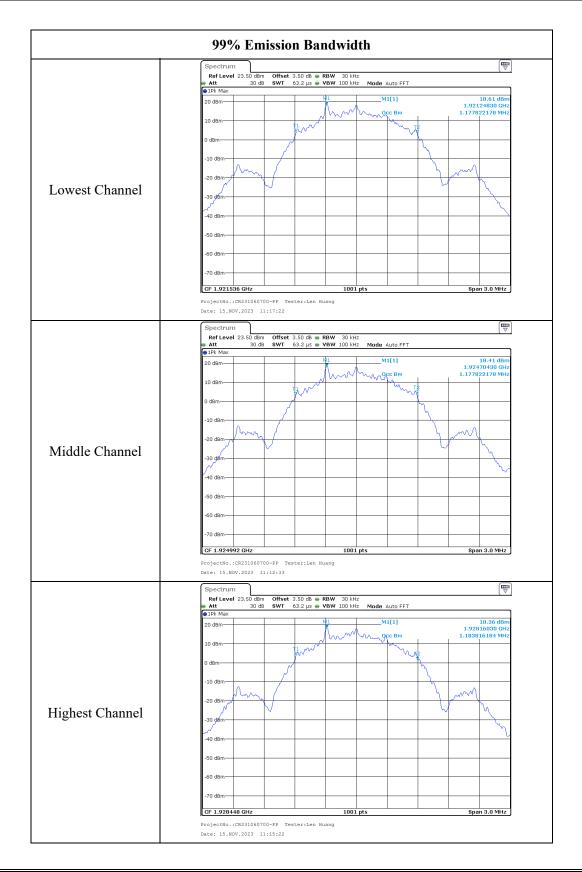
4.1 Conducted Emissions

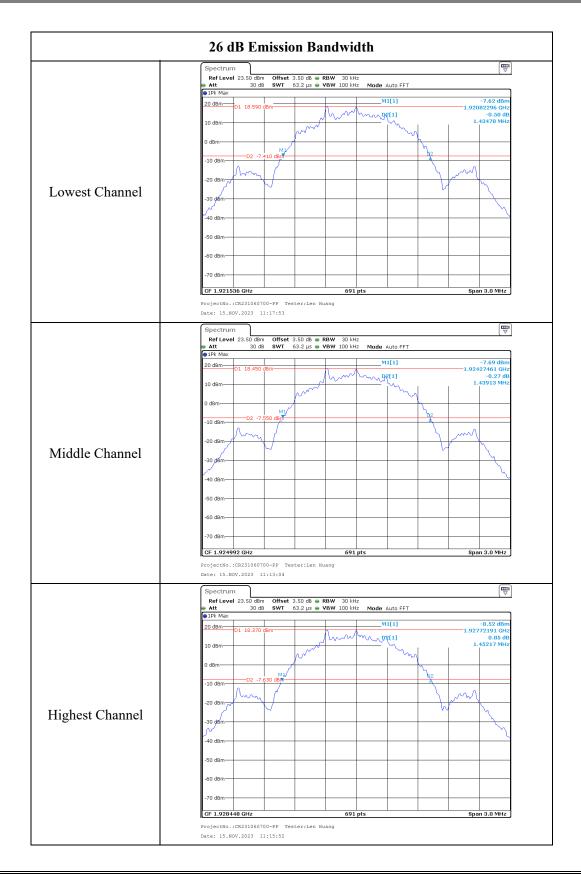
Not Applicable, the device was powered by battery while use DECT function.

4.2 Emission Bandwidth:

Serial Number:	2CD4-2	Test Date:	2023/11/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	24.5	Relative Humidity: (%)	54	ATM Pressure: (kPa)	101


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	3dB Attenuator	Unknown	F-03-EM121	2023/7/4	2024/7/3
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Channel	Test Frequency (MHz)	99% Emission Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)	Limit (MHz)
Lowest	1921.536	1.178	1.435	$50 \text{ kHz} \sim 2.5 \text{ MHz}$
Middle	1924.992	1.178	1.439	$50 \text{ kHz} \sim 2.5 \text{ MHz}$
Highest	1928.448	1.184	1.452	$50 \text{ kHz} \sim 2.5 \text{ MHz}$

4.3 Peak Transmit Power:

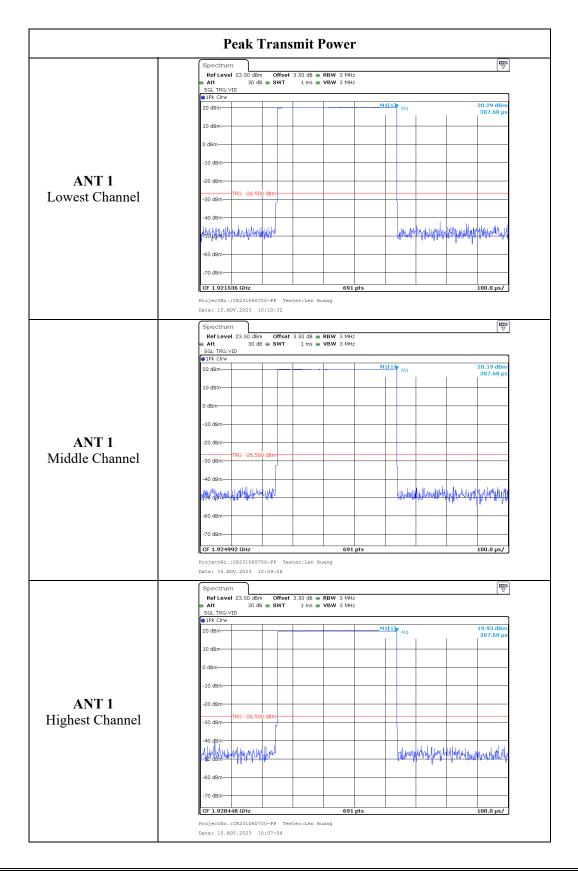
Serial Number:	2CD4-2	Test Date:	2023/11/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	24.5	Relative Humidity: (%)	54	ATM Pressure: (kPa)	101

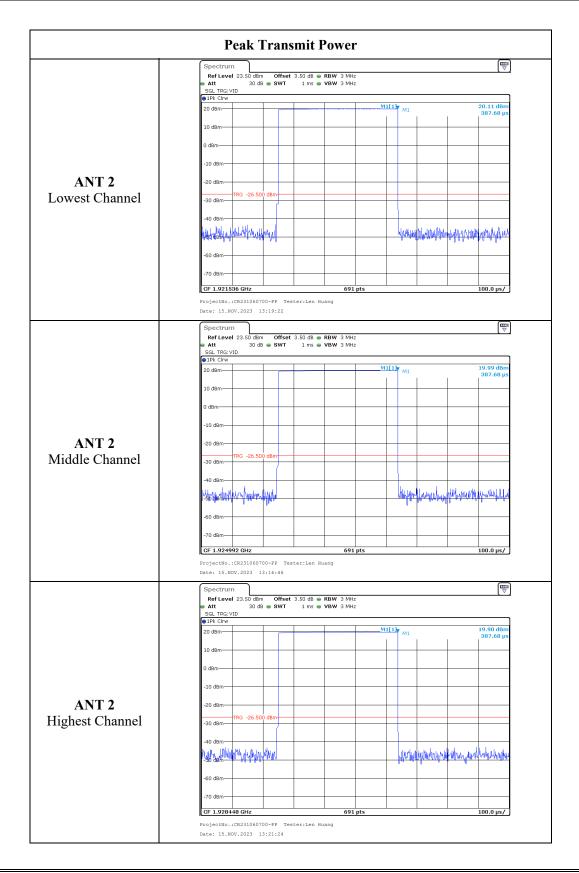
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	3dB Attenuator	Unknown	F-03-EM121	2023/7/4	2024/7/3
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Channel	Frequency (MHz)	Peak Transmit Power (dBm)	FCC Limit (dBm)	ISEDC Limit (dBm)		
		ANT 1				
Lowest	1921.536	20.29	20.78	20.36		
Middle	1924.992	20.19	20.79	20.36		
Highest	1928.448	19.93	20.81	20.37		
	ANT 2					
Lowest	1921.536	20.11	20.78	20.36		
Middle	1924.992	19.99	20.79	20.36		
Highest	1928.448	19.90	20.81	20.37		


Note:

For FCC: Peak Transmit Power Limit = $100(EBW(Hz))^{1/2} \mu W$ For ISEDC: Peak Transmit Power Limit = $100(OBW(Hz))^{1/2} \mu W$

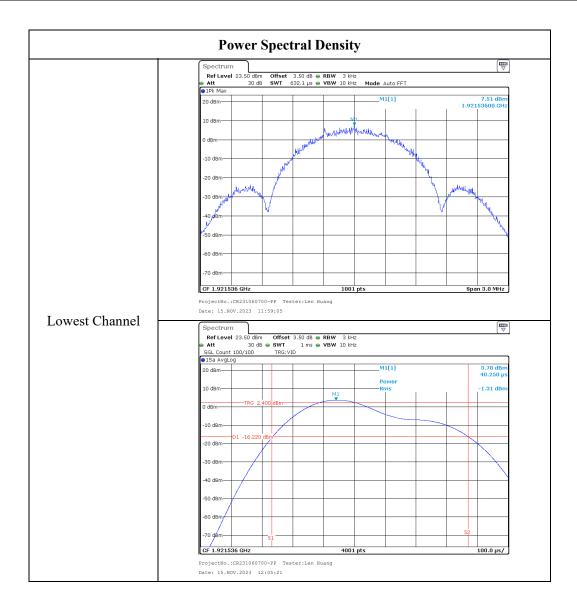
Report No.: CR231060700-00

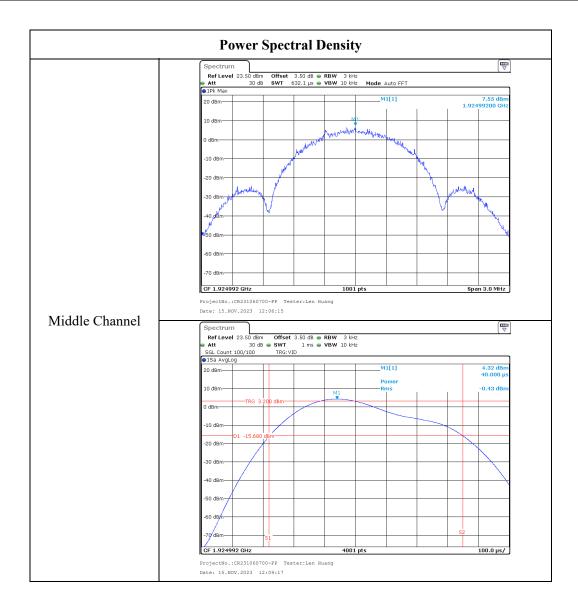
Report No.: CR231060700-00

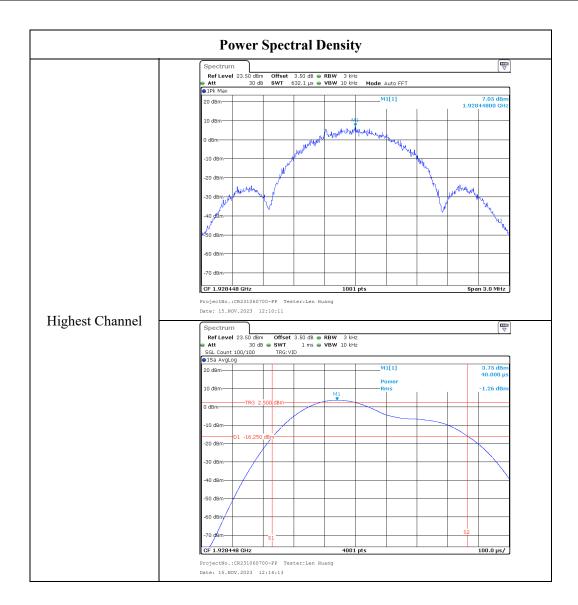
4.4 Power Spectral Density:

Serial Number:	2CD4-2	Test Date:	2023/11/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	24.5	Relative Humidity: (%)	54	ATM Pressure: (kPa)	101


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	3dB Attenuator	Unknown	F-03-EM121	2023/7/4	2024/7/3
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

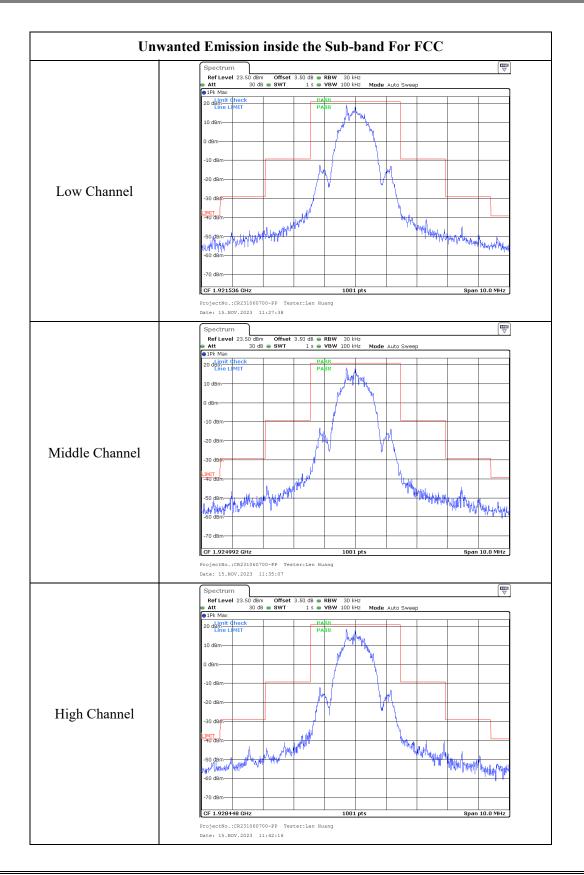
Test Data:

Channel	Frequency	Power Spectral Density		Limit	
Channel	(MHz)		(mW/3kHz)	(mW/3kHz)	
Lowest	1921.536	-1.31	0.740	3	
Middle	1924.992	-0.43	0.906	3	
Highest	1928.448	-1.26	0.748	3	

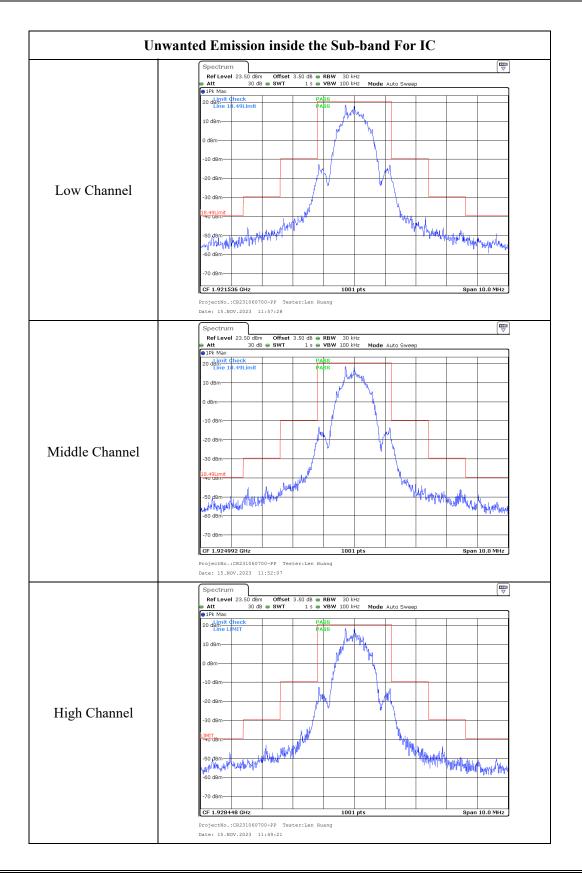
4.5 Emission Inside and Outside the Sub-band:

1) For RF Conducted Emission:

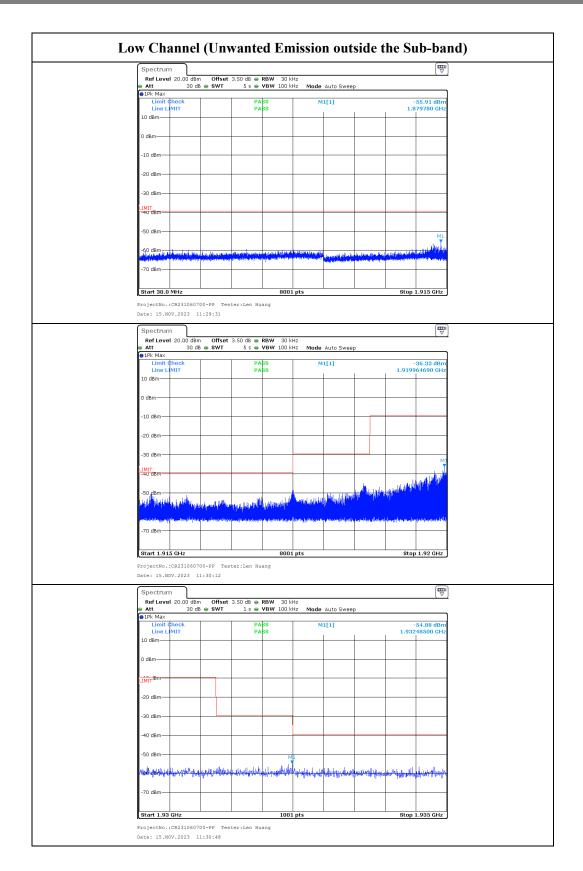
Serial Number:	2CD4-2	Test Date:	2023/11/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass


Environmental	Conditions:				
Temperature: (°C)	24.5	Relative Humidity: (%)	54	ATM Pressure: (kPa)	101

Test Equipment List and Details:

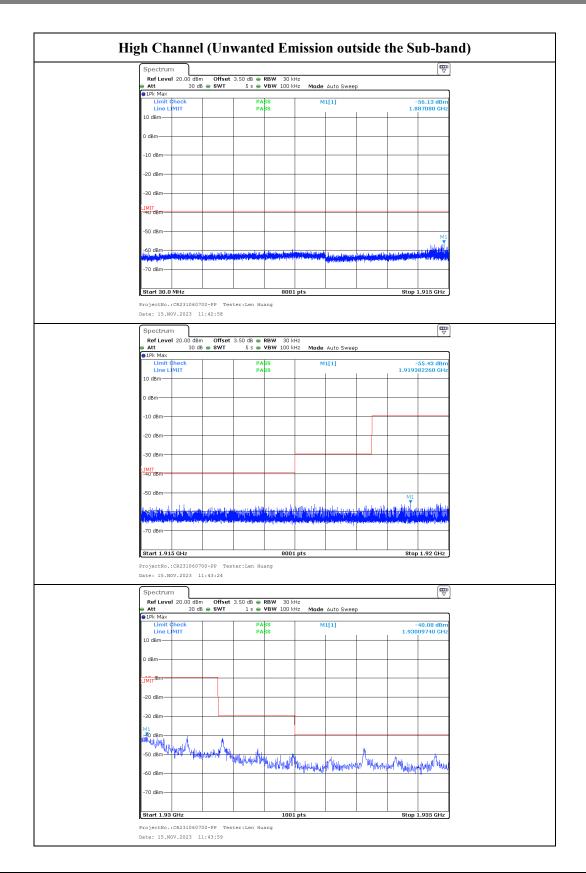

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	3dB Attenuator	Unknown	F-03-EM121	2023/7/4	2024/7/3
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Page 40 of 74

Page 41 of 74


Page 42 of 74

👄 Att 30 dB 👄 S	Hfset 3.50 dB ● RBW 30 k WT 5 s ● VBW 100 k	Hz Hz Mode Auto Sweep		
1Pk Max Limit Check	PASS	M1[1]	-54.80 dBm	
Line LIMIT	PASS	mili	1.963020 GHz	
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
LIMIT				
-40 dBm-				
-5 <u>0</u> dBm				
, T.				
HSD of the state o	a bis so have a large of the second state of the	hiption and an appendicution of the second	a fan hen de henne al en de falle en de de ser	
	and a second	and heat the provide the second	and when a start of the start o	
-70 dBm				
Start 1.935 GHz Projectko.:CR231060700-PP Date: 15.WOV.2023 11:31: Spectrum Ref Level 20.00 dBm C	29		Stop 3.0 GHz	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum RefLevel 20.00 dBm C + Att 30 dB C	Tester:Len Huang 29 Mfset 3.50 dB • RBW 30 k			
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 30 dB S	Tester:Len Huang 29 ₩ ffset 3.50 dB ● RBW 30 k ₩ T 20 s ● VBW 100 k	Hz Hz Mode Auto Sweep		
ProjectNo.:CR231060700-PP Date: 15.MOV.2023 11:31: Spectrum Ref Level 20.00 dim C att 30 dB = 8 IPK Max Limit Check Limit Check	Tester:Len Huang 29 Mfset 3.50 dB • RBW 30 k	нz		
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att vol 20.00 dBm C 9 Att 30 dB @ S 9 IPk Max	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-FP Date: 15.NOV.2023 11:31: Ref level 20.00 dim C a Att 30 dB = 8 IFK Max Limit Check Limit Check	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 9 Att 10 PK Max Limit check Line LMIT	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 30 dB S IPK Max Limit check Limit check Limit check Limit dBm 0 dBm 0	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Ref Level 20.00 dBm C Att 30 dB S PIPk Max Limit dheck Line LMIT 10 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum RefLevel 20.00 dBm C • At 30 dB • S • IPk Max Limit dheck Limit dheck Limit dheck -10 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C 4 tt 30 dB S 10k Max Limit Check Limit Check 10 dBm 0 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 30 dB S 10 dBm 0 0 dBm 0 -10 dBm 0 -20	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Ref Level 20.00 dBm C • Att 30 dB • S • IPk Max Limit dheck Limit dheck Limit dheck 0 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 30 dB S International State	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 30 dB S PFK Max Linit (heck Line LMIT 10 dBm -10 dBm -20 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Ref Level 20.00 dBm C • At 30 dB 8 • IPK Max Linit theck Lino LMIT 10 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Ref Level 20.00 dBm C + Att 30 dB S FFK Max Limit Check Limit Check Limit Check -10 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C At 30 dB S IFk Max Limit Check Limit Check Limit Check O dBm O dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Ref Level 20.00 dBm C • Att 30 dB 8 • 1Pk Max Linit dbeck Line LMIT 10 dBm	Tester:Len Huang 29 #ffset 3.50 dB • RBW 30 k WT 20 s • VBW 100 k PAbS	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.: CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dBm C Att 30 dB B Pl* Max Limit dheck Limit dheck Limit dheck Limit dheck -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dB	Tester:Len Huang 29	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum Ref Level 20.00 dbm C 4 th Control Contro	Tester:Len Huang 29	Hz Hz Mode Auto Sweep	-54.41 d8m	
ProjectNo.:CR231060700-PP Date: 15.NOV.2023 11:31: Spectrum RefLevel 20.00 dBm C At 30 dB 8 9 1Pk Max Limit check	Tester:Len Huang 29	Hz Hz Mode Auto Sweep	-54.41 d8m	

Spectrum					
👄 Att 30 dB 👄	Offset 3.50 dB ⊜ RBW SWT 5 s ⊜ VBW		o Sweep		
●1Pk Max Limit ¢heck	PASS	M1[1]	1	-56.80 dBm	
Line LIMIT 10 dBm	PASS			1.831250 GHz	
0 dBm					
-10 dBm					
-20 dBm-					
-30 dBm					
LIMIT -+U dBm					
-50 d8m					
				M1	
and address of the second s			المراجع والمراجع وال المراجع والمراجع والم	and a part of the second second	
-70 dBm					
Start 30.0 MHz		8001 pts		Stop 1.915 GHz	
ProjectNo.:CR231060700- Date: 15.NOV.2023 11:35					
	. 40			m	
	Offset 3.50 dB 👄 RBW				
● Att 30 dB ● ●1Pk Max					
Limit Check Line LIMIT	PASS PASS	M1[1]	1	-47.49 dBm .919797840 GHz	
10 dBm					
0 dBm					
-10 dBm					
-20 dBm-					
-30 dBm					
LIMIT					
-+U dBm				M1	
-50 dBm		L. L. Martin	Harrison and a standard working of		
	with the prosper beautiful	and the second second		and market and	
-70 dBm	anginghi binhina ningi nanga	n manager and the second states of the second state	a fa postana a postana fa se da posta d	nen al anglan di panati ta	
Start 1.915 GHz ProjectNo.:CR231060700-F	D Tastar Ton Bus	8001 pts		Stop 1.92 GHz	
ProjectNo.:CR231060700- Date: 15.NOV.2023 11:30					
Spectrum					
Ref Level 20.00 dBm Att 30 dB 👄	Offset 3.50 dB ⊜ RBW SWT 1 s ⊜ VBW	/ 30 kHz / 100 kHz Mode Aut	o Sweep		
1Pk Max Limit Check	PASS PASS	M1[1]		-50.36 dBm	
Line LIMIT 10 dBm	PASS			1.93190560 GHz	
0 dBm					
LIMIT ¹⁸ m					
-20 dBm					
-30 dBm					
-40 dBm					
	M1				
all Wed as to some all belle de al la la	M2	Welth had a second	na dan akadaan	a trade la construction de la construcción de la construcción de la construcción de la construcción de la const	
rceo generativo in al internativo			www.www.ahadhilitedelefeddy	alunta an	
-70 dBm					
-70 ubin					

Page 44 of 74

Instructions: PAEs M111 -55.18 dm 10 dbm Instructions: PAEs M111 -55.18 dm 0 dbm Instructions: Instructions: Instructions: Instructions: 0 dbm Instructions: Instructions: Instructions: Instructions: 0 dbm Instructions: Instructions: Instructions: Instructions: 20 dbm Instructions: Instructions: Instructions: Instructions: 30 dbm Instructions: Instructions: Instructions: Instructions: 30 dbm Instructions: Instructions: Instructions: Instructions: Instructions: 90 dbm Instruction: Instruction: Instruction: Instruction: Instruction: Instruction: 11 dbm Instruction: Instruction: Instruction: Instruction: Instruction: Instruction: Instruction: 10 dbm Instruction:	Ref Level 20.00 dBm ● Att 30 dB ● ● 1Pk Max	Offset 3.50 dB ● RBW 30 ki SWT 5 s ● VBW 100 ki	Hz Hz Mode Auto Sweep		
10 dsm	Limit ¢heck	PASS	M1[1]	-53.18 dBm	
0 dBm		PASS		1.966480 GHz	
10 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 00 pt 50 dBm 10 dBm 10 dBm 0ffset 3:0 dB 8BW 30 Hz 10 dBm 0ffset 3:0 dB 8BW 30 Hz 5-4.70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm <	10 dBm				
10 dBm 10 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 00 pt 50 dBm 10 dBm 10 dBm 0ffset 3:0 dB 8BW 30 Hz 10 dBm 0ffset 3:0 dB 8BW 30 Hz 5-4.70 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm <					
20 dbm	0 dBm				
20 dbm					
-30 dbm	-10 dBm				
-30 dbm					
Image: second	-20 dBm				
Image: second					
souther	-30 dBm				
souther	LIMIT				
We have an end of a first state of a second and a second a sec	-4U dBm-				
We have an end of a first state of a second and a second a sec					
Internet provide of the origination of the originatio origination of the origination of the orig	-901dBm				
Internet provide of the origination of the originatio origination of the origination of the orig					
With the month of the form of the one provement of the matrix of the	WER HER WHILE IN CALL	والمراجعة والمروجة والمؤربة والمراجع والمراجع والمراجع	and the second	and all the second s	
Start 1.935 GHz B001 pts Starp 3.0 GHz B001 pts Starp 3.0 GHz B001 pts Starp 3.0 GHz B01 pts Starp 3.0 GHz B1Pk Mat Discont Offset 3.50 db @ RBW 20 Hz B1Pk Mat PASS B1Pk Mat Starp 4.0 GHz B1Pk Mat PASS B1Pk Mat Starp 4.0 GHz B1Pk Mat B1Pk Mat	West for her first the part of the second		apartic as with the control of the local distribution of	de alegende parte en la font de la font de la destra de la segui	
Projectiko.:CR231060700-PF Tester:Len Huang Date: 15.NOV.2023 11:37:48 Spectrum Ref Level 20.00 dbm Offset 3.50 db e RBW 30 HH; 1 10 dbm Y 10 dbm Y 0 dbm Y	-70 dBm				
Projectiko.:CR231060700-PF Tester:Len Huang Date: 15.NOV.2023 11:37:48 Spectrum Ref Level 20.00 dbm Offset 3.50 db e RBW 30 HH; 1 10 dbm Y 10 dbm Y 0 dbm Y					
Projectiko.:CR231060700-PF Tester:Len Huang Date: 15.NOV.2023 11:37:48 Spectrum Ref Level 20.00 dbm Offset 3.50 db e RBW 30 HH; 1 10 dbm Y 10 dbm Y 0 dbm Y					
Linit Check PASS M1[1] -54.78 dBm 10 dBm 15.16940 CHz 15.16940 CHz 0 dBm 0 0 0 -10 dBm 0 0 0 -20 dBm 0 0 0 -30 dBm 0 0 0 -30 dBm 0 0 0 -70 dBm 0 0 0 -70 dBm 0 0 0 -70 dBm 0 0 0	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum	PP Tester:Len Huang			
Line LINIT PASS 15.16940 GHz 10 dBm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB	PP Tester:Len Huang 17:48 Offset 3.50 dB • RBW 30 kl	нг		
10 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB FF Max	PP Tester:Len Huang 77:48 Offset 3.50 dB ● RBW 30 ki SWT 20 s ● VBW 100 ki	Hz Hz Mode Auto Sweep	(B)	
0 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB [1Pk Max Limit Check]	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-10 dBm	ProjectNo.:CR231060700- Date: 15.MOV.2023 11:3 Spectrum Ref Level 20.00 dim Att 30 dB = 91Pk Max Limit Check Linc LMIT	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-10 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm At 30 dB = 91Pk Max Limit Check Linc LMIT	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-20 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB DPk Max Limit Check Line LMIT 10 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-20 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB PIPk Max Limit dheck Line LMIT 10 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-30 dBm	ProjectNo.: CR231060700- Date: 15.NOV.2023 11:3 Spectrum RefLevel 20.00 dBm 4 Mt 30 dB 17k Max Limit Check Line LMIT 10 dBm 0 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-30 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm 4 At 30 dB 9 JPk Max Limit Check Line LMIT 10 dBm 0 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
LIMIT DBm Image: State of the	ProjectNo.: CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB @ 1PK Max Limit dheck Line LMT 10 dBm -10 dBm- -10 dBm-	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
LIMIT DBm Image: State of the	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB • 1Pk Max Limit Ghock Line LMIT 10 dBm - -10 dBm -	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-50 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB PIF Max Limit Gheck Line LMIT 10 dBm 0 dBm -10 dBm -20 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-50 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB PIK Max Limit Check Line LMIT 10 dBm -10 dBm -20 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-70 dBm	ProjectWo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm d Hr. Max Umit Check Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-70 dBm	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm M At 30 dB IPK Max Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-70 dBm-	Projectivo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Reflevel 20.00 dBm Att 30 dB 1PK Max Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	Hz Hz Mode Auto Sweep	-54.78 dBm	
-70 dBm-	ProjectNo.: CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB 4 IDK Max Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	PP Tester:Len Huang 17:48 Offset 3.50 dB ⊕ RBW 30 kl 9 SWT 20 ≤ ⊕ VBW 100 kl PA}S	H2 H2 Mode Auto Sweep M1[1]	-54.78 dBm	
-70 dBm	ProjectNo.: CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dm 9 17k Max Umit Check Line LMIT 10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm	PP Tester:Len Buang 17:48 Offset 3.50 dB	H2 H2 Mode Auto Sweep M1[1]	-54.78 dBm	
	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum RefLevel 20.00 dBm At 30 dB DPK Max Limit Check Line LMIT 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	PP Tester:Len Buang 17:48 Offset 3.50 dB	H2 H2 Mode Auto Sweep M1[1]	-54.78 dBm	
Start 3.0 GHz 8001 pts Start 2.0 GHz	Projectivo. : CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB • IPI: Max Limit theck Limit theck Limit theck Limit theck Limit theoret 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	PP Tester:Len Buang 17:48 Offset 3.50 dB	H2 H2 Mode Auto Sweep M1[1]	-54.78 dBm	
Start 3.0 GHz 8001 pts Stor 20.0 GHz	Projectvo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum RefLevel 20.00 dBm Att 30 dB 1Pk Max Limit dheck Limit dheck Umit dheck 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	PP Tester:Len Buang 17:48 Offset 3.50 dB	H2 H2 Mode Auto Sweep M1[1]	-54.78 dBm	
	ProjectNo.:CR231060700- Date: 15.NOV.2023 11:3 Spectrum Ref Level 20.00 dBm Att 30 dB 91Pk Max Limit theck Limit theck Limit theory 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	PP Tester:Len Buang 17:48 Offset 3.50 dB	H2 H2 Mode Auto Sweep M1[1]	-54.78 dBm	

e JK. Max -56.31 dbm in a L MIT PABS 10 dbm 1.935330 GH2 10 dbm 1.935330 GH2 10 dbm 1.935330 GH2 10 dbm 1.935330 GH2 -10 dbm -20 dbm -30 dbm -30 dbm -30 dbm -30 dbm -30 dbm -30 dbm -50 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm
10 dBm
0 dBm
-10 dBm -20 dBm -30 dBm -50
-10 dBm- -20 dBm- -30 dB
-20 dBm
-20 dBm
-30 dBm
-30 dBm
LIMIT HU dBm
UHTT
-50 dBm - <t< td=""></t<>
-50 dBm -50 dBm -70
1 60 (dB 00 1) in an demonstrates and an effect of from all of 1 and 1 a
1 1
12. to extend to the second of the second
12 the design provide the provide of the division of the discrete state state of the discrete state state of the discrete state of the di
Stort 1.935 GHz 8001 pts Stop 3.0 GHz
Start 1.935 GHz 8001 pts Stop 3.0 GHz
Droigetho -CD231060700=DD Testerilen Huspa
Ref Level 20.00 dBm Offset 3.50 dB ■ RBW 30 kHz ■ Att 30 dB ■ SWT 20 s ■ VBW 100 kHz Mode Auto Sweep
IPk Max
Limit ¢heck PA\$S M1[1] -55.06 dBm Line LIMIT PA\$S 18.29280 GHz
10 dBm
0 dBm-
-10 dBm
-20 dBm
-30 dBm
-50 dBm
and the second state of the se
and the second
-70 dBm
-70 dBm-

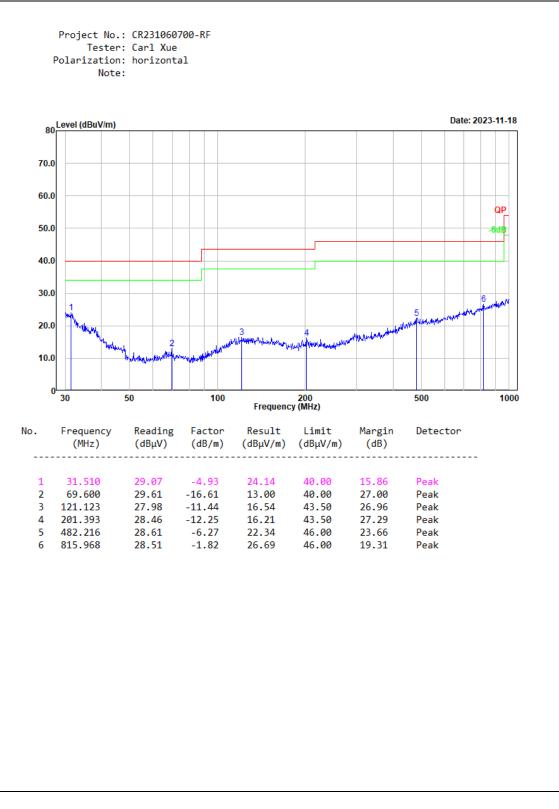
2) For Radiated Emissions:

Serial Number:	2CD4-1	Test Date:	Below 1GHz: 2023/11/18 Above 1GHz: 2023/11/2
Test Site:	966-1, 966-2	Test Mode:	Transmitting
Tester:	Carl Xue, Tao Zhu	Test Result:	Pass

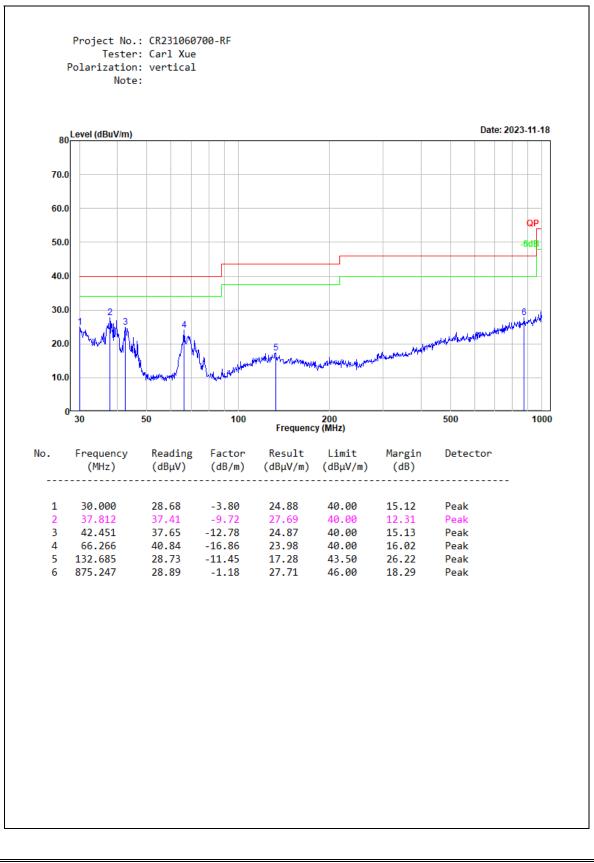
Environmenta	l Conditions:			
Temperature: (℃)	25.2~ 25.5	Relative Humidity: (%)	ATM Pressure: (kPa)	100.9~101.8

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		301	MHz-1GHz		
Sunol Sciences	Antenna	JB6	A082520-6	2023/9/18	2026/9/17
R&S	EMI Test Receiver	ESR3	102724	2023/3/31	2024/3/30
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2023/7/16	2024/7/15
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2023/7/16	2024/7/15
Sonoma	Amplifier	310N	186165	2023/7/16	2024/7/15
Audix	Test Software	E3	201021 (V9)	N/A	N/A
		Al	bove 1GHz		
АН	Double Ridge Guide Horn Antenna	SAS-571	1394	2023/2/22	2026/2/21
R&S	Spectrum Analyzer	FSV40	101591	2023/3/31	2024/3/30
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2023/8/6	2024/8/5
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2023/8/6	2024/8/5
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/7	2023/11/8
Audix	Test Software	E3	201021 (V9)	N/A	N/A
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4
Quinstar	Preamplifier	QLW-18405536- JO	15964001005	2023/9/15	2024/9/14
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2023/8/6	2024/8/5

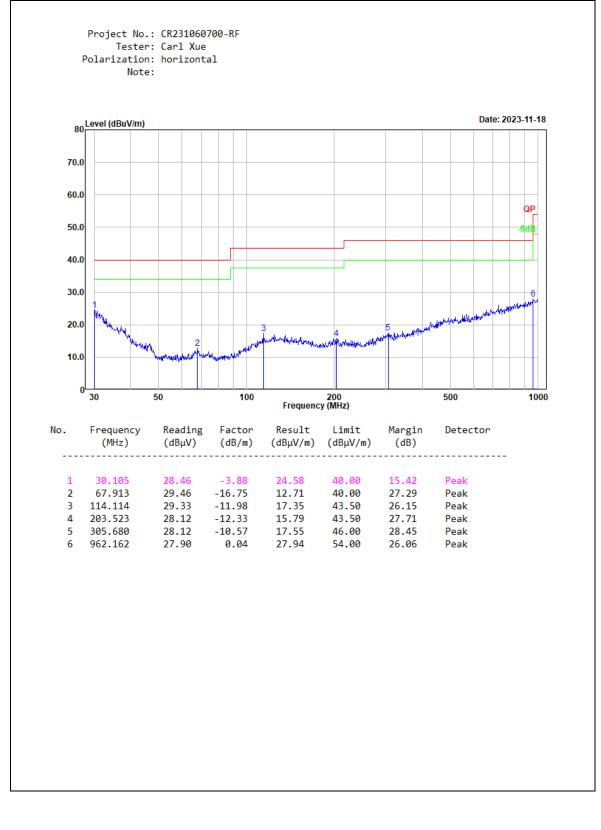

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

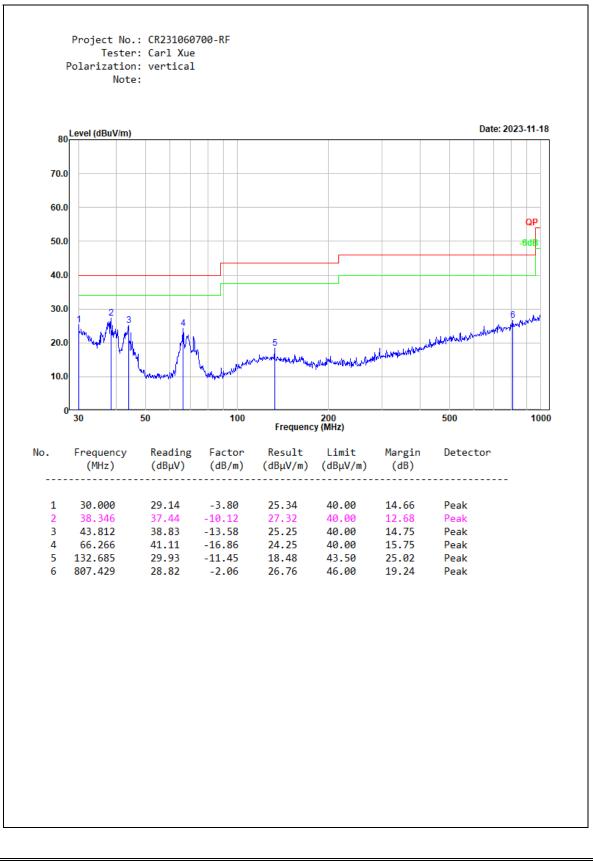

After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

1) 30MHz-1GHz: (maximum output power mode ANT1)

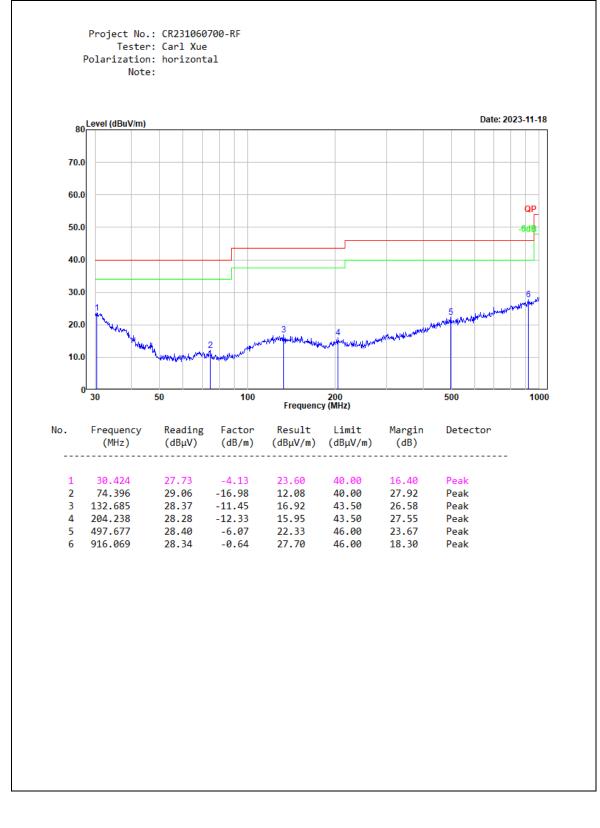
Low channel

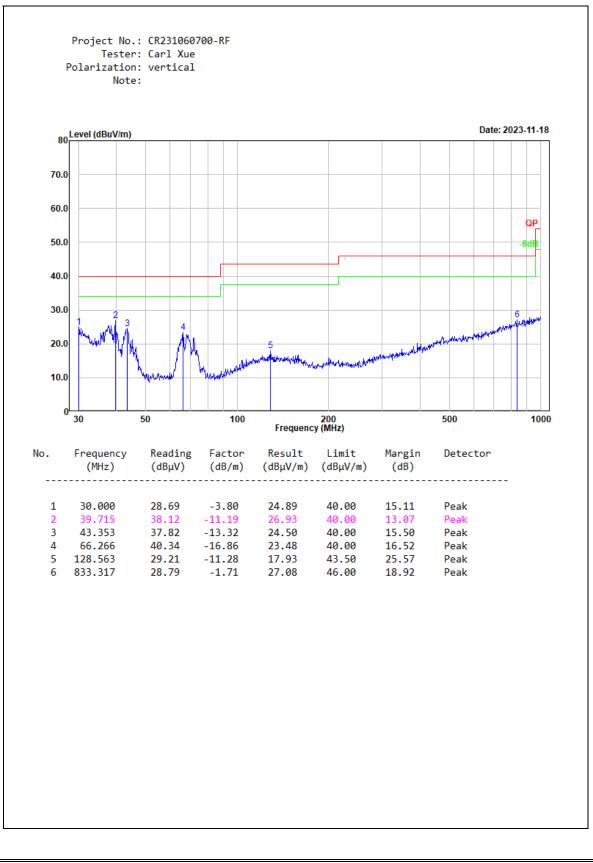


Page 49 of 74



Report No.: CR231060700-00


Middle channel


Page 51 of 74

High channel

Page 53 of 74

Report No.: CR231060700-00

1) 1GHz-20GHz: Peak Field Strength ANT 1

Teak Fleiu Stre	ngui ANT	1					
Frequency (MHz)	Reading (dBµV)	eiver Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	$(uD\mu v)$						
		Low C	Channel:	1921.536	MHz		
3843.072	44.50	РК	Н	7.77	52.27	74.00	21.73
3843.072	43.85	РК	V	7.77	51.62	74.00	22.38
		Middle C	Channel:	1924.992	MHz		
3849.984	44.05	РК	Н	7.77	51.82	74.00	22.18
3849.984	43.63	РК	V	7.77	51.40	74.00	22.60
		High C	Channel:	1928.448	MHz		
3856.896	43.75	РК	Н	7.78	51.53	74.00	22.47
3856.896	43.11	РК	V	7.78	50.89	74.00	23.11

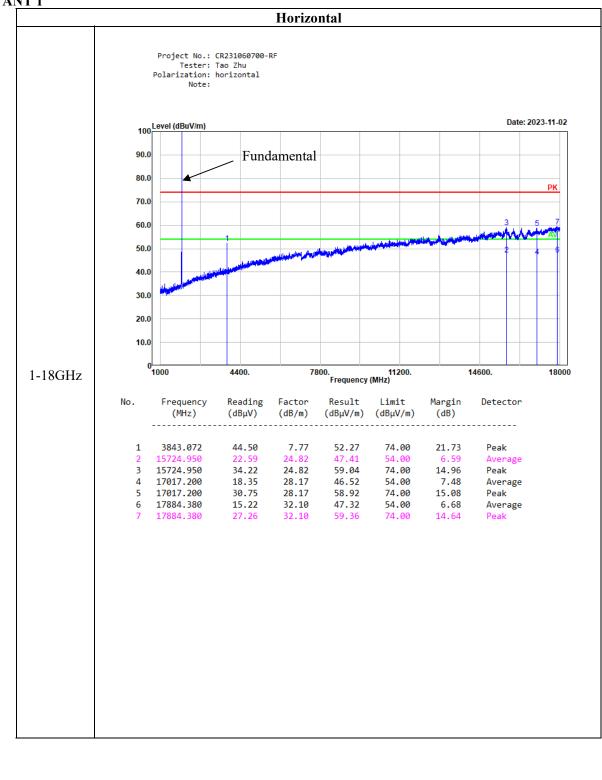
Average Field Strength ANT 1

Frequency (MHz)	Peak (dBµV/m)	Polar (H/V)	Duty Cycle Factor (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low C	Channel:	1921.536	MHz		
3843.072	52.27	Н	-28.20	24.07	54.00	29.93
3843.072	51.62	V	-28.20	23.42	54.00	30.58
	Middle C	Channel:	1924.992	MHz		
3849.984	51.82	Н	-28.20	23.62	54.00	30.38
3849.984	51.40	V	-28.20	23.20	54.00	30.80
	High C	Channel:	1928.448	MHz		
3856.896	51.53	Н	-28.20	23.33	54.00	30.67
3856.896	50.89	V	-28.20	22.69	54.00	31.31

Г	Rece	eiver	D 1	E (D 1	T ' '/	. ·
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		Low (Channel:	1921.536	MHz		
3843.072	42.96	РК	Н	7.77	50.73	74.00	23.27
3843.072	41.22	РК	V	7.77	48.99	74.00	25.01
		Middle (Channel:	1924.992	MHz		
3849.984	42.85	РК	Н	7.77	50.62	74.00	23.38
3849.984	41.34	РК	V	7.77	49.11	74.00	24.89
		High (Channel:	1928.448	MHz		
3856.896	42.60	РК	Н	7.78	50.38	74.00	23.62
3856.896	41.34	РК	V	7.78	49.12	74.00	24.88

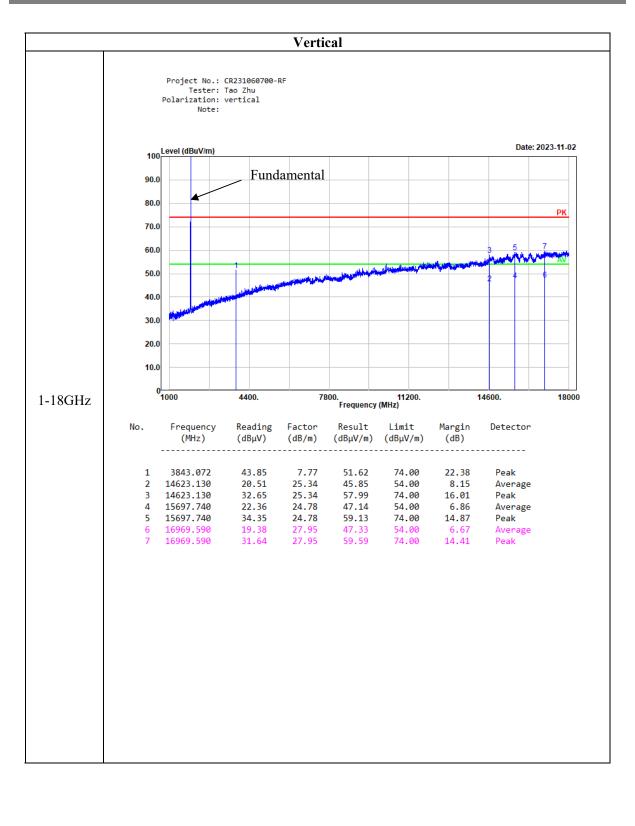
Peak Field Strength ANT 2

Average Field Strength ANT 2

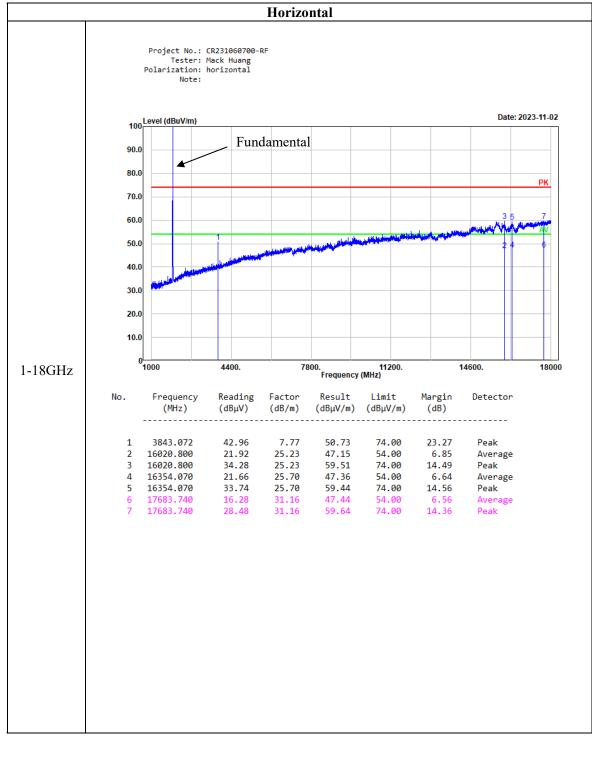

Frequency (MHz)	Peak (dBµV/m)	Polar (H/V)	Duty Cycle Factor (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low (Channel:	1921.536	MHz		
3843.072	50.73	Н	-28.20	22.53	54.00	31.47
3843.072	48.99	V	-28.20	20.79	54.00	33.21
	Middle (Channel:	1924.992	MHz		
3849.984	50.62	Н	-28.20	22.42	54.00	31.58
3849.984	49.11	V	-28.20	20.91	54.00	33.09
	High C	Channel:	1928.448	MHz		
3856.896	50.38	Н	-28.20	22.18	54.00	31.82
3856.896	49.12	V	-28.20	20.92	54.00	33.08


Note: Average level= Peak level+ Duty Cycle Factor

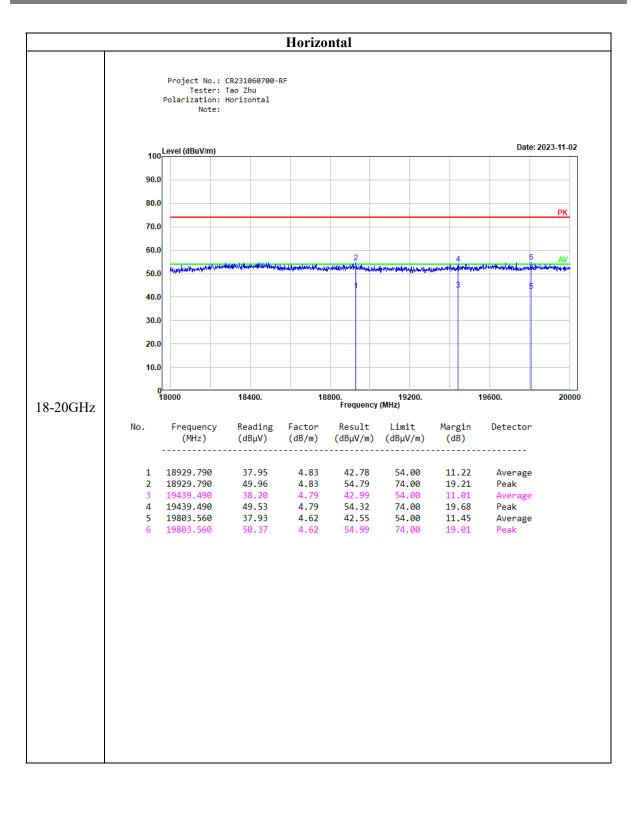
Duty cycle: Ton1 =0.39ms Tp = 10.02ms Duty cycle = Ton/Tp = 0.39/10.02=0.0389Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0389= -28.2

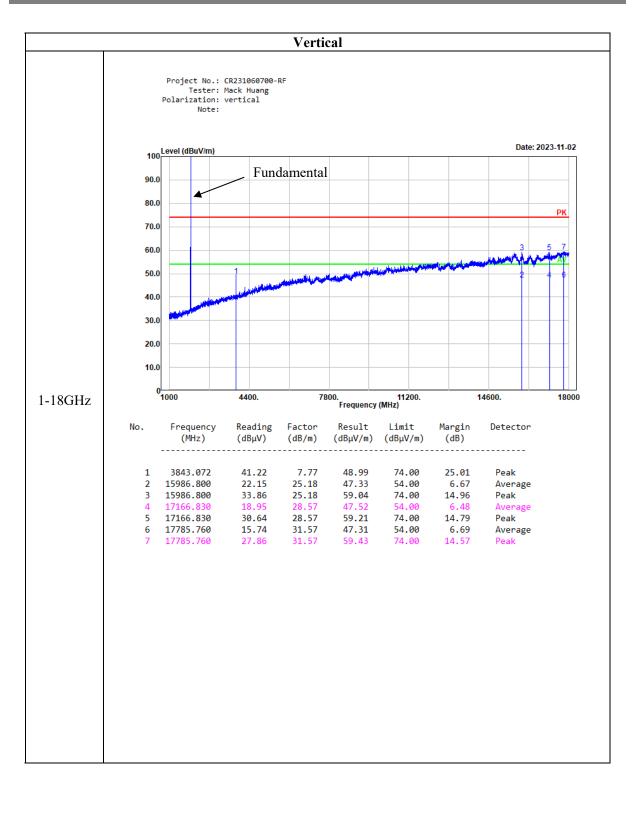

<u></u>									G
Spectrun		0.5			-				T T
Ref Leve Att	1 23.50 dBi 30 d			 RBW 3 MH: VBW 20 MH: 					
SGL					-				
●1Pk Clrw									
20 dBm	18 <u>2</u> 1	D3			M1	^{L1}		1 1	19.56 dB 8.9000 m
10 dBm-					02[[1]			0.33 d
0 dBm									400.0 µ
U UBIII	01 -0.109	asm							
-10 dBm									
-20 dBm-									
-30 dBm-									
_40 dBm-	u a ll an a	William Jacobs		allennegreentel			ad a start of	- 10 - 11 - 1	la travel a
-50 dBm	er diversitede	Manu Artholical A	www.	anan na sana an Ala	uniter and the	ran an a	annanan san san san san san san san san	and warmaning of a	oppismithine-sil
-50 usm									
-60 dBm		+ +		+ +				+	
-70 dBm									
CF 1.9249 Marker	92 GHz			1001	pts				10.0 ms/
Type Re	f Trc	X-value		Y-value	Functi	on	Fun	ction Result	
M1	1				nn				
D2 M			3.9 ms	19.56 dBr					
Date: 15.NG	11 1 11 1 CR231060 DV.2023	401 10 700-PP Test	0.0 µs).1 ms	0.33 d 0.20 d	B				6
D3 M ProjectNo.: Date: 15.NC Spectrun Ref Leve	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	400 10 700-PP Test 13:08:28 m Offset 3	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d Juang • RBW 3 MH:	z				Ţ
D3 M ProjectNo.: Date: 15.W Spectrun Ref Leve Att	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	401 10 700-PP Test 13:08:28	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d Iuang	z				(T
D3 M ProjectNo.: Date: 15.NC Spectrun Ref Leve	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	400 10 700-PP Test 13:08:28 m Offset 3	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d Juang • RBW 3 MH:	z				Ţ
D3 M ProjectNo.: Date: 15.WC Spectrun Ref Leve Att SGL	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	401 10 700-PP Test 13:08:28 m Offset 3	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	z	[1]			19.58 dB
D3 M ProjectNo.: Date: 15.NK Spectrun Ref Leve Att SGL 1Pk Clrw 20 dBm	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	401 10 700-PP Test 13:08:28 m Offset 3	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d Juang • RBW 3 MH:	2 2 2 1 1				•
D3 M ProjectNo.: Date: 15.NK Spectrun Ref Leve Att SGL 1Pk Clrw	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	401 10 700-PP Test 13:08:28 m Offset 3	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	8 8 2 2				19.58 dBi 2.2200 m
D3 M ProjectNo.: Date: 15.W Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 10 dBm	11 1 11 1 CR231060° DV.2023 : 1 23.50 dBr	401 10 700-PP Test 13:08:28 m Offset 3 B • SWT	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 1 1				19.58 dB 2.2200 m 0.29 d
D3 M ProjectNo.: Date: 15.NC Spectrun Ref Leve • Att SGL • 1Pk Clrw 20 dBm • 0 dBm	11 1 12 1 CR231060 WV.2023 3 1 23.50 dBr 30 d	401 10 700-PP Test 13:08:28 m Offset 3 B • SWT	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 1 1				19.58 dB 2.2200 m 0.29 d
D3 M ProjectNo.: Date: 15.NC Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 0 dBm -10 dBm	11 1 12 1 CR231060 WV.2023 3 1 23.50 dBr 30 d	401 10 700-PP Test 13:08:28 m Offset 3 B • SWT	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 1 1				19.58 dB 2.2200 m 0.29 d
D3 M ProjectNo.: Date: 15.NC Spectrun Ref Leve • Att SGL • 1Pk Clrw 20 dBm • 0 dBm	11 1 12 1 CR231060 WV.2023 3 1 23.50 dBr 30 d	401 10 700-PP Test 13:08:28 m Offset 3 B • SWT	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 1 1				19.58 dB 2.2200 m 0.29 d
D3 M ProjectNo.: Date: 15.NC Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 0 dBm -10 dBm	11 1 12 1 CR231060 WV.2023 3 1 23.50 dBr 30 d	401 10 700-PP Test 13:08:28 m Offset 3 B • SWT	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 1 1				19.58 dB 2.2200 m 0.29 d
D3 M ProjectNo.3 Date: 15.NC Date: 15.NC Spectrun RefLeve Att SGL ID dBm 10 dBm -0 -20 dBm -30 dBm	11 1 12 1 CR231060 WV.2023 3 1 23.50 dBr 30 d	401 10 700-PP Test 13:08:28 m Offset 3 B • SWT	0.0 µs).1 ms .er:Len H 3.50 dB @	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 1 1				19.58 dB 2.2200 m 0.29 d
D3 M ProjectNo3 Date: 15.NC Date: 15.NC Spectrum Ref Leve Att SGL Pk Cirw 20 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	11 1	400 10 700-PP Test 33:08:28 m Offset 3 8 e SWT	0.0 µs 0.1 ms er:Len H 3.50 dB 30 ms	0.33 d 0.20 d tuang RBW 3 MH VBW 20 MH	2 2 2 M11 D2	[1]			19.58 dBj 2.2200 m 0.29 d 390.0 j
D3 M ProjectNo3 Date: 15.NC Date: 15.NC Spectrum Ref Leve Att SGL Pk Cirw 20 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	11 1	400 10 700-PP Test 33:08:28 m Offset 3 8 e SWT	0.0 µs 0.1 ms er:Len H 3.50 dB 30 ms	0.33 d 0.20 d luang RBW 3 MH: VBW 20 MH:	2 2 2 M11 D2	[1]	nunu desi	e grýslen attrour	19.58 dBj 2.2200 m 0.29 d 390.0 j
D3 M ProjectNo.: Date: Date: 15.M Sectrum Ref Leve Att SGL O dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	11 1	400 10 700-PP Test 33:08:28 m Offset 3 8 e SWT	0.0 µs 0.1 ms er:Len H 3.50 dB 30 ms	0.33 d 0.20 d tuang RBW 3 MH VBW 20 MH	2 2 2 M11 D2	[1]	nuter desi		19.58 dBj 2.2200 m 0.29 d 390.0 j
D3 M ProjectNo.: Date: Date: 15.M Spectrum Ref Leve Att SGL O dBm -20 dBm -10 dBm -20 dBm -30 dBm -40 dBm	11 1	400 10 700-PP Test 33:08:28 m Offset 3 8 e SWT	0.0 µs 0.1 ms er:Len H 3.50 dB 30 ms	0.33 d 0.20 d tuang RBW 3 MH VBW 20 MH	2 2 2 M11 D2	[1]	num desi	e grjune e street	19.58 dBj 2.2200 m 0.29 d 390.0 j
D3 M ProjectNo.: Date: Date: 15.M Sectrum Ref Leve Att SGL O dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	11 1	400 10 700-PP Test 33:08:28 m Offset 3 8 e SWT	0.0 µs 0.1 ms er:Len H 3.50 dB 30 ms	0.33 d 0.20 d tuang RBW 3 MH VBW 20 MH	2 2 2 M11 D2	[1]	n.tur" (d0).		19.58 dBj 2.2200 m 0.29 d 390.0 j
D3 M ProjectNo.: Date: 15.NK Spectrun RefLeve Att SGL D dBm -D dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	11 1 11 1 12 1 12 28.50 dBi 1 23.50 dBi 30 d 30 d	400 10 700-PP Test 33:08:28 m Offset 3 8 e SWT	0.0 µs 0.1 ms er:Len H 3.50 dB 30 ms	0.33 d 0.20 d tuang RBW 3 MH VBW 20 MH	B B Z Z D Z D Z Q D Z	[1]			19.58 dBj 2.2200 m 0.29 d 390.0 j
D3 M ProjectNo.: Date: Date: 15.NK Spectrun RefLove Att SGL O dBm -0 -0 dBm -0	11 1 12 1 12 1 12 22,50 dBt 1 23,50 dBt 30 d 01 -0.105 01 -0.105 92 GHz	400 11 700-PP Test 13:08:28 m Offset 18 8 s SWT	0.0 µs 0.1 ms 1.1 ms 3.50 dB 3.50 dB 3.50 dB 9.50 d	0.33 d 0.20 d tuang RBW 3 MH VBW 20 MH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	[1]			19.58 dB 2.2200 m 0.29 d 390.0 ເ
03 M ProjectNo.; Date: Date: 15.NK Spectrun Ref Love Att Signature 0 dBm 30 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400 110 700-PP Test 13:08:28 m Offset 1 B & SWT c6m c6m c6m c7 c8m c7 c8m c7 c8m c7 c8m c7 c8m c7 c8m c7 c8 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7	0.0 µs 0.1 ms 1.1 ms 3.50 dB 3.50 dB 3.50 dB 9.50 d	0.33 d 0.20 d tuang RBW 3 MH 9 VBW 20 MH 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	18 18 2 2 2 10 10 10 10 10 10 10 10 10 10	[1]			19.58 dB 2.2200 m 0.29 d 390.0 ເ


Worst Harmonic Margin	Test plots	(Low	channel)
ANT 1	-		· · · · · ·



Page 59 of 74




A<u>NT 2</u>



Page 62 of 74

Page 63 of 74

Page 65 of 74

4.6 Frequency Stability:

Serial Number:	2CD4-2	Test Date:	2023/11/15~2023/12/06
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	Pass

Environmental Conditions:									
Temperature: (℃)	22.1~24.5	Relative Humidity: (%)	54~59	ATM Pressure: (kPa)	100.9~101				

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	3dB Attenuator	Unknown	F-03-EM121	2023/7/4	2024/7/3
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Temperature (°C)	Voltage (V _{DC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
-20	3.8	1921.536	3	1.56	±10
20	3.23	1921.536	6	3.12	±10
20	4.37	1921.536	5	2.60	±10
50	3.8	1921.536	5	2.60	±10

Temperature (°C)	Voltage (V _{DC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
-20	3.8	1924.992	6	3.12	±10
20	3.23	1924.992	5	2.60	±10
20	4.37	1924.992	4	2.08	±10
50	3.8	1924.992	8	4.16	±10

Temperature (°C)	Voltage (V _{DC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
-20	3.8	1928.448	6	3.11	± 10
20	3.23	1928.448	3	1.56	±10
20	4.37	1928.448	6	3.11	±10
50	3.8	1928.448	5	2.59	±10

4.7 Specific Requirements for UPCS Device:

Serial Number:	2CD4-2	Test Date:	2023/11/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Len Huang	Test Result:	N/A

Environmenta	Environmental Conditions:									
Temperature (°C	24.5	Relative Humidity: (%)	54	ATM Pressure: (kPa)	101					

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023/4/18	2024/4/17
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	3dB Attenuator	Unknown	F-03-EM121	2023/7/4	2024/7/3
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4
Agilent	MXG Vector Signal Generator	N5182B	MY51350144	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Result: Pass

Please see the below data

1) Automatic Discontinuation of Transmission

Test result:

The following tests were performed after a connection had been established with base unit.

Test condition	Reaction of EUT	Pass/Fail
Adapter removed from Base	Connection break down	Pass
Battery remove from EUT	Connection break down	Pass

2) Monitoring Time

Test result:

This requirement is covered by the results of Least Interfered Channel (LIC).

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_L+U_M+20 dB and no interference on f_2 . Initiate transmission and verify the transmission only on f_2 . Then terminate it.	EUT transmits on f ₂	Pass
b) Apply the interference on f_2 at level T_L+U_M+20 dB and immediately remove all interference from f_1 . The EUT should immediately attempt transmission on f_1 (but at least 20 ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmission f_1	Pass

3) Lower Monitoring Threshold

Test result:

Not applicable because the EUT has more 40 defined duplex system access channels and meet the provision of the Least Interfered Channel (LIC).

4) Maximum Transmit Period

Test result:

Repetition of Access Criteria	Measured Maximum Transmission Time (Second)	Limit (Second)	Results
First	17678	28,800	Pass
Second	17678	28,800	Pass

5) System Acknowledgement

Test result:

Test	Time taken (second)	Limit (second)	Result
Initial Connection acknowledgement	0.38	1	Pass
Change of access criteria for control information	N/A	30	N/A
Transmission cease time	4.24	30	Pass

Note: N/A=Not Applicable

6) Least Interfered Channel (LIC)

Calculation of monitoring threshold limits for isochroous devices:

Lower threshold: $T_L = -174+10Log_{10}B + M_L + P_{MAX}-P_{EUT} (dBm)$ Where: B=Emission bandwidth (Hz) $M_L = dB$ the threshold may exceed thermal noise (30 for T_L) $P_{MAX} = 5Log_{10}B-10(dBm)$ $P_{EUT} = Transmitted power (dBm)$

Calculated thresholds:

Monitor Threshold	B(MHz)	$M_L(dB)$	P _{MAX} (dBm)	P _{EUT} (dBm)	Threshold (dBm)
Lower threshold	1.452	30	20.81	20.29	-81.86

Note: 1. The upper threshold is applicable as the EUT utilizes more than 20 duplex system channels

Test result:

LIC procedure test:

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_L+U_M+7dB and the interference on f_2 at level T_L+U_M . Initiate transmission and verify the transmission only on f_2 . Repeat 5 times.	EUT transmits on f_2	Pass
b) Apply the interference on f_1 at level T_L+U_M and the interference on f_2 at level T_L+U_M+7dB . Initiate transmission and verify the transmission only on f_1 . Repeat 5 times.	EUT transmits on f_1	Pass
c) Apply the interference on f_1 at level T_L+U_M+1dB the interference on f_2 at level T_L+U_M-6dB . Initiate transmission and verify the transmission only on f_2 . Repeat 5 times.	EUT transmits on f_2	Pass
d) Apply the interference on f_1 at level T_L+U_M-6dB and the interference on f_2 at level T_L+U_M+1dB . Initiate transmission and verify the transmission only on f_1 . Repeat 5 times.	EUT transmits on \mathbf{f}_1	Pass

Selected channel confirmation:

Interference (Refer to ANSI C63.17 clause 7.3.4)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_U+U_M and no interference on f_2 . Initiate transmission and verify the transmission only on f_2 . Then terminate it.	EUT transmits on f ₂	Pass
b) Apply the interference on f_2 at level T_L+U_M and immediately remove all interference from f_1 . The EUT should immediately attempt transmission on f_1 (but at least 20 ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmission \mathbf{f}_1	Pass

7) Random waiting

Note: This is Not Applicable

8) Monitoring Bandwidth and Reaction Time

Test result:

Monitoring Bandwidth:

The antenna of the EUT used for monitoring is the same interior antenna that used for transmission, so the monitoring system bandwidth is equal to the emission bandwidth of the intended transmission

Reaction Time Test:

No.	Interference Pulse width (µs)	Reaction of EUT	Observing time (µs)	Result
1	50 μ s with level T _L +U _M	No transmission	25.62	Pass
2	$35\mu s$ with level T_L+U_M+6dB	No transmission	23.43	Pass

9) Monitoring Antenna

Test result:

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.

10) Monitoring threshold relaxation

Test result:

This requirement is covered by the results of Least Interfered Channel (LIC).

11) Duplex Connections

Test result:

Interference (Refer to ANSI C63.17 § 8.3& § 8.3.2)	Reaction of EUT	Results
a) Only a single carrier f1 for EUT TDMA systems and on $f1$ and $f2$ and corresponding duplex carriers for FDMA systems.	EUT can transmit	Pass
b) All Tx windows with level TL+UM except one & Rx windows with level TL+UM+7dB except one, which are not the duplex mate.	Connected on the target Rx window and its duplex mate.	Pass
c) All Tx windows with level TL+UM+7dB except one & Rx windows with level TL+UM except one, which are not duplex mate.	Connected on the target Tx window and its duplex mate.	Pass
d) All Tx & Rx windows with level TU+UM, except one for Tx window & one for Rx window, which are not duplex mate.	No connection possible	Pass

12) Alternative monitoring interval

Test result:

Interference (Refer to ANSI C63.17 § 8.4)	Reaction of EUT	Results
a) Only a single carrier fl for EUT TDMA systems and on <i>f</i> 1 and <i>f</i> 2 and corresponding duplex carriers for FDMA systems.	EUT can transmit	Pass
b) Apply interference with same parameters as EUT transmissions on all Tx windows with level TL+UM on the enabled carrier(s) and no interference on the Rx windows on the enabled carriers.	No connection is established	Pass

IC:

Not appropriate, as the system always monitor both the transmit and receive time/spectrum windows, it is not a co-located device.

13) Fair Access

Test result:

The manufacturer declares that this device does not use any mechanisms as provided by FCC 15.323(c)(10) or (11) & IC RSS-213 5.2(10) and (11) to extend the range of spectrum occupied over space or time for the purpose of denying fail access to spectrum to other device.

14) Frame Repetition Stability Frame Period and Jitter

Test result:

Frame Period and Jitter:

Max. pos. Jitter	Max. neg. Jitter	Frame period	Liı	nit
(μs)	(μs)	(ms)	Frame Period (ms)	Jitter (µs)
0.1	-0.07	10.68	20 or10/X	25

Note: X is a positive whole number.

5. EUT PHOTOGRAPHS

Please refer to the attachment CR231060700-EXP EUT EXTERNAL PHOTOGRAPHS and CR231060700-INP EUT INTERNAL PHOTOGRAPHS

6. TEST SETUP PHOTOGRAPHS

Please refer to the attachment CR231060700-00-TSP TEST SETUP PHOTOGRAPHS.

===== END OF REPORT =====