

SAR TEST REPORT

Product Name: DECT wireless Headset

Model Name: S5 Pro VCV5000

FCC ID: T7HCT8950

Issued For : RTX HONG KONG LTD

8/F Corporation Square 8 Lam Lok Street, Kowloon Bay,

Hong kong

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Chen Hsong Industrial Park,

No.177 Renmin West Road, Jinsha Community, Kengzi

Street, Pingshan New District, Shenzhen, China

Report Number: LGT22L057HA02

Sample Received Date: Jan. 10, 2023

Date of Test: Feb. 08, 2023

Date of Issue: Feb. 12, 2023

Max. SAR (1g): Head: 0.043 W/kg

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	14
6. SAR Evaluation Procedures	15
7. EUT Test Position	16
7.1 Define Two Imaginary Lines on the Handset	16
7.2 Hotspot mode exposure position condition	17
8. Uncertainty	18
8.1 Measurement Uncertainty	18
8.2 System validation uncertainty	19
9. Conducted Power Measurement	20
9.1 Test Result:	20
10. EUT and Test Setup Photo	21
10.1 EUT Photos	21
10.2 Setup Photos	24
11. SAR Result Summary	26
11.1 Head SAR	26
12. Equipment List	27
Appendix A. System Validation Plots	28
Appendix B. SAR Test Plots	30
Appendix C. Probe Calibration and Dipole Calibration Report	32

Report No.: LGT22L057HA02 Page 2 of 32

Revision History

Rev.	Issue Date	Contents		
00	Feb. 12, 2023	Initial Issue		

Report No.: LGT22L057HA02 Page 3 of 32

TEST REPORT CERTIFICATION

Applicant RTX HONG KONG LTD

8/F Corporation Square 8 Lam Lok Street, Kowloon Bay, Address

Hong kong

Manufacture Foshan City Nanhai Commtech Technology Co., Ltd.

Yizhong, Da Zhen, Da Li, Nan Hai District, Foshan City,

Address **Guangdong Province China**

Product Name DECT wireless Headset

Trademark Vocovo

Model Name S5 Pro VCV5000

Sample number LGT22012108

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093)	PASS			
IEEE 1528: 2013	.,,,,,			

Prepared by:

Zane Shan

Zane Shan

Engineer Manager

Approved by:

Vita Li

Report No.: LGT22L057HA02 Page 4 of 32

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	DECT wireless Headset					
Model Name	S5 Pro VCV50	S5 Pro VCV5000				
Series Model	N/A					
Model Difference	N/A					
Device Category	Portable					
Product stage	Production uni	it				
RF Exposure Environment	General Popul	General Population / Uncontrolled				
Hardware Version	V2	V2				
Software Version	V0040_B0001	V0040_B0001				
Frequency Range	1921.536 MHz	z ~ 1928.448 MHz				
May Danastad	Band	Mode	Head (W/kg)			
Max. Reported SAR(1g):	DECT -	ANT 0	0.033			
(Limit:1.6W/kg)		ANT 1	0.043			
Battery	3.8V 335mAh	1.273Wh				
Modulation Type:	GFSK					
Slot Type:	PP32Z					
Antenna Specification	wire antenna					
Operating Mode	Maximum cont	Maximum continuous output				
Hotspot Mode	Not Support					

Report No.: LGT22L057HA02 Page 5 of 32

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (℃)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Company Name:	Shenzhen LGT Test Service Co., Ltd.		
Address:	Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China		
	FCC Registration No.: 746540		
Accreditation Certificate	A2LA Certificate No.: 6727.01		
	IC Registration No.: CN0136		

Report No.: LGT22L057HA02 Page 6 of 32

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	<u>Partial-Body</u>	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Report No.: LGT22L057HA02 Page 7 of 32

3. SAR Measurement System

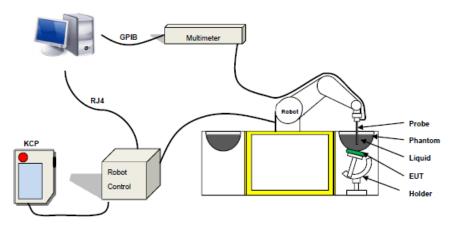
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

 $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Report No.: LGT22L057HA02 Page 8 of 32

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 1g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 04/22 EPGO364 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2mmMaximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 600 MHz to 6 GHz for head & body simulating liquid.
- -Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Probe

Report No.: LGT22L057HA02 Page 9 of 32

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 06/22 SAM 148

3.2.3 Device Holder

Figure-SN 06/22 ELLI 51

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Report No.: LGT22L057HA02 Page 10 of 32

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max _ 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

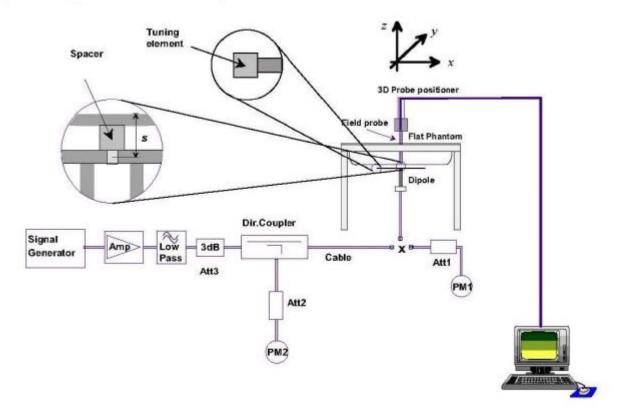
Frequency	3	r	σ 1g S/m		
, ,	Head	Body	Head	Body	
300	45.3	45.3	0.87	0.87	
450	43.5	43.5	0.87	0.87	
900	41.5	41.5	0.97	0.97	
1450	40.5	40.5	1.20	1.20	
1800	40.0	40.0	1.40	1.40	
2450	39.2	39.2	1.80	1.80	
3000	38.5	38.5	2.40	2.40	
5200	36.0	36.0	4.70	4.70	

Report No.: LGT22L057HA02 Page 11 of 32

LIQUID MEASUREMENT RESULTS

	Ambient		Simulating Liquid		·		Manager	Deviation	Limited
Date	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]	Parameters	Target	Measured	%	%
2022 02 00	22.8	45	1000	22.5	Permittivity	40.00	40.46	1.15	±5
2023-02-08	22.8	45	1900 22.5	Conductivity	1.40	1.43	2.14	±5	
2023-02-08	22.9	45	1921.536	22.6	Permittivity	40.00	40.42	1.05	±5
2023-02-06	22.9	45	1921.550	21.536 22.6	Conductivity	1.40	1.39	-0.71	±5
2023-02-08	22.9	45	1924.992	22.6	Permittivity	40.00	40.45	1.13	±5
2023-02-06	22.9	45	1924.992	4.992 22.6	Conductivity	1.40	1.39	-0.71	±5
2023-02-08	22.9	46	1928.448	1928.448 22.6	Permittivity	40.00	41.29	3.23	±5
2023-02-00	22.9	40	1920.440	22.0	Conductivity	1.40	1.41	0.71	±5

Report No.: LGT22L057HA02 Page 12 of 32



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

Report No.: LGT22L057HA02 Page 13 of 32

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of ± 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2022-02-08	1900	100	3.973	39.73	40.85	-2.74	10

Note:

- 1. The tolerance limit of System validation ±10%.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

Report No.: LGT22L057HA02 Page 14 of 32

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position.

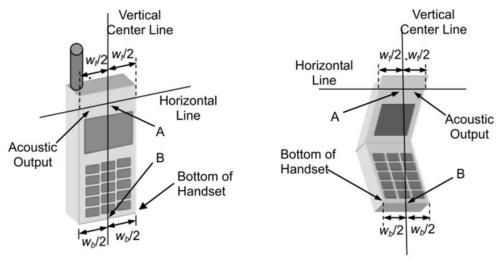
- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

Report No.: LGT22L057HA02 Page 15 of 32



7. EUT Test Position

This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face.

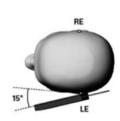
7.1 Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Cheek Position

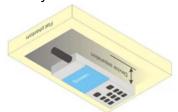
- 1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the earpiece with the line RE-LE.
- 2) To move the device towards the phantom with the earpiece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

Report No.: LGT22L057HA02 Page 16 of 32

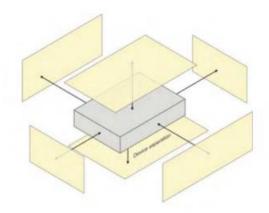


Title Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.



Body-worn Position Conditions:


Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

7.2 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm) is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Report No.: LGT22L057HA02 Page 17 of 32

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

oproximately the 95% confidence level using a coverage factor of k=2.								
Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	√0.5	√0.5	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√0.5	√0.5	2.41	2.41	8
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation response	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	8
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	1.81	1.81	8
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient conditions-								
reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with	4.4	Б		4	4	0.04	0.04	
respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, Interpolation	2.2	В	<u></u>	1	4	1 22	1 22	
and Integration Algoritms for Max, SAR	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Test sample Related				ı		ı		
Test sample positioning	2.6	N	1	1	1	2.60	2.60	11
Device holder uncertainty	3	N	1	1	1	3.00	3.00	7
Output Power Variation -	5	R	. [5	1	1	2.89	2.89	8
SAR Drift Measurement			$\sqrt{3}$	1		2.09	2.09	8
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	8
Phantom and tissue paramet	ters							
Phantom uncertainty			_					
(shape and thickness	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
uncertainty)								
Uncertainty in SAR	2	NI NI	4	1	0.04	2.00	1.60	
correction for deviations in permittivity and conductivity	2	N	1	1	0.84	2.00	1.68	8
Liquid Conductivity -								
Measurement Uncertainty)	4	N	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity -	_			0.00	0.00	4.45	4.00	1
Measurement Uncertainty	5	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity	2.5	R	√3	0.78	0.71	1.13	1.02	8
(Temperature Uncertainty)	2.0	. ` `	γ3	0.70	0.71	1.10	1.02	
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard			•					
Uncertainty		RSS				10.47	10.34	
Expanded Uncertainty		К				20.95	20.69	
(95% Confidence interval)								

Report No.: LGT22L057HA02 Page 18 of 32

8.2 System validation uncertainty

Uncertainty Component	Tol	Prob.	Div.	Ci (1g)	Ci (40 x)	1g Ui	10g Ui	vi
, ,	(+- %)	Dist.		(0)	(10g)	(+-%)	(+-%)	
Measurement System Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
				0	0			
Hemispherical Isotropy	5.9	R	√3 			0.00	0.00	∞
Boundary effect	1	R	√3	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	0.71	0.71	∞
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	8
Response Time	0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-								
reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical	1.4	R	√3	1	1	0.81	0.81	∞
tolerance						_	_	
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, Interpolation								
and Integration Algoritms for	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Max, SAR			V					
Dipole								
Deviation of Experimental								
Source from Numerical	5	N	1	1	1	5.00	5.00	∞
Source								
Input Power and SAR Drift	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	∞
Measurement Dipole Avia to Liquid			V -					
Dipole Axis to Liquid Distance	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parame	ters							
Phantom uncertainty								
(shape and thickness	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
uncertainty)			٧ -					
Uncertainty in SAR								
correction for deviations in	2	N	1	1	0.84	2.00	1.68	∞
permittivity and conductivity								
Liquid Conductivity -	4	N	1	0.78	0.71	3.12	2.84	5
Measurement Uncertainty)		. ,	•			· -		
Liquid Permittivity -	5	N	1	0.23	0.26	1.15	1.30	5
Measurement Uncertainty Liquid Conductivity								
(Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid Permittivity	0.5		r-	0.00	0.00	0.00	0.00	
(Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard		RSS				10.16	10.03	
Uncertainty		NOO				10.10	10.03	
Expanded Uncertainty		K				20.32	20.06	
(95% Confidence interval)						_5.52	_5.00	

Report No.: LGT22L057HA02 Page 19 of 32

9. Conducted Power Measurement

9.1 Test Result:

DECT

	Carrier Channel	Frequency (MHz)	Measured Peak Output Power (dBm) ANT0	Measured Peak Output Power (dBm) ANT1
Ī	Low	1921.536	20.4	20.11
Ī	Mid	1924.992	20.16	19.91
Ī	High	1928.448	19.95	19.56

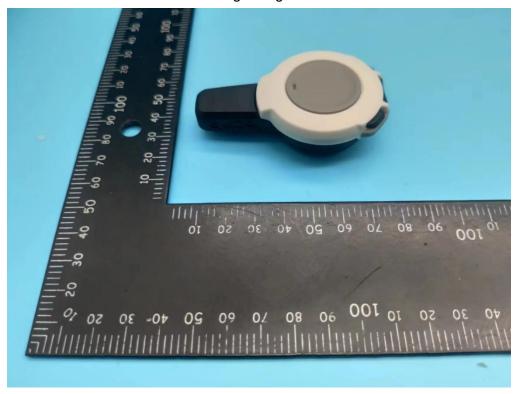
Tune up

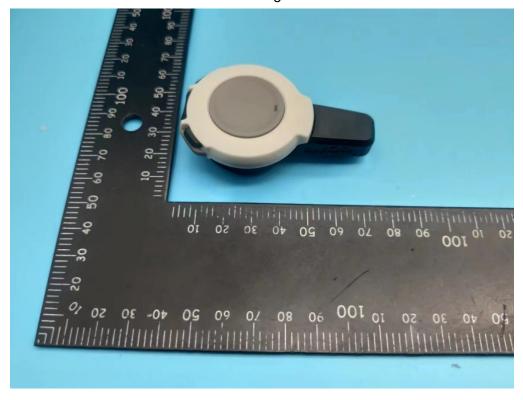
Mode	DECT Asto	DECT Ant1	
Channel	DECT Ant0	DECT Ant1	
Low	19.5±1dBm	19.5±1dBm	
Mid	19.2±1dBm	19±1dBm	
High	19±1dBm	19±1dBm	

Report No.: LGT22L057HA02 Page 20 of 32

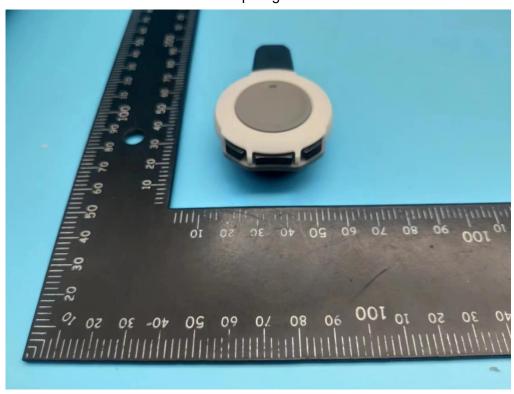
10. EUT and Test Setup Photo

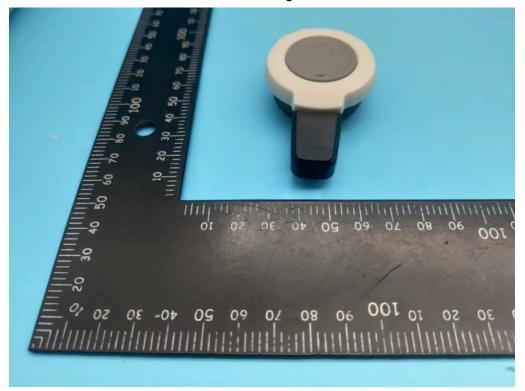
10.1 EUT Photos


Back side


Report No.: LGT22L057HA02 Page 21 of 32

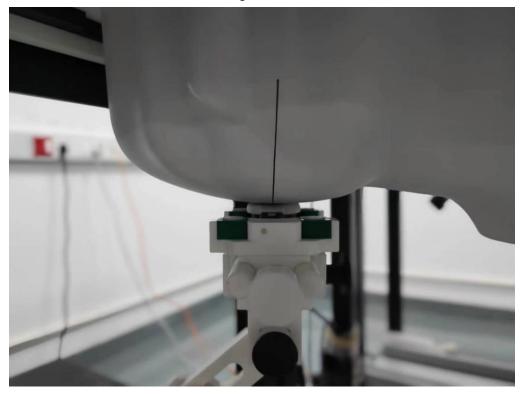
Right Edge


Left Edge

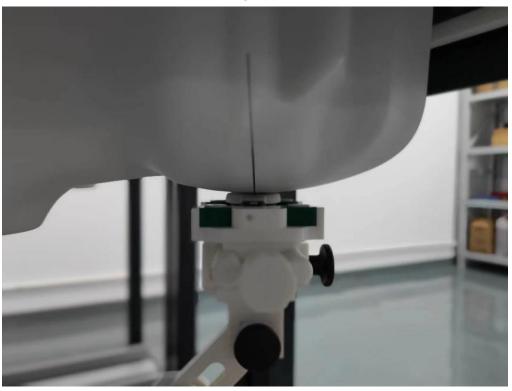

Report No.: LGT22L057HA02 Page 22 of 32

Top Edge

Bottom Edge

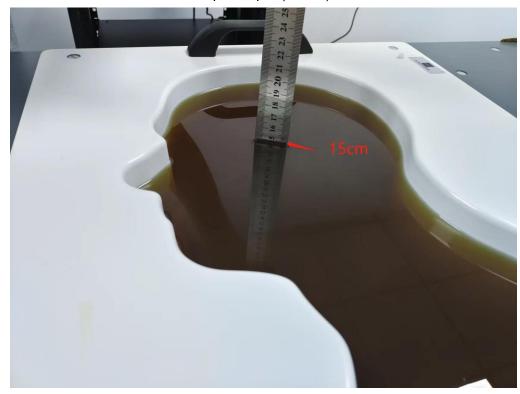


Report No.: LGT22L057HA02 Page 23 of 32



10.2 Setup Photos

Right Touch


Right Tilt

Report No.: LGT22L057HA02 Page 24 of 32

Liquid depth (15 cm)

Report No.: LGT22L057HA02 Page 25 of 32

11. SAR Result Summary

11.1 Head SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift (%)	Max.Turn- up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
DECTANTO	GFSK	Right Cheek	1921.536	0.032	-0.53	20.50	20.40	0.033	1
DECIANTO GFSK	Left Cheek	1921.536	0.020	-0.13	20.50	20.40	0.020	/	
		Right Cheek	1921.536	0.039	1.56	20.50	20.11	0.043	2
DECTANT1	CECK	Right Cheek	1924.992	0.030	2.64	20.00	19.91	0.031	/
DECTANT1 GFSK	Right Cheek	1928.448	0.024	-2.19	20.00	19.56	0.027	/	
		Left Cheek	1921.536	0.014	3.99	20.50	20.11	0.015	/

Note:

- The test separation of all above table is 0mm.
 Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 b. For DECT: Scaled SAR (W/ kg) = Measured SAR (W/ kg) *Tune-up Scaling Factor

Page 26 of 32 Report No.: LGT22L057HA02

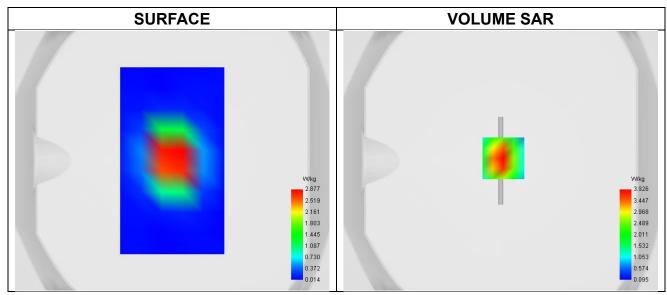
12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
1900MHz Dipole	MVG	DIP1G900	SN 06/22 DIP1G900-641	2022.02.11	2025.02.10
E-Field Probe	MVG	EPGO364	SN 04/22 EPGO364	2023.02.10	2024.02.09
Dielectric Probe Kit	MVG	OCPG 87	SN 06/22 OCPG87	2023.02.10	2024.02.09
Antenna	MVG	ANTA 73	SN 06/22 ANTA 73	N/A	N/A
Ellipsoid Phantom	MVG	ELLI 51	SN 06/22 ELLI 51	N/A	N/A
Phantom	MVG	SAM 148	SN 06/22 SAM148	N/A	N/A
Phone holder	MVG	MSH 117	SN 06/22 MSH 117	N/A	N/A
Laptop holder	MVG	LSH 36	SN 06/22 LSH 38	N/A	N/A
Directional coupler	SHW	SHWDCP	202203280013	N/A	N/A
Network Analyzer	Agilent	E5071C	MY46418070	2022.03.28	2023.03.27
Multi Meter	Keithley	DMM6500	DMM6500	2022.05.05	2023.05.04
Signal Generator	Keithley	N5182B	MY59100717	2022.04.29	2023.04.28
Wireless Communication Test Set	R&S	CMW500	137737	2022.04.29	2023.04.28
Power Sensor	R&S	Z11	116184	2022.03.28	2023.03.27
Temperature hygrometer	N/A	ST-W2318	N/A	2022.05.05	2023.05.04
Thermograph	N/A	TP101	N/A	2022.05.05	2023.05.04

Report No.: LGT22L057HA02 Page 27 of 32

Appendix A. System Validation Plots

System Performance Check Data (1900MHz)

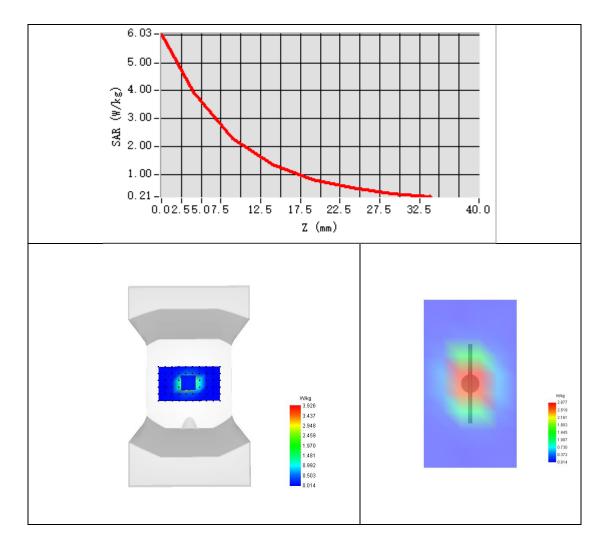

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement:2023-02-08

Experimental conditions.

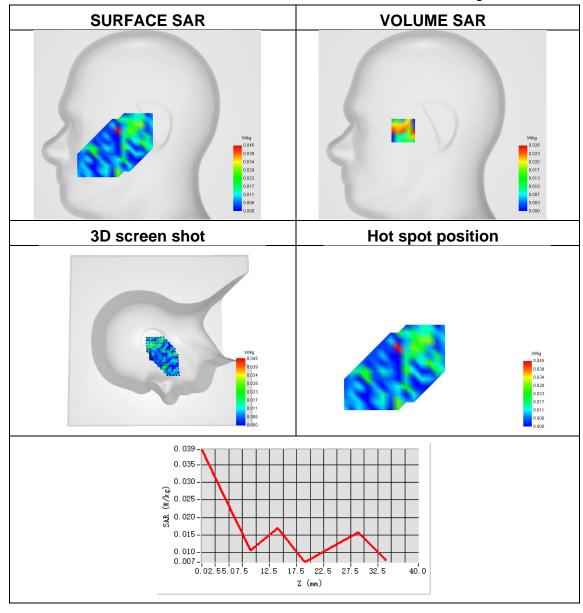
Phantom	Validation plane
Device Position	Dipole
Band	CW1900
Channels	Middle
Signal	CW
Frequency (MHz)	1900.000
Relative permittivity	40.46
Conductivity (S/m)	1.43
Probe	SN 04/22 EPGO364
ConvF	2.25
Crest factor:	1:1


Maximum location: X=3.00, Y=1.00; SAR Peak: 6.29 W/kg

SAR 10g (W/Kg)	2.082239
SAR 1g (W/Kg)	3.972640

Report No.: LGT22L057HA02 Page 28 of 32

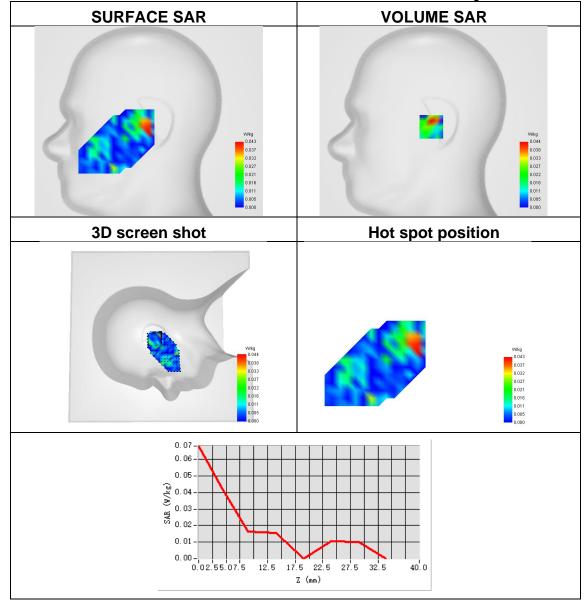
Z Axis Scan



Appendix B. SAR Test Plots Plot 1:

Test Date	2023-02-08
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	DECT
Signal	GFSK
ANT	0
Frequency	1921.536
SAR 10g (W/Kg)	0.013
SAR 1g (W/Kg)	0.032

Maximum location: X=-40.00, Y=-8.00; SAR Peak: 0.08 W/kg


Report No.: LGT22L057HA02 Page 30 of 32

Plot 2:

Test Date	2023-02-08
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	DECT
Signal	GFSK
ANT	1
Frequency	1921.536
SAR 10g (W/Kg)	0.019
SAR 1g (W/Kg)	0.039

Maximum location: X=-3.00, Y=-8.00; SAR Peak: 0.09 W/kg

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT***

Report No.: LGT22L057HA02 Page 32 of 32