

RADIO TEST REPORT

S T

5

Report No.: STS2011042W09

Issued for

RTX HONG KONG LTD

8TH FL CORPORATION SQUARE, 8 LAM LOK ST., KOW-LOON BAY, HK.

Product Name:	Cordless DECT Handset
Brand Name:	Alcatel·Lucent
Model Name:	8244 DECT Handset
Series Model:	N/A
FCC ID:	T7HCT8244
Test Standard:	Title 47 of the CFR, Part 15 Subpart D

Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Page 2 of 81

Report No.: STS2011042W09

TEST RESULT CERTIFICATION

Applicant's Name	
Address:	нк.
Manufacturer's Name	
Address	8TH FL CORPORATION SQUARE, 8 LAM LOK ST., KOWLOON BAY, HK.
Product Description	
Product Name:	Cordless DECT Handset
Brand Name:	Alcatel·Lucent
Model Name:	
Series Model:	N/A
Test Standards	Title 47 of the CFR, Part 15. Subpart D
Test procedure:	ANSI C63.17-2013
test (EUT) is in compliance with identified in the report. This report shall not be reprodu	been tested by STS and the test results show that the equipment under the FCC requirements. And it is applicable only to the tested sample iced except in full, without the written approval of STS, this document S, personal only, and shall be noted in the revision of the document.
Date of Test	········
Date of receipt of test item	: 19 Nov. 2020
Date of performance of tests	: 19 Nov. 2020 ~ 25 Nov. 2020
Date of Issue	:: 26 Nov. 2020
Test Result	Pass
Testing Engine	And then
Technical Man	ager : (Chris Chen) (Sean She APPROVAL)
Authorized Sig	A Sudi

Т

Page 3 of 81

Report No.: STS2011042W09

TABLE OF CONTENTS	Page
SUMMARY OF TEST RESULTS	5
1 INTRODUCTION	7
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2 PRODUCT INFORMATION	8
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	9
3.1 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	9
3.2 SYSTEM TEST CONFIGURATION	10
4 MEASUREMENT INSTRUMENTS	11
5 TEST ITEMS	13
5.1 ANTENNA REQUIREMENT	13
5.2 MODULATION TECHNIQUES	13
5.3 EMISSION BANDWIDTH	14
5.4 PEAK TRANSMIT POWER	19
5.5 POWER SPECTRAL DENSITY	24
5.6 POWER ADJUSTMENT FOR ANTENNA GAIN	29
5.7 AUTOMATICALLY DISCONTINUE TRANSMISSION	30
5.8 SYSTEM ACKNOWLEDGE-MENT TEST	31
5.9 MONITORING THRESHOLD	32
5.10 DURATION OF TRANSMISSION	33
5.11 SELECTED CHANNEL CONFIRMATION, POWER ACCURACY, SEGMEN	Т
OCCUPANCY	35
5.12 RANDOM WAITING	37
5.13 MONITORING REQUIREMENTS	38
5.14 MONITORING ANTENNA	39
5.15 DUPLEX CONNECTIONS	39
5.16 ALTERNATIVE MONITORING INTERVAL FOR CO-LOCATED DEVICES	40
5.17 FAIR ACCESS	40
5.18 SPURIOUS EMISSIONS	41
5.19 FRAME PERIOD	57
5.20 FREQUENCY STABILITY	59
5.21 CONDUCTED EMISSION MEASUREMENT	63
5.22 RADIATED SPURIOUS EMISSION	67

Shenzhen STS Test Services Co., Ltd.

Page 4 of 81 Report No.: STS2011042W09

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	26 Nov. 2020	STS2011042W09	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

Т

Page 5 of 81

Report No.: STS2011042W09

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart D.

Requirement	FCC Part	Test Procedure	Result	
Emission Bandwidth	15.323 (a)	6.1.3	Compliant	
Labeling Requirements			Compliant	
Conducted Emissions	15.315 & 15.207	ANSI C63.4	Compliant	
Antenna Requirements	15.317 & 15.203	Declaration	Compliant	
Use digital modulation	15.319 (b)	6.1.4	Compliant	
Peak transmit power	15.319 (c)	6.1.2	Compliant	
Power spectral density	15.319 (d)	6.1.5	Compliant	
Power adjustment for an- tenna gain	15.319 (e)	4.3.1	Compliant	
Automatically dis- continue transmis- sion	15.319 (f)		Compliant	
Spurious emissions conducted	missions (2)		Compliant	
RF Exposure	15.319 (i) & 1.1307(b), 2.1091 and 2.1093			
Monitoring time	15.323 (c)(1)	7.3.4	Compliant	
Monitoring thresh- old	15.323 (c)(2)	7.3	Compliant	
Duration of transmission	15.323 (c)(3)	8.2.2	Not Applicable	
System acknowledgment test	15.323(c)(4)	8.2.1	Compliant	
Channel confirmation, Power accuracy, Segment occupancy	15.323 (c)(5)	7.3.3 & 7.3.4	Compliant	
Random waiting	15.323 (c)(6)	8.1.3	Not Applicable	

Shenzhen STS Test Services Co., Ltd.

Page 6 of 81 Report No.: STS2011042W09

Monitoring bandwidth	15.323 (c)(7)	7.4	Compliant	
Monitoring reaction time	15.323 (c)(1)	7.5	Compliant	
Monitoring antenna	15.323 (c)(8)	4	Compliant	
Monitoring thresh- old relaxation	15.323 (c)(9)	4	Compliant	
Duplex connections	15.323 (c)(10)	8.3	Not Applicable	
Alternate monitoring interval	15.323 (c)(11)	8.4	Not Applicable	
Fair access	15.323 (c)(12)	Declaration	Not Applicable	
Frame period	rame period 15.323 (e)		Compliant	
Frequency stability			Compliant	
Radiated Out of Band Emissions15.319 (g), 15.309 (b) & FCC Part 15 Subpart B 15.109 and 15.209			Compliant	

Ш

Page 7 of 81 Report No.: STS2011042W09

1 INTRODUCTION 1.1 TEST FACTORY SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 30-1GHz	±5.6dB
4	All emissions, radiated 1G-6GHz	±5.5dB
5	All emissions, radiated>6G	±5.8dB
6	Conducted Emission (9KHz-150KHz)	±3.37dB
7	Conducted Emission (150KHz-30MHz)	±3.83dB

Shenzhen STS Test Services Co., Ltd.

Page 8 of 81

Report No.: STS2011042W09

2 PRODUCT INFORMATION

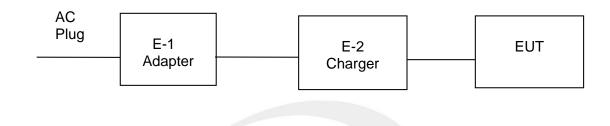
Product Name	Cordless DECT Handset
Brand Name	Alcatel·Lucent
Model Name	8244 DECT Handset
Series Model	N/A
Product Differences	N/A
Hardware version number	V04
Software version number	V913
EUT Frequency Ranges	1921.536-1928.448MHz
Type of Modulations	GFSK
Packet type	P32Z
Number of Channels	5 CH. Please see Note 2.
Antenna Type	ANT 0: PCB Antenna
	ANT 1: wire Antenna
Antenna Gain	ANT 0: 1dBi
	ANT 1: 1dBi Model: BP1709/A
Battery	Rated Voltage:3.7V
	Capacity: 1100mAh 4.1Wh Multi plug:
Adapter	Model: S008ACM0500100 (Multi plug)
Adapter	Input: 100-240V~ 50/60Hz 300mA Output: DC 5.0V 1000mA
	82X4 DECT Handset Desktop Charger:
	Model: RTX82x4
Charger	Rating: DC 5V 1000mA 82X4 DECT Handset Desktop Dual Charger:
	Model: RTX82x4
	Rating: DC 5V 1000mA
Work Temperature	-15℃ to 55℃

Note: 1. ANT 0 and ANT 1 cannot transmit simultaneously.

Т

2. Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
04	1921.536	03	1923.264	02	1924.992
01	1926.720	00	1928.448		


Page 9 of 81

EUT

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Radiated Spurious Emission Test

Conducted Emission Test

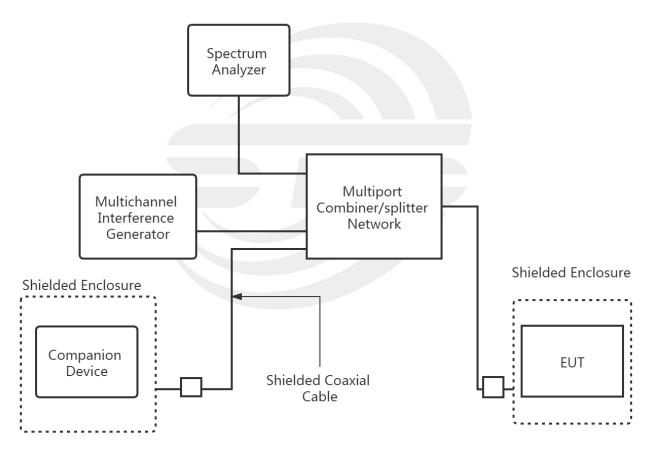
3.1 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand Model/Type No.		Length	Note
E-1	Adapter	N/A	N/A S008ACM0500100		Multi plug
E-2	82X4 DECT Hand- set Desktop Charger	RTX	RTX82x4	200cm, Shielded	N/A
/	82X4 DECT Hand- set Desktop Dual Charger	RTX	RTX82x4	200cm, Shielded	N/A
/	Battery	Tianmao	BP1709/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A


Note:

(1) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.

Figure 2:

Shenzhen STS Test Services Co., Ltd.

Page 11 of 81

Report No.: STS2011042W09

4 MEASUREMENT INSTRUMENTS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Active loop Antenna	ZHINAN	ZN30900C	16035	2019.07.11	2021.07.10
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2021.10.11
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2019.10.15	2021.10.14
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2020.10.12	2021.10.11
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2020.10.12	2021.10.11
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
Signal Analyzer	R&S	FSV 40-N	101823	2020.10.10	2021.10.09
Temperature & Hu- midity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N.C.R	N.C.R
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
LISN	R&S	ENV216	101242	2020.10.12	2021.10.11
LISN	EMCO	3810/2NM	23625	2020.10.12	2021.10.11
Temperature & Hu- midity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Page 12 of 81 Report No.: STS2011042W09

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51110105	2020.03.05	2021.03.04
Signal Analyzer	R&S	FSV 40-N	101823	2020.10.10	2021.10.09
Signal Generator	Agilent	N5182A	MY46240556	2020.10.10	2021.10.09
RF Test Platform for DECT	RTX	RTX 2012 HS	1138-6122	2020.03.05	2021.03.04
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Temperature& Humidity test chamber	Safety test	AG80L	171200018	2020.03.05	2021.03.04
Programmable power supply	Agilent	E3642A	MY40002025	2020.10.12	2021.10.11
Attenuator	HP	8494B	DC-18G	2020.04.30	2021.04.29
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

Shenzhen STS Test Services Co., Ltd.

Page 13 of 81

5 TEST ITEMS

5.1 ANTENNA REQUIREMENT

TEST OVERVIEW

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

a.) Antenna must be permanently attached to the unit.

b.) Antenna must use a unique type of connector to attach to the EUT.

c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

TEST RESULT

The EUT as tested is compliant the criteria of §15.203. The antenna is permanently attached to the unit.

5.2 MODULATION TECHNIQUES

TEST REQUIREMENT

All transmissions must use only digital modulation techniques.

TEST PROCEDURES

Attestation of manufacturer supported by reference to relevant DECT specifications.

ATTESTATION

This device is compliant with the DECT standards described in European Standards EN 300 175-2 and EN 300 175-3. DECT transmissions are MC/TDMA/TDD (Multi carrier / Time Division Multiple Access / Time Division Duplex) using Digital GFSK modulation. For further details see operational description or relevant portions of the DECT standards.

TEST RESULTS

The EUT as tested is compliant the criteria of §15.319(b).

Page 14 of 81

5.3 EMISSION BANDWIDTH TEST OVERVIEW

§ 15.323(a): For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Compliance with the emissions limits is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

TEST PROCEDURE

Operation shall be contained within the 1920-1930 MHz band. The emission bandwidth shall be less than 2.5 MHz. The power level shall be as specified in §15.319(c), but in no event shall the emission bandwidth be less than 50 kHz.

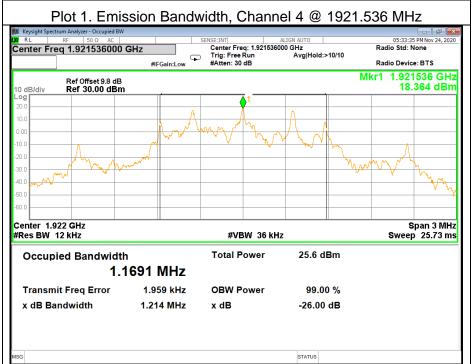
TEST SETUP

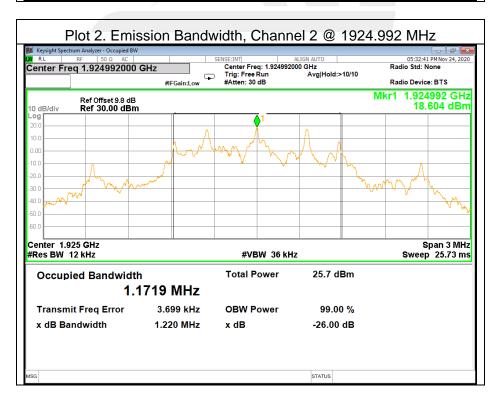
The test setup is shown in section 3.2 figure 1.

TEST RESULTS

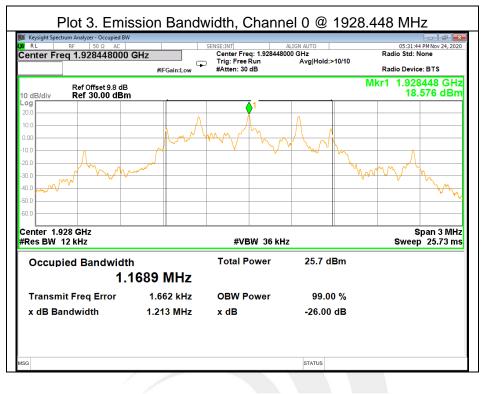
The Eut was compliant with this requirement.

Channel	26dB BW(MHz) 99% BW(MHz)		Limit
LOW(4)	1.214	1.169	
MID(2)	1.220	1.172	<2.5MHz
HIGH(0)	1.213	1.169	
AVG	1.215667	1.169967	

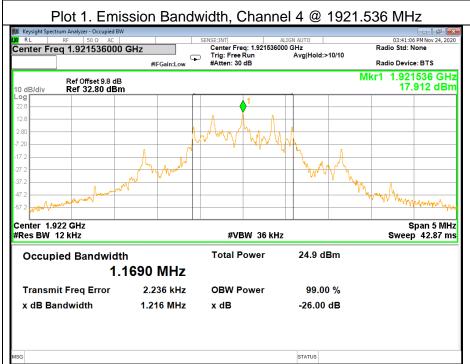

ANT 1						
Channel	26dB BW(MHz)	99% BW(MHz)	Limit			
LOW(4)	1.216	1.169				
MID(2)	1.214	1.169	<2.5MHz			
HIGH(0)	1.213	1.169				
AVG	1.214333	1.168800				

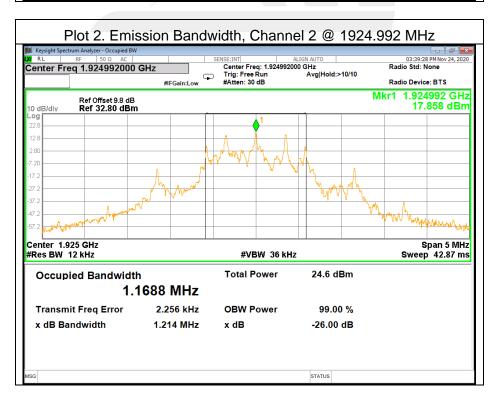

No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhe A 1/F. Building B. Zhuoke S Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 15 of 81


ANT 0

Page 16 of 81 Report No.: STS2011042W09




Shenzhen STS Test Services Co., Ltd.

Page 17 of 81

ANT 1

Page 18 of 81 Report No.: STS2011042W09

Shenzhen STS Test Services Co., Ltd.

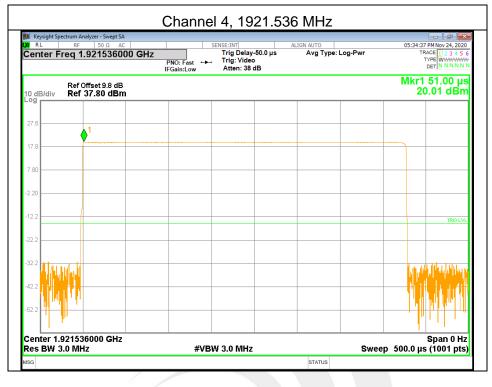
5.4 PEAK TRANSMIT POWER <u>TEST OVERVIEW</u>

§15.319(c): The peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel. <u>TEST PROCEDURE</u>

Testing to ANSI C63.17-2013 Clause 6.1.2, which provides the test methodology for this provision. The EUT is controlled from a personal computer and set into continuous transmission mode.

TEST SETUP

The test setup is shown in section 3.2 figure 1.


TEST RESULTS

		ANT 0		
Carrier Channel	Frequency (MHz)	Measured Peak Output Power (dBm)	Limit(uw)	Limit(dBm)
Low	1921.536	20.01	110182	20.42
Mid	1924.992	20.02	110454	20.43
High	1928.448	20.05	110136	20.42
EBWLow Channel=		1214000		Hz
EBWMid Channel=	1220000 Hz			
EBWHigh Channel=	1213000 Hz			
Note:Peak Transmitter Pov	ver Limit=100(E	BW)1/2µW		

Page 20 of 81 F

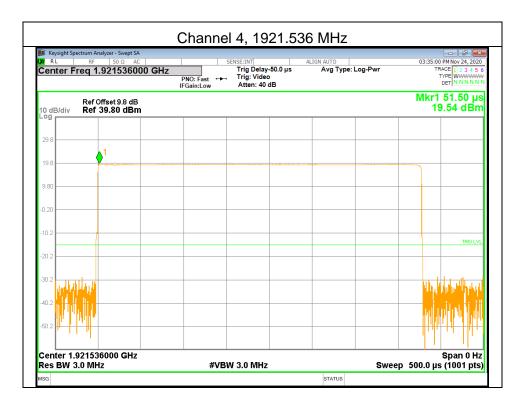
Report No.: STS2011042W09

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 1.924992000 GF	Z PNO: Fast IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGAIN:Low IFG	ALIGN AUTO Avg Type: Log-Pwr	05:35:06 PM Nov 24, 2020 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET N N N N N
Ref Offset 9.8 dB 0 dB/div Ref 37.80 dBm			Mkr1 51.00 µs 20.02 dBm
27.8			
17.8			
7.80			
2.20			
12.2			TRIG LVL
22.2			
32.2			
Center 1.924992000 GHz Res BW 3.0 MHz	#VBW 3.0 MHz	Swee	Span 0 Hz p 500.0 µs (1001 pts)

Shenzhen STS Test Services Co., Ltd.

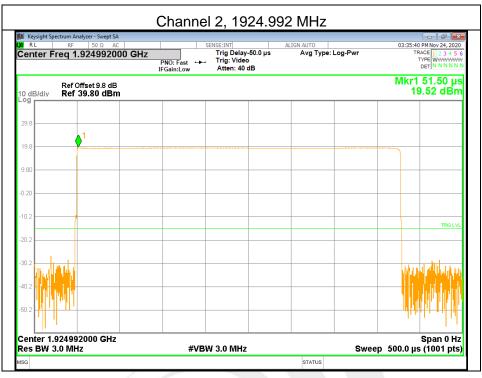
Page 21 of 81 Report No.: STS2011042W09

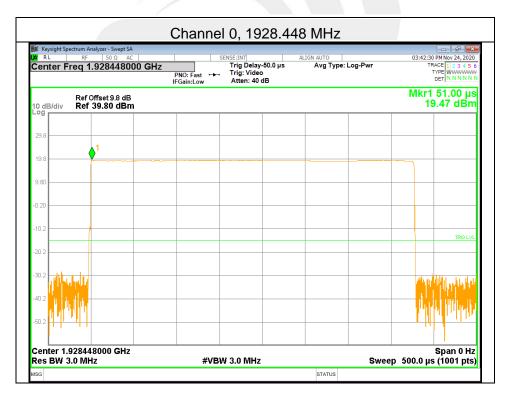
Keysight Spectrum Analyzer - Swept SA XI R L RF 50 Ω AC	SENSE:INT	ALIGN AUTO	05:35:45 PM Nov 24, 2020
Center Freq 1.928448000 G		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 TYPE WWWWW DET N N N N N
Ref Offset 9.8 dB 10 dB/div Ref 37.80 dBm			Mkr1 51.00 μ 20.05 dBn
27.8			
17.8		<u> </u>	
7.80			
-2.20			
-12.2			TRIG LVI
-22.2			
-32.2			
-42.2			
-34.2			
Center 1.928448000 GHz Res BW 3.0 MHz	#VBW 3.0 MHz	.	Span 0 Hz p 500.0 µs (1001 pts



Т

Page 22 of 81 Report No.: STS2011042W09


ANT 1					
Carrier Channel	Frequency (MHz)	Measured Peak Output Power (dBm)	Limit(uw)	Limit(dBm)	
Low	1921.536	19.54	110272	20.42	
Mid	1924.992	19.52	110182	20.42	
High	1928.448	19.47	110136	20.42	
EBWLow Channel=		1216000			
EBWMid Channel=		Hz			
EBWHigh Channel=	1213000			Hz	
Note:Peak Transmitter Power	Limit=100(EBW	/)1/2µW			



Shenzhen STS Test Services Co., Ltd.

Page 23 of 81 Report No.: STS2011042W09

Ш

Page 24 of 81

Report No.: STS2011042W09

5.5 POWER SPECTRAL DENSITY <u>TEST OVERVIEW</u>

§15.319(d): Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

TEST PROCEDURE

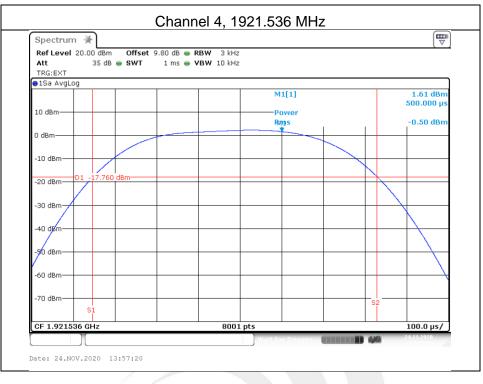
Testing to ANSI C63.17-2013 Clause 6.1.5, which provides the test methodology for this provision.

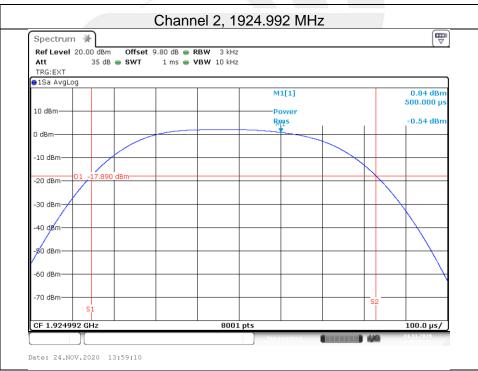
TEST SETUP

The test setup is shown in section 3.2 figure 1.

TEST RESULTS

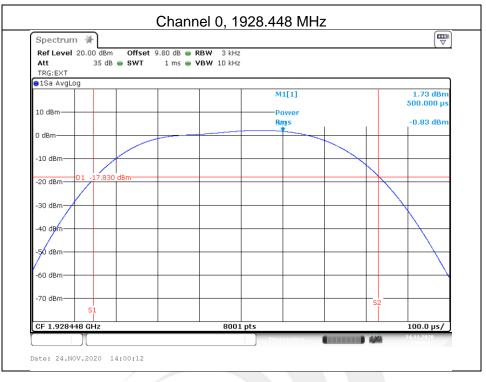
		ANT 0		
	Frequency	Measured Peak		
Carrier Channel	Frequency	Power Spectral	Limit(mw)	Limit(dBm)
	(MHz)	Density (dBm)		
Low(4)	1921.536	-0.50		
Mid(2)	1924.992	-0.54	3	4.77
High(0)	1928.448	-0.83		




Shenzhen STS Test Services Co., Ltd.

Page 25 of 81

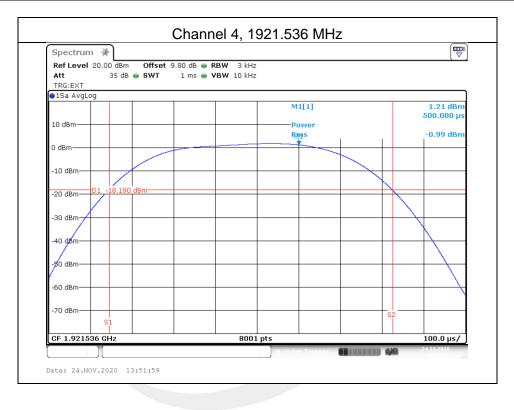
Report No.: STS2011042W09


Shenzhen STS Test Services Co., Ltd.

Ш

Page 26 of 81

Report No.: STS2011042W09



Shenzhen STS Test Services Co., Ltd.

Page 27 of 81 Report No.: STS2011042W09

ANT 1 Measured Peak Frequency **Carrier Channel Power Spectral** Limit(mw) Limit(dBm) (MHz) Density (dBm) Low(4) 1921.536 -0.99 Mid(2) 1924.992 -1.42 3 4.77 High(0) 1928.448 -0.96



Shenzhen STS Test Services Co., Ltd.

Page 28 of 81

Report No.: STS2011042W09

Shenzhen STS Test Services Co., Ltd.

Page 29 of 81

Report No.: STS2011042W09

5.6 POWER ADJUSTMENT FOR ANTENNA GAIN TEST OVERVIEW

§15.319(e): The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 4.3.1, which provides the test methodology for this provision.

TEST RESULT

Equipment Employs a 1 dBi Antenna. Max output power allowed with this gain by the EUT is 20.05dBm. The Max output power does not need to be reduced.

The Output Power complies with the Power Adjustment for Antenna Gain requirements of §15.319(e).

Shenzhen STS Test Services Co., Ltd.

Page 30 of 81

Report No.: STS2011042W09

5.7 AUTOMATICALLY DISCONTINUE TRANSMISSION

<u>OVERVIEW</u>

§15.319(f): The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

TEST RESULTS

	Test	Reaction of	Result
		EUT	
1	Remove Power from Companion Device	А	Pass
2	Switch off the companion device	А	Pass
3	Terminate call at the companion device	NA1	Pass
4	Switch off the EUT	NA2	Pass
5	Terminate call at the EUT	NA3	Pass

A - Connection was terminated and transmission ceased.

B - Connection was terminated but the EUT transmits control or signaling information.

C - Connection was terminated but the companion device transmits control or signaling information.

- NA 1 Companion Device does not have an on/off switch for terminate call.
- NA 2 EUT does not have an on/off switch.
- NA 3 EUT does not have a switch for terminate call.

Page 31 of 81

Report No.: STS2011042W09

5.8 SYSTEM ACKNOWLEDGE-MENT TEST TEST OVERVIEW

§ 15.323(c)(4): Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which time the access criteria must be repeated.

TEST PROCEDURE

Measurement method according to ANSI C63.17 2013 clause 8.2.1

During testing initial transmission without acknowledgement, the signal from the EUT to the companion device is blocked by the circulator.

The test of the transmission time after loss of acknowledgements is performed by cutting off the signal from the companion device by a RF switch and measuring the time until the EUT stops transmitting.

TEST SETUP

The test setup is shown in section 3.2 figure 2.

TEST RESULTS

	ANT 0		
Test	Time taken (second)	Limit (second)	Result
Initial Connection acknowledgement	0.46	1	Pass
Change of access criteria for control information	N/A	30	N/A
Transmission cease time after loss of acknowledgement	4	30	Pass

	ANT 1		
Test	Time taken (second)	Limit (second)	Result
Initial Connection acknowledgement	0.83	1	Pass
Change of access criteria for control information	N/A	30	N/A
Transmission cease time after loss of acknowledgement	4.31	30	Pass

Page 32 of 81

5.9 MONITORING THRESHOLD

TEST OVERVIEW

§15.323 (c)(2). The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

§15.323 (c)(9). Devices that have a power output lower than the maximum permitted under this subpart may increase their monitoring detection threshold by one decibel for each one decibel that the transmitter power is below the maximum permitted.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 7.3, which provides the test methodology for this provision. The Clause states that the lower threshold is for devices that do not use the LIC procedure. The equation for the lower monitoring threshold is given in ANSI C63.17 Clause 4.3.4.

TEST SETUP

The test setup is shown in section 3.2 figure 2.

TEST RESULTS

	ANT 0				
Upper Threshold					
В	1215667	MHz			
Mu	50	dB			
Peut	20.05	dBm			
TU	-62.778	dBm			
	Lower Threshold				
В	1215667	MHz			
MI	30	dB			
Peut	20.01	dBm			
TL	-82.738	dBm			
Γ	ANT 1				
	Upper Threshold	1			
В	1214333	MHz			
Mu	50	dB			
Peut	19.47	dBm			
TU	-62.205	dBm			
Lower Threshold					
В	1214333	MHz			
MI	30	dB			
Peut	19.54	dBm			
TL	-82.275	dBm			

ATTESTATION

The sensor will go into hibernation after a few minutes. It is not possible to keep a connection running very long. Therefore, this requirement is not applicable.

Shenzhen STS Test Services Co., Ltd.

Page 33 of 81

5.10 DURATION OF TRANSMISSION TEST OVERVIEW

§15.323 (c)(3) If no signal above the threshold level is detected, transmission may commence and continue with the same emission bandwidth in the monitored time and spectrum windows without further monitoring. However, occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 4, which provides the test methodology for this provision. A communication link is established between BS and MS in a conducted mode and in a room without other US DECT devices to prevent influence from other transmissions. According to FCC Part 15.323(c)(3), the access criteria have to be verified at least every 8 hours. The following test is performed:

TEST SETUP

The test setup is shown in section 3.2 figure 2.

TEST RESULT

ANT 0					
Test ref. to ANSI C63.17:2013	Observation result(H)	Limit(H)	Verdict		
clause 8.2.2	Observation result(II)	LIIIII(LI)	verdict		
Transmission duration on same time	0.25	8	Pass		
and frequency window	0.23	5	1 235		

	ENSE:INT	ALIGN AUTO	05:3	7:56 PM Nov 24, 2020
PNO: Fast	Trig: Free Run Atten: 36 dB	Avg Type: Log-F Avg Hold: 2/100	wr	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N
				kr1 906.0 s 8.987 dBm
		1-	man make merely and	anon an an anti-
				_
				Span 0 Hz
#VBV	N 3.0 MHz		Sweep 1.500	
	PNO: Fast PNO: Fast IFGain:Low	PNO: Fast +++ Trig: Free Run	PRO: Fast PRO: Fast IFGain:Low Trig: Free Run Atten: 36 dB Avg Type: Log-P Avg Hold: 2/100 1 1 1 1 1 1 1 1 1 1 1 1 1	POC: Fast → Trig: Free Run IFGain:Low Atten: 36 dB Atten: 36 dB

Page 34 of 81 Report No.: STS2011042W09

	ANT 1			
Test ref. to ANSI C63.17:2013	Observation result(H)	Limit(H)	Verdict	
clause 8.2.2			verdict	
Transmission duration on same time	0.27	0	Pass	
and frequency window	0.27	8	Fass	

IKeysight Spectrum Analyzer - Swept SA ■ RL RF 50 Ω AC Center Freq 1.924992000 G	HZ PNO: Fast ↔ Trig: Free Run IFGain:Low Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 3/100	04:51:55 PM Nov 24, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N
Ref Offset 9.8 dB 0 dB/div Ref 38.80 dBm			Mkr1 984.0 s -25.723 dBm
28.8			
18.8			
8.80			
1.20			
11.2			
21.2		1 -	manne
31.2			
41.2			
51.2			
Center 1.924992000 GHz Res BW 3.0 MHz	#VBW 3.0 MHz	Swee	Span 0 Hz p 1.500 ks (1001 pts)
Res BW 3.0 MHz	#VBW 3.0 MHz	Swee	

Shenzhen STS Test Services Co., Ltd.

Т

5.11 SELECTED CHANNEL CONFIRMATION, POWER ACCURACY, SEGMENT OCCUPANCY <u>TEST OVERVIEW</u>

§15.323 (c)(5) If access to spectrum is not available as determined by the above, and a minimum of 40 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level below a monitoring threshold of 50 dB above the thermal noise power determined for the emission bandwidth may be accessed. A device utilizing the provisions of this paragraph must have monitored all access channels defined for its system within the last 10 seconds and must verify, within the 20 milliseconds (40 milliseconds for devices designed to use a 20 milliseconds frame period) immediately preceding actual channel access that the detected power of the selected time and spectrum windows is no higher than the previously detected value. The power measurement resolution for this comparison must be accurate to within 6 dB. No device or group of co-operating devices located within 1 meter of each other shall during any frame period occupy more than 6 MHz of aggregate bandwidth, or alternatively, more than one third of the time and spectrum windows defined by the system.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 7.3.2. & 7.3.3, which provides the test methodology for this provision. The current product offers 12 duplex channels per frequency channel and therefore 12x5=60 duplex channels in total. Hence Part §15.323(c)(5) applies. The equation for the upper monitoring threshold is given in ANSI C63.17 Clause 4.3.3. Max measured interference level (dBm) = -85.02 dBm

TEST SETUP

The test setup is shown in section 3.2 figure 2.

MONITORING LIMIT THRESHOLD

The EUT's monitoring limit threshold power at the monitoring antenna terminals shall be less than a maximum, shown in Equation (3):

 $T_{L} \leq (-174+10 \log B + M_{L} + P_{MAX} - P_{EUT}) dBm$

 M_{L} is a level specified by the manufacturer and is the maximum amount in decibels by which the limiting threshold may exceed thermal noise for an EUT transmitting the maximum allowed power.

Calculation of monitoring threshold limits for isochroous devices:

Lower threshold: T_L =-174+10log₁₀B+M_L+P_{MAX}-P_{EUT} (dBm)

Where: B= Emission bandwidth (Hz)

 M_L = dB the threshold may exceed thermal noise (30 for T_L)

 $P_{MAX}=5Log_{10}B-10(dBm)$

P_{EUT}=Transmitted power (dBm)

Monitor Threshold	B(MHz)	M∟(dB)	P _{MAX} (dBm)	P _{EUT} (dBm)	Threshold(dBm)
Lower threshold	1.214	30	30.53	20.01	-82.275

Note: 1. The upper threshold is applicable as the EUT utilizes more than 20 duplex system channels

Page 36 of 81

Report No.: STS2011042W09

TEST RESULTS

1) LIC procedure test:

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction fo EUT	Results
a) Apply the interference on f1 at level T_L+U_M+7dB and the interference on f_2 at level T_L+U_{M-} Initiate transmission and verify the transmission only on f_2 .Repeat 5 times.	EUT transmits on f2	Pass
b) Apply the interference on f_1 at level T_L+U_M and the inter- ference on f_2 at level T_L+U_M+7dB . Initiate transmission and verify the transmission only on f_1 .Repeat 5 times.	EUT transmits on f1	Pass
c) Apply the interference on f_1 at level T_L+U_M+1dB and the interference on f_2 at level T_L+U_M-6dB . Initiate transmission and verify the transmission only on f_2 .Repeat 5 times.	EUT transmits on f2	Pass
d) Apply the interference on f_1 at level T_L+U_M -6dB and the interference on f_2 at level T_L+U_M +1dB. Initiate transmission and verify the transmission only on f_2 .Repeat 5 times.	EUT transmits on f1	Pass

2) Selected channel confirmation:

Interference (Refer to ANSI C63.17 clause 7.3.4)	Reaction fo EUT	Results
a) Apply the interference on f_1 at level T_L+U_M and no inter- ference on f_{2-} Initiate transmission and verify the transmis- sion only on f_2 . Then terminate it.	EUT transmits on f2	Pass
b) Apply the interference on f_2 at level T_L+U_M and immedi- ately remove all interference from f_1 . The EUT should im- mediately attempt transmission f_1 (but at least 20ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmits on f1	Pass

Page 37 of 81 Report No.: STS2011042W09

5.12 RANDOM WAITING TEST CRITERIA

\$15.323 (c)(6)) if the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 8.1.3, which provides the test methodology for this provision.

ATTESTATION

The Manufacturer declared that this provision is not utilized by the EUT.

Shenzhen STS Test Services Co., Ltd.

Page 38 of 81

Report No.: STS2011042W09

5.13 MONITORING REQUIREMENTS TEST CRITERIA

§15.323 (c)(7) The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission and have a maximum reaction time less than 50xSQRT(1.25/ emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds. If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

TEST PROCEDURE

Measurement method according to ANXI C63.17 2013 clause 7.5

- a) Restrict the EUT to a single transmit carrier frequency f1, and verify that the EUT can establish a connection with no interference applied on f1.
- b) Apply time-synchronized, pulsed interference on f1 at the pulsed level TL+UM, veify that the EUT does not establish a connection when the width of the interference pulse exceeds the largest of 50 μ s and 50 $\sqrt{1.25}$ / B μ s,where B is the emission bandwidth of the EUT in megahertz.
- c) With the channel interference level 6dB above TL+UM, verify that the EUT does not eatablish a connection when the width of the interference pulse exceeds the largest of 35µs and 35√1.25/Bµs, where B is the emission bandwidth of the EUT in megahertz.

Test pulse width Equation(µs)	B(bandwidth)(MHz)	Pulse width(µs)	Limit(Largest)(µs)
50(1.25/B) ^{1/2}	1.214	50.74	50
35(1.25/B) ^{1/2}	1.214	35.52	35

TEST SETUP

The test setup is shown in section 3.2 figure 2.

TEST RESULTS

1) Monitoring Bandwidth:

The antenna of the EUT used for monitoring is the same interior antenna that used for transmission, so the monitorting system bandwidth is equal to the emission bandwidth of the intended transmission.

2) Reaction Time Test:

No.	Interference Pulse width(µs)	Reaction of EUT	Observing time(µs)	Result
1	50 μ s with level TL+Um	No transmission	25.2	Pass
2	35 μ s with level T_L+U_M +6dB	No transmission	18.71	Pass

Page 39 of 81 Report No.: STS2011042W09

5.14 MONITORING ANTENNA

TEST CRITERIA

§15.323 (c)(8) Transmission is intended to occupy. The following criteria must be met: (8) The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 4, which provides the test methodology for this provision.

ATTESTATION

The EUT uses the same antennas for transmission and reception as for monitoring

5.15 DUPLEX CONNECTIONS

TEST CRITERIA

§15.323 (c)(10) An initiating device may attempt to establish a duplex connection bymonitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows. If both the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 8.3, which provides the test methodology for this provision. The MS is the initiating device and the BS is the companion device.

TEST RESULTS

The Manufacturer declares that this provision is not utilized by the EUT.

5.16 ALTERNATIVE MONITORING INTERVAL FOR CO-LOCATED DEVICES

TEST CRITERIA

§15.323 (c)(11) an initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within one meter) transmitter of the same system, may monitor the portions of the time and spectrum windows in which they intend to receive over a period of at least 10 milliseconds. The Monitored time and spectrum window must total at least 50 percent of the 10 millisecond frame interval and the monitored spectrum must be within the 1.25 mhz frequency channel(s) already occupied by that device or co-located co-operating devices. If the access criteria is met for the intended receive time and spectrum window under the above conditions, then transmission in The intended transmit window by the initiating device may commence.

TEST PROCEDURE

Testing to ANSI C63.17-2013 Clause 8.4, which provides the test methodology for this provision. The MS is initiating device and the BS is the companion device.

TEST RESULTS

The Manufacturer declares that this provision is not utilized by the EUT.

5.17 FAIR ACCESS

TEST CRITERIA

(c)(12) The provisions of (c)(10) or (c)(11) of this section shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices.

TEST PROCEDURE

The manufacturer supplies an attestation.

ATTESTATION

The manufacturer declares that the EUT does not work in a mode which denies fair access to spectrum for other devices.

Page 41 of 81 Report No.: STS2011042W09

5.18 SPURIOUS EMISSIONS TEST CRITERIA

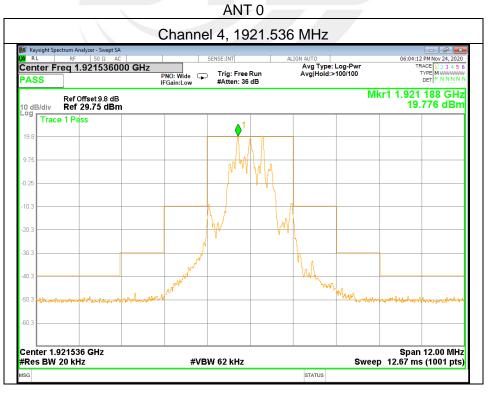
§15.323(d)(1): Out of Band Emissions

Emissions shall be attenuated below a reference power of 112 milliwatts as follows: 30 dB between the band edge and 1.25 MHz above or below the band; 50 dB between 1.25 and 2.5 MHz above or below the band; and 60 dB at 2.5 MHz or greater above or below the band.

§15.323(d)(2): In-Band Emissions

Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth, the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth, the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge, the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator. "B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

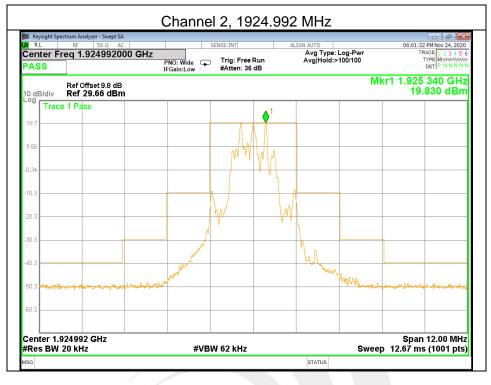
TEST PROCEDURE

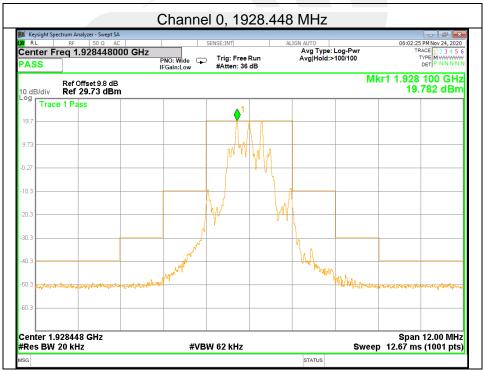

For both in and out of band emissions the EUT was connected directly to a spectrum analyzer. The RBW of the spectrum analyzer was set to a minimum 1% of the emission band width.

TEST SETUP

The test setup is shown in section 3.2 figure 1.

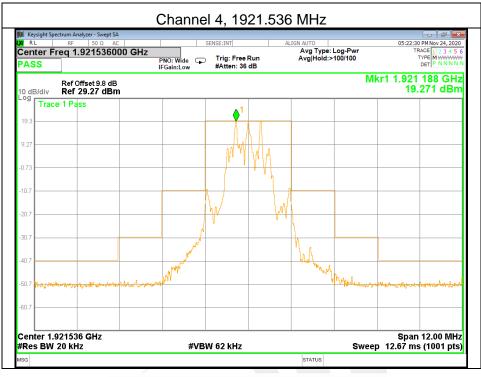
TEST RESULTS

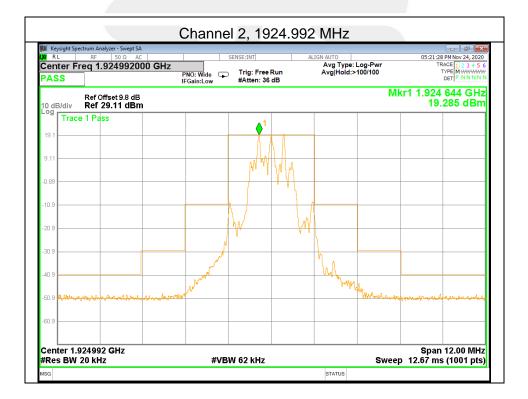

Equipment complies with the Spurious Emission limits of § 15.323(d)(1). In-Band Emissions



Page 42 of 81

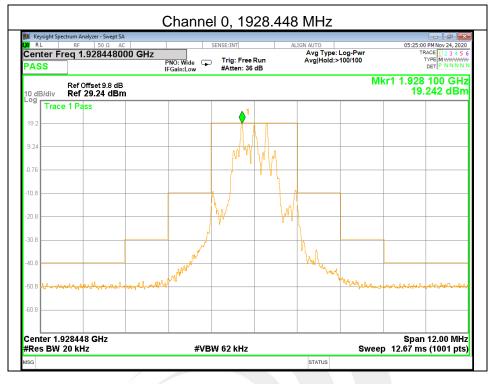
Report No.: STS2011042W09




Ш

Page 43 of 81

ANT 1



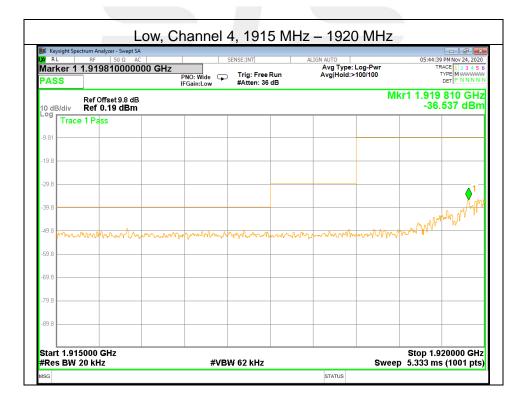
Shenzhen STS Test Services Co., Ltd.

Page 44 of 81

Report No.: STS2011042W09

Shenzhen STS Test Services Co., Ltd.

Ш



Page 45 of 81

ANT 0

Out of Band Emissions

KI R	ker 1		AC 00000 GHz	PNO: Fast ↔ IFGain:Low	SENSE:INT Trig: Free Run #Atten: 36 dB	ALIGN AUTO Avg Type: Lo Avg Hold: 13/		05:41:43 PM Nov TRACE 1 2 TYPE M	24,2020 3 4 5 6
	B/div	Ref Offset 9.8 Ref 0.19 dl					M	(r1 1.436 2 -49.195	
og	Trace	1 Pass							
9.81	<u> </u>								
19.8									
29.8									
39.8									
49.8	Marthour	argerty redefinition	www.mhnum	along with the Martin Martin	aberton which made a which	angelestonalenation	nun nun merer	phrofite fulles in the second	কলক্ষান্থান্থ
59.8									
69.8									
79.8									
89.8									
	t 30.0 s BW 2				BW 62 kHz			Stop 1.9150 1.988 s (100	

Shenzhen STS Test Services Co., Ltd.

Ш

Page 46 of 81 Report No.: STS2011042W09

	ctrum Analyzer - Swept SA			
Start Fred PASS	RF 50 Ω AC 1.930000000 GHz	PNO: Wide IFGain:Low #Atten: 36 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:45:36 PM Nov 24, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref 0.19 dBm		Μ	kr1 1.933 850 GHz -49.318 dBm
-og Trace	e 1 Pass			
-19.8				
29.8				
39.8				
49.8	mmmmulumm	mounomation		
-59.8				
69.8				
79.8				
-89.8				
Start 1.93		#VBW 62 kHz	Swoo	Stop 1.935000 GHz p 5.333 ms (1001 pts)

Start Fred PASS	ctrum Analyzer - Swept SA RF 50 Ω AC 1.9350000000 AC	GHz	PNO: Fast ↔ FGain:Low	SENSE:INT Trig: Free R #Atten: 20 d	un Avg l	Type: Log-Pwr Hold: 1/100	TF	PM Nov 24, 2020 ACE 1 2 3 4 5 6 DET P N N N N N
10 dB/div	Ref Offset 9.8 dB Ref -17.81 dBn	n						.169 GHz 384 dBm
Trace	1 Pass							
-27.8								
-37.8								
-47.8								. 1
-57.8							. Malanda da	
-67.8	where have been been been been been been been be	ha Yangaray ha	wartnerway	mound	William march all march	M. Marine Marine	And a second class	
77.0								
-77.8								
-77.8								

Shenzhen STS Test Services Co., Ltd.

Page 47 of 81

Report No.: STS2011042W09

RF 50 Ω AC 30.000000 MHz Ref Offset 9.8 dB	PNO: Fast ++ IFGain:Low	Trig: Free Run	ALIGN AUTO Avg Type: Lo Avg Hold: 5/1		05:42:07 PM N TRACE	
	ii daineon	#Atten: 36 dB	Avginoid. on	00	TYPE	1 2 3 4 5 6 M P N N N N N
Ref 0.19 dBm				Mk	r1 1.679 -48.64	
1 Pass						
					<u></u>	
In mile langer of the provident of	Martull marting marting	hardenally	And Ingly the permitteness	utumpethetectopeth	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lhhohdh,thana
MHz						
			AHz	AHZ	AHz	

	ectrum Analyzer - Swept SA								
Marker 1 PASS	RF 50 Ω AC 1.91644000000	PI	NO: Wide 😱 Gain:Low	Trig: Free I #Atten: 36	Run	IGN AUTO Avg Type: L Avg Hold:>'	.og-Pwr 100/100	TR. T	PM Nov 24, 2020 ACE 1 2 3 4 5 6 YPE M WWWW DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref 0.19 dBm						Mkı		440 GHz 972 dBm
Trac	e 1 Pass								
-9.81									
-19.8									
-29.8									
-39.8									
-49.8 Mr./w	mary of months way	1 And Maryan and Star	mary	ᠬ᠋ᡒᢑᡗᢑᢣ᠋᠆ᠧᠰᡰᢑ	Multing	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y	mmu	www.
-59.8									
-69.8									
-79.8									
-89.8									
	5000 GHz							Stop 1 0	20000 GHz

Shenzhen STS Test Services Co., Ltd. +

Page 48 of 81 Report No.: STS2011042W09

XI RL		Im Analyzer - Swep RF 50 Ω 1.93000000	AC	PNO: Wide ↔	SENSE:INT	ALIGN AUTO Avg Type: Avg Hold: 1			2 PM Nov 24, 2020 RACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
10 dB/d		tef Offset 9.8 d Ref 0.19 dB		IFGain:Low	#Atten: 36 db		М		140 GHz .329 dBm
- °g T .9.81	race 1	Pass							
19.8									
29.8									
39.8			1						
49.8	why	monham	1 mary liber	grand and all all and	Mar Martin	mmmul	mmm	www.wh	www.www.www.
-59.8									
69.8									
79.8									
89.8									
Start 1 #Res E		00 GHz		#V	BW 62 kHz		Swee) 35000 GHz s (1001 pts)

XI RL	m Analyzer - Swept SA RF 50 Ω AC 1.935000000 GH	IZ PNO: Fast ← IFGain:Low	SENSE:INT Trig: Free Run #Atten: 20 dB	ALIGN AUTO Avg Type: Lo Avg Hold: 1/1	og-Pwr	05:51:59 PM Nov 24, 2020 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
10 dB/div	tef Offset 9.8 dB Ref -17.81 dBm				Mkr	1 19.368 GHz -56.632 dBm
- ^{og} Trace 1	Pass					
-27.8						
-37.8						
-47.8						
-57.8						• • • • • • • • • • • • • • • • • • •
www.han					A Market Market	the bull and a straight of the
-67.8	Va hydrounder	Ward where where the second	when have a first	nhadran nanahumhagu	hthe start and s	
	Way Ing a show the Meter	haineacharthy lith hanna har th	NH United Contractions of the Contraction of the Co	nhadh an raine han an hair an h	http://www.	
77.8	Way Ing to a second second	helmareh	Wheeler Ashrewich	entrandel and enternational MangeVerter		
67.8		henerthanth what have the		en haad on an on an		

Shenzhen STS Test Services Co., Ltd.

7

Page 49 of 81

Report No.: STS2011042W09

RL	ctrum Analyzer - Swept SA RF 50 Ω AC q 30.000000 MHz		E:INT	ALIGN AUTO Avg Type: Log-Pwr		0 PM Nov 24, 2020 RACE 1 2 3 4 5 6 TYPE M
PASS			rig: Free Run Atten: 36 dB	Avg Hold: 7/100		DET P NNNN
0 dB/div	Ref Offset 9.8 dB Ref 0.19 dBm					98 6 GHz .629 dBm
.og	e 1 Pass					
9.81						
19.8						
29.8						
19.8						
49.8	1 demontante and	townshipsentermedul	where the second second	1	un when he have the	humantrunkation
59.8						
59.8						
/9.8						
89.8						
	MHz					1.9150 GHz

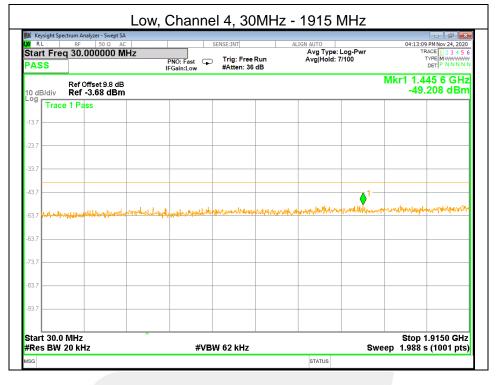
	ectrum Analyzer - Swept SA								
Start Fre	RF 50 Ω AC q 1.915000000		PNO: Wide ↔	SENSE:INT Trig: Free F #Atten: 36	Run	IGN AUTO Avg Type: I Avg Hold: 1	_og-Pwr 00/100	TR	PM Nov 24, 2020 ACE 1 2 3 4 5 6 YPE M WWWW DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref 0.19 dBm						Mk		425 GHz 592 dBm
Trac	e 1 Pass								
-9.81									
-19.8									
-29.8									
-39.8									
-49.8	ahara harana	mannam	an Marin Mari	Manna	way and the second	mmmhalle	whentheren	manhamm	margh and M
1 °			,				. vi. b		
-59.8									
-69.8									
-59.8									
.69.8									

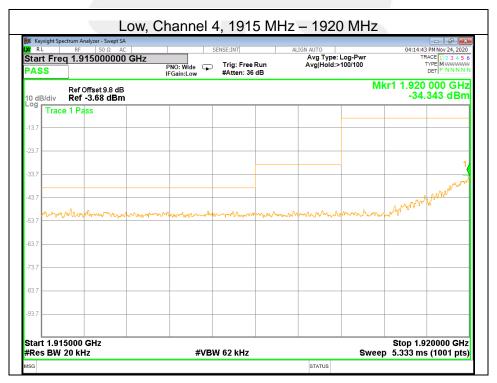
Shenzhen STS Test Services Co., Ltd.

7

Page 50 of 81 Report No.: STS2011042W09

RL	ectrum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGN AUTO		👝 🗟 💌
Start Free PASS	q 1.930000000 GH	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Type: Log-Pwr Avg Hold: 100/100		TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
0 dB/div	Ref Offset 9.8 dB Ref 0.19 dBm					30 175 GHz 35.150 dBm
og Trace	e 1 Pass					
9.81						
19.8						
29.8						
- <u>१</u> '						
39.8 <mark>m// 1</mark>	Marcon da a .					
49.8	J. MANNI, J. Maranda	Mahanahana	www.www.	mannahar	amon an marker	My and all and and a
59.8						
69.8						
79.8						
89.8						
start 1.93	0000 GHz				Stop	1.935000 GHz
	20 kHz	<i>10</i> (B)	W 62 kHz			ms (1001 pts)


Xart Freq 1.9350 PASS	PN	O: Fast ++- Trig: Free ain:Low #Atten: 20		Log-Pwr	1:24 PM Nov 24, 2020 TRACE 1 2 3 4 5 0 TYPE DET P NNNN
Ref Offse 10 dB/div Ref -17.					l9.765 GHz 6.251 dBm
Trace 1 Pass					
-27.8					
-37.8					
47.8					
-57.8				, catters a	d beautier of
wither when the	manualitation	Malmunal strattlestern with	drent water water from the only of	an and a second of the second	what the second second second
-67.8					
-77.8					
87.8					
.97.8					
-108					
-100					


Shenzhen STS Test Services Co., Ltd.

Page 51 of 81

ANT 1

Shenzhen STS Test Services Co., Ltd.

Ш

Page 52 of 81 Report No.: STS2011042W09

📜 Keysight Spect	trum Analyzer - Swept SA RF 50 Ω AC	SENSE:INT	ALIGN AUTO	04:17:23 PM Nov 24, 2020
	1.930000000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 36 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref -3.68 dBm		N	lkr1 1.933 845 GHz -49.885 dBm
Trace	1 Pass			
-13.7				
-23.7				
-33.7				
43.7			1	
-53.7	mayber may by My bold	ware the war and war proven	www.hump.r.a.www.m	Mary Manager
-63.7				
-73.7				
-83.7				
-93.7				
Start 1 030	000 GHz			Stop 1.935000 GHz

Start Fre	ectrum Analyzer - Swept SA RF 50 Ω AC 29 1.935000000 Gi		SENSE:INT ast Trig: Fr Low #Atten:	ree Run	ALIGN AUTO Avg Type: Avg Hold: 2		т	7 PM Nov 24, 2020 RACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref -20.00 dBm							.295 GHz .896 dBm
Trac	e 1 Pass							
-30.0								
40.0								
-50.0								1
-60.0						Lat A	Awennes	wellower why man
60.0 M				Mars	the second dry	sharp and the south of the	•	
hadwar	where the market and the second	moundally where	when a share the second	while the state of the	and address of the second			
-70.0	when the summer		when when the service	and the second	an able of a constant			
-70.0			what a provide the providence of the providence					
-70.0								
-70.0								
-100								
-70.0								

Shenzhen STS Test Services Co., Ltd. -

Page 53 of 81

Report No.: STS2011042W09

	ectrum Analyzer - Swept SA					
tart Fre ASS	RF 50 Ω AC q 30.000000 MHz		SENSE:INT Trig: Free Run #Atten: 36 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 8/100		44 PM Nov 24, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N
0 dB/div	Ref Offset 9.8 dB Ref -3.68 dBm					291 1 GHz 3.715 dBm
.og Trac	e 1 Pass					
13.7						
23.7						
13.7						
43.7				1		
53.7 m.l.q.b	Angelland Angelen Marker My	ulphandunu	mannahiltenterterter	hubber and the second second	hadden	Humphronyun
53.7						
73.7						
13.7						
93.7						

XI RL	ectrum Analyzer - Swept S RF 50 Ω A q 1.91500000	o GHz	PNO: Wide G	SENSE:INT Trig: Free I #Atten: 36	Run	LIGN AUTO Avg Type: Avg Hold:>		т	7 PM Nov 24, 2020 RACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N
10 dB/div	Ref Offset 9.8 dE Ref -3.68 dBn						Mk		670 GHz 281 dBm
Trac	e 1 Pass								
-13.7									
-23.7									
-33.7							-		
						1			
-43.7			- 1						
-43.7	Androwwww	wall and	1 Wardenman	mman	hann	www.elplanag	MmrAnn	rhom Northan	low mar - march
	N.M. Comercia	maran	1 hhrs. hr.	mannhann	Anno	MANALIPERAN	mm	ᢞᠬᢧᢇᡗᠰ᠋ᢩᢣᡊᠰ	wmm.~~mlyb
	N.W. Commen	mann	1 Ward Jerman	Mannhanna	Muhr	manylined	www.hy	ᢧᠯᠬᢧ᠆ᠡᠡᢩ᠈᠈ᢣᡊᡪᠾ	^{เการก} างการางการการการการการการการการการการการการการก
-53.7	Man Manana Ma Manana Manana M		1 	mannhanna	hahaan	พากมาปูกวิจารคม	mmm	ydwyr-Nfrorger yw	
-53.7	NMArmanny	n what he	1 1 1	mmhana	Maria	army franky	w.m.hyn	ydwb-ng vor yw	berr mar hally
-53.7				mmmnm	hun han han han han han han han han han ha	arm/thomp		v ^L m-1) ^{**} tr-1/*	
-63.7				m.mhth			······	and a start and a start and a start a s	

Shenzhen STS Test Services Co., Ltd.

Page 54 of 81 Report No.: STS2011042W09

RL	ectrum Analyzer - Swept SA RF 50 Ω AC 1.933265000000 GH	IZ PNO: Wide IFGain:Low HAtten: 36 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:17:03 PM Nov 24, 2020 TRACE 1 2 3 4 5 6 TYPE M MANANAN DET P NNNN
l0 dB/div	Ref Offset 9.8 dB Ref -3.68 dBm			Mkr1 1.933 265 GHz -49.213 dBm
	e 1 Pass			
-13.7				
33.7				
43.7			1	
53.7 - MM	hama and have have a second		Marnahantarana	mannonmangla
63.7				
73.7				
83.7				
93.7				
Start 1.93 Res BW	00000 GHz 20 kHz	#VBW 62 kHz	Sw	Stop 1.935000 GHz eep 5.333 ms (1001 pts)
SG			STATUS	

Marker 1 PASS	RF 50 Ω AC 19.0786850000	00 GHz PNO: Fas IFGain:Lo		Run Avg Hold:	: Log-Pwr 1/100	TR/ T	PM Nov 24, 2020 ACE 1 2 3 4 5 0 ACE P N N N N DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref -20.00 dBm				l	Mkr1 19. -56.0	079 GHz 356 dBm
Trac	e 1 Pass						
-30.0							
40.0							
-60.0						na dana a	1
-70.0	when when and had	theor bern when he had not	way have	phones fullence where the second	hy which the second		р г
80.0							
-90.0							
-100							

Shenzhen STS Test Services Co., Ltd.

Page 55 of 81

Report No.: STS2011042W09

RL	pectrum Analyzer - Swept SA		ochos mit			
	RF 50 Ω AC eq 30.000000 MHz	PNO: Fast C	SENSE:INT Trig: Free Run #Atten: 36 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 19/100		14 PM Nov 24, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
0 dB/div	Ref Offset 9.8 dB Ref -3.68 dBm					783 1 GHz 0.046 dBm
Trac	ce 1 Pass					
13.7						
23.7						
13.7						
13.7						1
53.7 4499-44	hour police and police and	eren dynastady yn swi	wheelywheldlinensenderstadd	welfander would werk werkend	hypertrollinovolym	upaliphaterite
i3.7						
73.7						
63.7 73.7 83.7						
73.7	0 MHz				Ston	1.9150 GHz

Start Free PASS	RF 50 Ω A q 1.915000000) GHz	PNO: Wide 🖵 FGain:Low	SENSE:INT Trig: Free R #Atten: 36 d	un	IGN AUTO Avg Type: Avg Hold:>		TR	PM Nov 24, 2020 AACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N
10 dB/div	Ref Offset 9.8 dB Ref -3.68 dBm						Mk		745 GHz 311 dBm
	e 1 Pass								
-13.7									
-23.7									
-33.7									
-43.7	1_								
-53.7 -53.7	hy my my my my marked marked	horman	warden	maturph	v. lungar	www.h	monum	All Marine and a second se	ven hver her h
-63.7									
-73.7									
-83.7									
-93.7									

Shenzhen STS Test Services Co., Ltd.

Page 56 of 81 Report No.: STS2011042W09

N RL	ctrum Analyzer - Swept SA RF 50 Ω AC 1.930000000 C	P	NO: Wide 🍙 Gain:Low	SENSE:INT Trig: Free Run #Atten: 36 dB	ALIGN AUTO Avg Type: I Avg Hold:>*		TR T	PM Nov 24, 2020 ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N N
10 dB/div	Ref Offset 9.8 dB Ref -3.68 dBm					Mki		185 GHz 897 dBm
-og Trace	e 1 Pass							
-13.7								
23.7								
33.7								
hall								
43.7	my har with my with	1 Marth at			unnulum			- 0- 0
63.7		11/2-101 -20-21	N Caraly and a - M	᠕᠘᠕ᢧᠧᡘ᠊ᢅᠶᠬᠯᡐᢑᡆᠬᡟᠰ᠆ᠬ	www.lumm	~1.1.~	vur-hvhv hvhv-f	M M M M M
63.7								
73.7								
83.7								
93.7								
Start 1.930 #Res BW 2			#VB	W 62 kHz		Sweep		35000 GHz (1001 pts)
ISG					STATUS	•		<u> </u>

XI RL	RF 50 Ω A(Q 1.935000000) GHz	PNO: Fast	SENSE:INT Trig: Free I #Atten: 20	Run	LIGN AUTO Avg Type: Avg Hold: 2		TI	9 PM Nov 24, 2020 RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
10 dB/div	Ref Offset 9.8 dB Ref -16.20 dB								.935 GHz .790 dBm
Trace	e 1 Pass								
-26.2									
-36.2									
-46.2									
.46.2									
-56.2	العربين المراقب	ر بد بر المتعامل	10 Los	المرابع		multi	and and a start of the	Mullinnugh	ulen Mennehaden
-66.2	webman when the states and	ydydadd yw arai	er brindelikeretur	applich with the state of the	_{พานกล} ุ่ปละเป็นสุการกระจากเส	torridication wash	gressingly mary bla	al way we want	halm Meny bay m
Lunder	up land on approximation	al new of the work	r Jon Wald Barrier	Ray with Mary	_{พกมาส} ุปุจงรถางการการการการการการการการการการการการการก	en an	epression of the second s	and the second as	(John Marrieland)
-66.2	afternelly August the March	Antonia and	er bring the baseling	Capetrichter Maria	_{พการกร} ุ่ปุจะกำระการ	harryddoeddor wennobi	looren and a second second	And to Mangles	(Jan Milling Haugh
-66.2	n gelaring diagonalisedaaris	un and a second and a	er berten like en eller	Capitriphter Maria	an ⁻¹ 1274 <mark>1</mark> 14-12 ¹⁻¹²¹⁻¹⁴¹⁴²	rayyddiwddiwraunad	(nestal control of the		(Jen Mennedon) (Jen Mennedon)
-66.2	ngh la tha ang ang ang ang ang ang ang ang ang an	ugi necessian en el		ayaraan	80711034 1	nayyydd y Marson a da	lores realized and the second s		and the second
-66.2	aptorning designed			An the second		navyden ddiwerol o ddi	line ser al service and se		

Shenzhen STS Test Services Co., Ltd.

Page 57 of 81

5.19 FRAME PERIOD TEST CRITERIA

§15.323 (e) The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in these subbands shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frame repetition rate with a frequency stability of at least 50 parts per million (ppm).

Timing Jitter

§ 15.323 (e) Specific requirements for isochronous devices operating in the 1920–1930 MHz sub-band. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

TEST LIMIT

Frame Period	20 or 10ms
Max Jitter	25µs
3 times St.Dev of Jitter	12.5µs

TEST SETUP

The test setup is shown in section 3.2 figure 2.

TEST PROCEDURE

The manufacturer supplies an attestation

TEST RESULTS

The Frame Repetition Stability is measured with the RF Test Platform for DECT. The Frame Repetition Stability is 3 times the standard deviation.

ANT 0					
Channel	Standard Devia- tion(ppm)	Frame Repetition	The limit of Frame Repetition Stability(ppm)	Verdict	
Middle	0.4299	1.2897	±10	Pass	

Channel	Frame Period(ms)	Max Jitter(µs)	Max Jitter(µs)	litter(µs)		Limit(µs)		
			ation of Jitter(µs)	Max Jitter	3 times St.Dev.of Jitter			
Middle	10.0000	-0.5000	1.2897	25	12.5	Pass		

Shenzhen STS Test Services Co., Ltd.

Page 58 of 81 Report No.: STS2011042W09

Channel	Standard Devia- tion(ppm)	Frame Repetition	The limit of Frame Repetition Stability(ppm)	Verdict
Middle	0.8252	2.4756	±10	Pass

. .

Channel	Frame Period(ms)	Max Jitter(us)	/lax Jitter(µs) 3xStandard Devi- ation of Jitter(µs)		Limit(µs)		
		· · · ·	ation of Jitter(µs)	Max Jitter	3 times St.Dev.of Jitter		
Middle	10.0000	-0.5000	2.4756	25	12.5	Pass	

Max Jitter= (1/(Frame Period+Pk-Pk)/2)-(1/Frame Period). When Pk-Pk and Frame period are in Hz. 3x St.Dev. Jitter 3 x(1/(Frame Period +St. Dev))-(1/St.Dev)) x10⁶

Shenzhen STS Test Services Co., Ltd.

Page 59 of 81

5.20 FREQUENCY STABILITY

TEST CRITERIA

§15.323 (f) The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ±10ppm over 1hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to +50° C at normal supply voltage and over a variation in the primary supply voltage of 85% to 115% of the rated supply voltage at a temperature of 200 C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

TEST PROCEDURE

The EUT was placed in the Environmental Chamber and support equipment are outside the chamber on a table. A CW signal was injected into the EUT at the appropriate RF level. The frequency counter option on the Spectrum Analyzer was used to measure frequency deviations.

The frequency drift was investigated for every 10° C increment until the unit is stabilized then recorded the reading in tabular format with the temperature range of -20° to +50° C.

Voltage supplied to EUT is DC 3.7V reference temperature was done at 20° C. The voltage was varied by \pm 15 % of nominal

TEST SETUP

The test setup is shown in section 3.2 figure 1.

TEST RESULTS

The EUT was compliant with this requirement

•	ANT 0						
	(Low Channel)						
Reference Frequency (MHz)	Voltage (V)	Temperature (℃)	Frequency (MHz)	Deviation (ppm)	Limit (ppm)		
		50	1921.52690	4.74			
	3.7	40	1921.52713	4.62			
		30	1921.52472	5.87			
		20	1921.53559	0.21			
1921.536		10	1921.53409	0.99	±10		
1921.000		0	1921.53774	-0.91	ΞIŪ		
		-10	1921.54757	-6.02			
		-20	1921.54821	-6.35			
	3.15	20	1921.54793	-6.21			
	4.26	20	1921.54406	-4.19			

Page 60 of 81

Report No.: STS2011042W09

	(Mid Channel)					
	Temperature	Frequency	Deviation	Limit		
Voltage (V)	(°C)	(MHz)	(ppm)	(ppm)		
	50	1924.99658	-2.38			
	40	1924.99891	-3.59	±10		
3.7	30	1924.99788	-3.05			
	20	1924.99913	-3.70			
	10	1925.00119	-4.77			
	0	1924.99905	-3.66			
	-10	1924.98364	4.34			
	-20	1924.98553	3.36			
3.15	20	1924.98288	4.74			
4.26	20	1924.98613	3.05			
	3.7	Voltage (V) (°C) 50 40 30 30 30 20 3.7 10 0 -10 -20 3.15	Voltage (V) Frequency (°C) Frequency (MHz) 50 1924.99658 40 1924.99891 30 1924.99788 20 1924.99913 10 1925.00119 0 1924.99905 -10 1924.98364 -20 1924.98553 3.15 20 1924.98288	Voltage (V)Frequency (°C)Deviation (ppm) 3.7 501924.99658-2.38 40 1924.99891-3.59 30 1924.99788-3.05 20 1924.99788-3.05 20 1924.99913-3.70 10 1925.00119-4.77 0 1924.99905-3.66 -10 1924.983644.34 -20 1924.985533.36 3.15 201924.982884.74		

	(High Channel)					
Reference		Temperature	Frequency	Deviation	Limit	
Frequency	Voltage (V)	(°C)	(MHz)	(ppm)	(ppm)	
(MHz)		(0)	(101112)	(PPIII)	(ppiii)	
		50	1928.44231	2.95		
	3.7	40	1928.44347	2.35		
		30	1928.44476	1.68		
		20	1928.44187	3.18		
1928.448		10	1928.44849	-0.25		
1920.440		0	1928.44916	-0.60	±10	
		-10	1928.44724	0.39		
		-20	1928.45078	-1.44		
	3.15	20	1928.45322	-2.71		
	4.26	20	1928.45445	-3.34		

Shenzhen STS Test Services Co., Ltd.

Page 61 of 81

Report No.: STS2011042W09

ANT 1

(Low Channel)					
Reference		Temperature	Frequency	Deviation	Limit
Frequency (MHz)	Voltage (V)	(°C)	(MHz)	(ppm)	(ppm)
		50	1921.52684	4.77	
		40	1921.52660	4.89	±10
	3.7	30	1921.52891	3.69	
		20	1921.53753	-0.80	
1001 506		10	1921.54064	-2.41	
1921.536		0	1921.54007	-2.12	
		-10	1921.54661	-5.52	
		-20	1921.54835	-6.43	
	3.15	20	1921.54895	-6.74]
	4.26	20	1921.54499	-4.68	

	(Mid Channel)					
Reference		Temperature	Frequency	Deviation	Limit	
Frequency (MHz)	Voltage (V)	(°C)	(MHz)	(ppm)	(ppm)	
		50	1924.99789	-3.06		
	3.7	40	1924.99435	-1.22		
		30	1924.99541	-1.77		
		20	1925.00067	-4.50		
1024.002		10	1925.00241	-5.41	.10	
1924.992		0	1925.00320	-5.82	±10	
		-10	1924.98244	4.97		
		-20	1924.98474	3.77		
	3.15	20	1924.98394	4.19		
	4.26	20	1924.98474	3.77		

Shenzhen STS Test Services Co., Ltd.

Page 62 of 81

Report No.: STS2011042W09

(High Channel)						
Reference		Temperature	Frequency	Deviation	Limit	
Frequency (MHz)	Voltage (V)	(°C)	(MHz)	(ppm)	(ppm)	
		50	1928.44235	2.93		
	3.7	40	1928.43906	4.64		
		30	1928.44275	2.72		
		20	1928.44256	2.82		
1028 148		10	1928.45174	-1.94	.10	
1928.448		0	1928.44790	0.05	±10	
		-10	1928.44984	-0.95		
		-20	1928.45258	-2.37		
	3.15	20	1928.44970	-0.88		
	4.26	20	1928.44881	-0.42		

Shenzhen STS Test Services Co., Ltd.

Page 63 of 81

5.21 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
FREQUENCT (MHZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

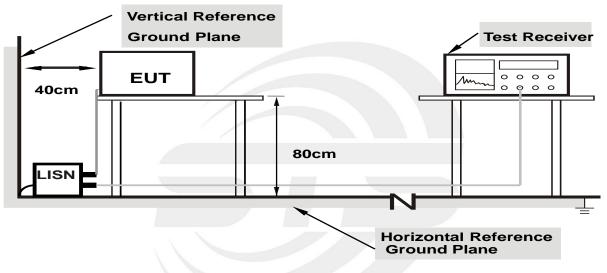
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


Page 64 of 81 Report No.: STS2011042W09

TEST SETUP

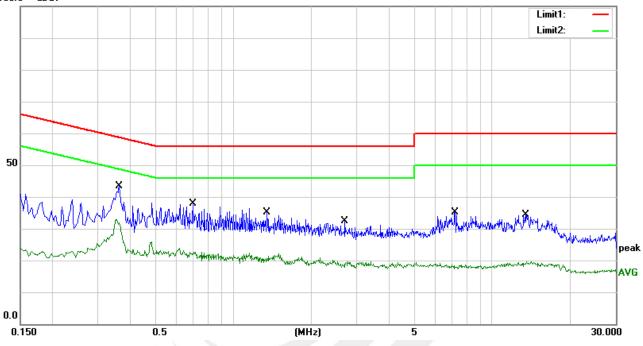
TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



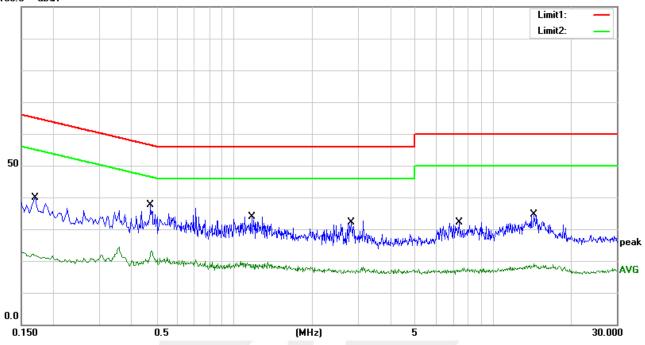
Page 65 of 81 Report No.: STS2011042W09

TEST RESULTS

Temperature:	24.5(C)	Relative Humidity:	45%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	TX Mode		

100.0 dBuV

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3620	22.67	20.61	43.28	58.68	-15.40	QP
2	0.3620	10.85	20.61	31.46	48.68	-17.22	AVG
3	0.6980	17.60	20.28	37.88	56.00	-18.12	QP
4	0.6980	2.44	20.28	22.72	46.00	-23.28	AVG
5	1.3500	15.02	20.15	35.17	56.00	-20.83	QP
6	1.3500	1.28	20.15	21.43	46.00	-24.57	AVG
7	2.6940	12.38	20.10	32.48	56.00	-23.52	QP
8	2.6940	-0.55	20.10	19.55	46.00	-26.45	AVG
9	7.1780	15.30	19.90	35.20	60.00	-24.80	QP
10	7.1780	-1.41	19.90	18.49	50.00	-31.51	AVG
11	13.4100	14.38	19.99	34.37	60.00	-25.63	QP
12	13.4100	-0.25	19.99	19.74	50.00	-30.26	AVG


Shenzhen STS Test Services Co., Ltd.

Page 66 of 81 Report No.: STS2011042W09

Temperature:	24.5(C)	Relative Humidity:	45%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	TX Mode		

100.0 dBuV

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1700	19.68	20.24	39.92	64.96	-25.04	QP
2	0.1700	1.33	20.24	21.57	54.96	-33.39	AVG
3	0.4740	17.15	20.45	37.60	56.44	-18.84	QP
4	0.4740	2.78	20.45	23.23	46.44	-23.21	AVG
5	1.1700	13.79	20.16	33.95	56.00	-22.05	QP
6	1.1700	-1.16	20.16	19.00	46.00	-27.00	AVG
7	2.8380	11.99	20.10	32.09	56.00	-23.91	QP
8	2.8380	-2.99	20.10	17.11	46.00	-28.89	AVG
9	7.3980	12.18	19.89	32.07	60.00	-27.93	QP
10	7.3980	-2.38	19.89	17.51	50.00	-32.49	AVG
11	14.2940	14.51	20.03	34.54	60.00	-25.46	QP
12	14.2940	-1.28	20.03	18.75	50.00	-31.25	AVG

Page 67 of 81

5.22 RADIATED SPURIOUS EMISSION RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted		
band)	1 MHz / 3 MHz	

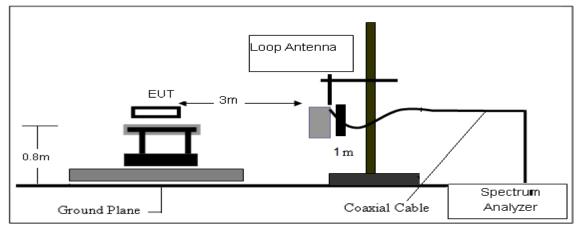
Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

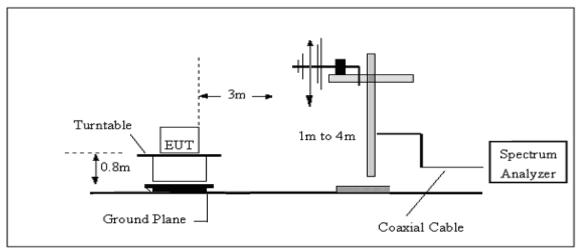
Shenzhen STS Test Services Co., Ltd.

Page 68 of 81 Report No.: STS2011042W09

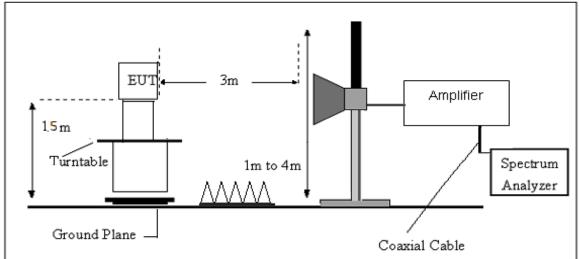
TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the ANT 0re set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



Page 69 of 81 Rep


TEST SETUP (A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

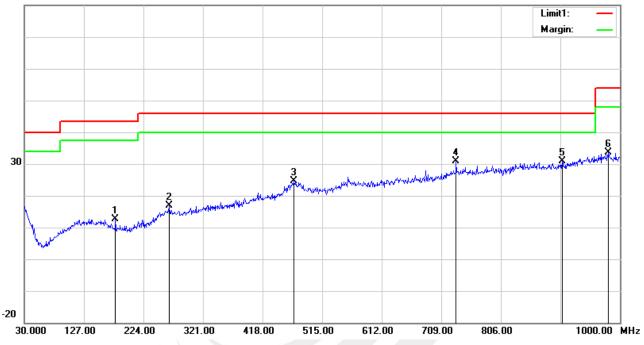
Margin=PL-PK L or AL- AV L; Margin only shown the worst case. Where

PR = Peak Reading AR = Average Reading PL = Peak Level AL = Average Level AF = Antenna Factor PK L = Peak Limit AV L = AV Limit

For example

Frequency	PR	AR	AF	PL	AL	PK L	AV L	Margin
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
2178	40.23	30.31	9.83	50.06	40.14	74.00	54.00	-13.86

Factor=AF+CL-AG



Page 71 of 81 Report No.: STS2011042W09

TEST RESULTS(30MHz - 1GHz)

Temperature:	23.0(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal
Test Mode:	TX Mode of ANT 0(P32Z)		

80.0 dBuV/m

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	178.4100	32.60	-20.02	12.58	43.50	-30.92	QP
2	265.7100	31.83	-14.83	17.00	46.00	-29.00	QP
3	468.4400	33.75	-9.07	24.68	46.00	-21.32	QP
4	733.2500	33.24	-2.35	30.89	46.00	-15.11	QP
5	905.9100	31.25	-0.29	30.96	46.00	-15.04	QP
6	981.5700	30.98	2.57	33.55	54.00	-20.45	QP

Page 72 of 81 Report No.: STS2011042W09

Temperature:	23.0(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	TX Mode of ANT 0(P32Z)		

80.0 dBuV/m

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	177.4400	33.63	-20.03	13.60	43.50	-29.90	QP
2	326.8200	30.38	-13.80	16.58	46.00	-29.42	QP
3	454.8600	32.25	-9.57	22.68	46.00	-23.32	QP
4	733.2500	31.37	-2.35	29.02	46.00	-16.98	QP
5	840.9200	30.27	-0.38	29.89	46.00	-16.11	QP
6	977.6900	30.32	2.52	32.84	54.00	-21.16	QP

Page 73 of 81 Report No.: STS2011042W09

Temperature:	23.0(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal
Test Mode:	TX Mode of ANT 1(P32Z)		

80.0 dBuV/m


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	32.9100	28.94	-14.33	14.61	40.00	-25.39	QP
2	265.7100	30.42	-14.83	15.59	46.00	-30.41	QP
3	467.4700	33.77	-9.11	24.66	46.00	-21.34	QP
4	733.2500	34.13	-2.35	31.78	46.00	-14.22	QP
5	859.3500	30.74	-0.44	30.30	46.00	-15.70	QP
6	953.4400	31.20	1.65	32.85	46.00	-13.15	QP

Page 74 of 81 Report No.: STS2011042W09

Temperature:	23.0(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	TX Mode of ANT 1(P32Z)		

80.0 dBuV/m

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	35.8200	30.68	-15.91	14.77	40.00	-25.23	QP
2	177.4400	33.45	-20.03	13.42	43.50	-30.08	QP
3	450.9800	33.31	-9.65	23.66	46.00	-22.34	QP
4	565.4400	30.86	-5.55	25.31	46.00	-20.69	QP
5	733.2500	32.58	-2.35	30.23	46.00	-15.77	QP
6	944.7100	31.48	1.48	32.96	46.00	-13.04	QP

Page 75 of 81

Report No.: STS2011042W09

TEST RESULTS(Above 1GHz)

P32Z

GFSK-Low-ANT 0

Horizontal

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1417	40.22	28.74	-0.63	39.59	28.11	74.00	54.00	-25.89	Horizontal
2845.5	39.84	28.66	5.58	45.42	34.24	74.00	54.00	-19.76	Horizontal
3843	63.12	58.18	-10.95	52.17	47.23	74.00	54.00	-6.77	Horizontal
7682	54.85	43.74	4	58.85	47.74	74.00	54.00	-6.26	Horizontal
11303.75	52.38	40.92	9.54	61.92	50.46	74.00	54.00	-3.54	Horizontal
15076.75	52.01	41.54	10.33	62.34	51.87	74.00	54.00	-2.13	Horizontal
				Verti	cal				

Frequency (MHz)	Peak Read- ing (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1287	40.39	28.93	-0.93	39.46	28.00	74.00	54.00	-26.00	Vertical
2806.5	40.33	28.81	5.31	45.64	34.12	74.00	54.00	-19.88	Vertical
3842	58.44	51.55	-10.95	47.49	40.60	74.00	54.00	-13.40	Vertical
8762.75	51.90	41.80	4.97	56.87	46.77	74.00	54.00	-7.23	Vertical
11248.75	52.01	40.81	9.57	61.58	50.38	74.00	54.00	-3.62	Vertical
14997	51.90	40.85	10.38	62.28	51.23	74.00	54.00	-2.77	Vertical

Page 76 of 81

Report No.: STS2011042W09

GFSK-Mid-ANT 0

Horizontal

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1366	40.19	29.41	-0.75	39.44	28.66	74.00	54.00	-25.34	Horizontal
2954	39.90	28.68	5.91	45.81	34.59	74.00	54.00	-19.41	Horizontal
3849	63.46	57.18	-10.92	52.54	46.26	74.00	54.00	-7.74	Horizontal
8757.25	52.02	41.93	4.98	57.00	46.91	74.00	54.00	-7.09	Horizontal
11378	51.27	40.93	9.7	60.97	50.63	74.00	54.00	-3.37	Horizontal
14238	50.90	39.92	11.31	62.21	51.23	74.00	54.00	-2.77	Horizontal

Vertical

Frequency (MHz)	Peak Read- ing (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1410.5	39.73	29.30	-0.64	39.09	28.66	74.00	54.00	-25.34	Vertical
2853.5	39.87	28.70	5.61	45.48	34.31	74.00	54.00	-19.69	Vertical
3850	56.65	51.52	-10.92	45.73	40.60	74.00	54.00	-13.40	Vertical
8705	51.58	41.47	5.14	56.72	46.61	74.00	54.00	-7.39	Vertical
11064.5	51.75	40.92	9.87	61.62	50.79	74.00	54.00	-3.21	Vertical
15071.25	51.55	41.09	10.33	61.88	51.42	74.00	54.00	-2.58	Vertical

Page 77 of 81

Report No.: STS2011042W09

GFSK-High-ANT 0

Horizontal

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1522.5	40.40	28.92	-0.58	39.82	28.34	74.00	54.00	-25.66	Horizontal
2254.5	40.68	29.31	4.63	45.31	33.94	74.00	54.00	-20.06	Horizontal
3857	62.21	54.74	-10.89	51.32	43.85	74.00	54.00	-10.15	Horizontal
5786	55.36	47.93	-3.89	51.47	44.04	74.00	54.00	-9.96	Horizontal
11037	51.81	40.94	10.02	61.83	50.96	74.00	54.00	-3.04	Horizontal
14994.25	52.65	40.68	10.37	63.02	51.05	74.00	54.00	-2.95	Horizontal

Vertical

Frequency (MHz)	Peak Read- ing (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1383.5	40.34	28.89	-0.7	39.64	28.19	74.00	54.00	-25.81	Vertical
2246.5	40.73	28.61	4.6	45.33	33.21	74.00	54.00	-20.79	Vertical
3857	57.35	51.25	-10.89	46.46	40.36	74.00	54.00	-13.64	Vertical
7712.25	52.07	43.14	4.1	56.17	47.24	74.00	54.00	-6.76	Vertical
11064.5	50.90	41.22	9.87	60.77	51.09	74.00	54.00	-2.91	Vertical
14884.25	52.06	40.87	9.91	61.97	50.78	74.00	54.00	-3.22	Vertical

Page 78 of 81

Report No.: STS2011042W09

GFSK-Low-ANT 1

Horizontal

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1623.5	40.29	29.19	-0.49	39.80	28.70	74.00	54.00	-25.30	Horizontal
2303.5	40.69	28.99	4.57	45.26	33.56	74.00	54.00	-20.44	Horizontal
3842	54.37	45.38	-10.95	43.42	34.43	74.00	54.00	-19.57	Horizontal
5764	53.40	47.42	-3.93	49.47	43.49	74.00	54.00	-10.51	Horizontal
7684.75	54.83	48.05	4.03	58.86	52.08	74.00	54.00	-1.92	Horizontal
11026	52.29	41.26	10.08	62.37	51.34	74.00	54.00	-2.66	Horizontal

Vertical

Frequency (MHz)	Peak Read- ing (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1463	40.47	29.26	-0.58	39.89	28.68	74.00	54.00	-25.32	Vertical
2941.5	39.79	28.92	5.85	45.64	34.77	74.00	54.00	-19.23	Vertical
3843	55.75	49.87	-10.95	44.80	38.92	74.00	54.00	-15.08	Vertical
5764	53.65	47.91	-3.93	49.72	43.98	74.00	54.00	-10.02	Vertical
11114	51.90	40.97	9.67	61.57	50.64	74.00	54.00	-3.36	Vertical
15464.5	51.73	39.83	10.76	62.49	50.59	74.00	54.00	-3.41	Vertical

Т

Page 79 of 81

Report No.: STS2011042W09

GFSK-Mid-ANT 1

Horizontal

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1371.5	40.57	29.49	-0.74	39.83	28.75	74.00	54.00	-25.25	Horizontal
2901.5	40.38	28.54	5.62	46.00	34.16	74.00	54.00	-19.84	Horizontal
3849	55.02	50.17	-10.92	44.10	39.25	74.00	54.00	-14.75	Horizontal
5776	53.53	46.80	-3.91	49.62	42.89	74.00	54.00	-11.11	Horizontal
7698.5	53.48	46.45	4.17	57.65	50.62	74.00	54.00	-3.38	Horizontal
14408.5	50.93	40.44	11.32	62.25	51.76	74.00	54.00	-2.24	Horizontal

Vertical

Frequency (MHz)	Peak Read- ing (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1352	39.93	29.22	-0.79	39.14	28.43	74.00	54.00	-25.57	Vertical
2117.5	41.89	30.34	4.09	45.98	34.43	74.00	54.00	-19.57	Vertical
3851	55.37	46.79	-10.92	44.45	35.87	74.00	54.00	-18.13	Vertical
8267.75	53.19	41.57	4.23	57.42	45.80	74.00	54.00	-8.20	Vertical
11826.25	51.94	40.38	9.32	61.26	49.70	74.00	54.00	-4.30	Vertical
15076.75	51.87	40.94	10.33	62.20	51.27	74.00	54.00	-2.73	Vertical

Page 80 of 81

Report No.: STS2011042W09

GFSK-High-ANT 1

Horizontal

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1407.5	40.51	29.45	-0.65	39.86	28.80	74.00	54.00	-25.20	Horizontal
2939.5	39.47	28.94	5.84	45.31	34.78	74.00	54.00	-19.22	Horizontal
5784	55.15	46.33	-3.9	51.25	42.43	74.00	54.00	-11.57	Horizontal
8281.5	52.40	41.52	4.23	56.63	45.75	74.00	54.00	-8.25	Horizontal
10973.75	51.71	40.86	10.02	61.73	50.88	74.00	54.00	-3.12	Horizontal
15415	51.07	40.62	10.92	61.99	51.54	74.00	54.00	-2.46	Horizontal

Vertical

Frequency (MHz)	Peak Read- ing (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	Margin(dB)	ANT
1445.5	40.16	29.08	-0.59	39.57	28.49	74.00	54.00	-25.51	Vertical
2276.5	40.42	29.17	4.61	45.03	33.78	74.00	54.00	-20.22	Vertical
3857	55.54	50.41	-10.89	44.65	39.52	74.00	54.00	-14.48	Vertical
5785	53.14	45.75	-3.9	49.24	41.85	74.00	54.00	-12.15	Vertical
10165.25	53.73	41.65	7.13	60.86	48.78	74.00	54.00	-5.22	Vertical
14419.5	51.61	40.54	11.19	62.80	51.73	74.00	54.00	-2.27	Vertical

Page 81 of 81 Report N

Report No.: STS2011042W09

APENDIX BPHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

***** END OF THE REPORT *****

Shenzhen STS Test Services Co., Ltd.