

Emissions Test Report

EUT Name: Radio Module

Model No.: FWCS

CFR 47 Part 15.247 2011 and RSS 210: 2010

Prepared for:

Joseph E. Swanzy Fluke Corporation. 6920 Seaway Blvd. Everett, WA, USA 98062 Tel: (425)-446-5626

Prepared by:

TUV Rheinland of North America, Inc.

1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date: August 22, 2012 Report Number: 31261836.003

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 1 of 78

Statement of Compliance

Manufacturer: Fluke Corporation.

6920 Seaway Blvd

Alberta, Canada T2A 7X9

Requester / Applicant: Joseph E. Swanzy
Name of Equipment: Radio Module

Model No. FWCS

Type of Equipment: Intentional Radiator

Application of Regulations: CFR 47 Part 15.247 2011 and RSS 210: 2010

Test Dates: May 21 to June 22, 2012

Guidance Documents:

Emissions: ANSI C63.10-2009

Test Methods:

Emissions: ANSI C63.10-2009

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Suresh Kondapalli

August 02, 2012

Conan Boyle

August 22, 2012

Test Engineer

Date

A2LA Signatory

Date

Com 7. Byle

Industry

Industrie Canada

Testing Cert #3331.02

US5254

2932M-1

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 2 of 78

FCCID: T68-FWCS; IC: 6627A-FWCS

Index of Tables

1	Exe	ecutive Summary	6
	1.1	Scope	6
	1.2	Purpose	6
	1.3	Summary of Test Results	6
	1.3.1	Measured values of key parameters	7
	1.4	Special Accessories	7
	1.5	Equipment Modifications	7
2	Lab	oratory Information	8
	2.1	Accreditations & Endorsements	8
	2.1.1 2.1.2	US Federal Communications Commission	8
	2.1.3		
	2.1.4	4 Japan – VCCI	8
	2.1.5		
	2.2	Test Facilities	10
	2.2.1 2.2.2		
	2.3	Measurement Uncertainty	
	2.3.1	Sample Calculation – radiated & conducted emissions	11
	2.3.2	·	
	2.4	Calibration Traceability	12
3	Pro	duct Information	13
	3.1	Product Description	13
	3.2	Equipment Configuration	13
	3.3	Operating Mode	13
	3.4	Duty Cycle:	13
	3.5	Unique Antenna Connector	14
4	Em	ission Requirements – 2400 MHz to 2483.5 MHz Band	15
	4.1	Output Power Requirements	15
	4.1.1	Test Method	15
	4.1.2		
	4.2 4.2.1	Occupied Bandwidth 1 Test Method	
	4.2.2		
	4.3	Band-edge Requirements	
	4.3.1	Results	
	4.4	Peak Power Spectral Density	36

Report Number: 31261836.003 EUT: Radio Module

Index of Tables

4.4.1	Test Method	36
4.4.2	Results	
4.5	Transmitter Spurious Emissions	41
4.5.1	Test Methodology	
4.5.2	Transmitter Spurious Emission Limit	42
4.5.3	Test Results	
4.5.4	Sample Calculation	59
4.6 1	Receiver Spurious Emissions	60
4.6.1	Test Methodology	60
4.6.2	Receiver Spurious Emission Limit	61
4.6.3	Test Results	61
4.7	AC Conducted Emissions	65
4.7.1	Test Methodology	65
4.7.2	Test Results	65
4.7.3	Test Setup Photos	66
5 Test	Equipment Use List	70
5.1 l	Equipment List	70
6 EMC	C Test Plan	71
	Introduction	
	Customer	
	Equipment Under Test (EUT)	
	Test Specifications	
	sion History	77

Index of Tables

Fable 1: Summary of Test Results	6
Table 2: RF Output Power at the Antenna Port – Test Results.	16
Table 3: Occupied Bandwidth – Test Results	21
Table 4: Band-Edge Requirements – Test Results	25
Table 5: Out of band Conducted Emission – Test Results	26
Table 6: Peak Power Spectral Density – Test Results	37
Table 7: Transmit Spurious Emission at Band-Edge Requirements	43
Table 8: Customer Information	71
Table 9: Technical Contact Information	71
Table 10: EUT Specifications	72
Table 11: EUT Channel Power Specifications	73
Table 12: Interface Specifications: None	73
Table 13: Supported Equipment : None	73
Table 14: Description of Sample used for Testing.	73
Table 15: Description of Test Configuration used for Radiated Measurement.	74
Table 16: Final Test Mode for 2400 MHz to 2483.5 MHz Band	75
Table 17: Test Specifications	76

Report Number: 31261836.003

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.247 2011 and RSS 210: 2010 based on the results of testing performed on May 21 to June 22, 2012 on the Radio Module Model: FWCS manufactured by *Fluke Corporation*. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.4	Test Parameters (from Standard)	Result
	2400 MHz to 2483.5 MHz Band		
Spurious Emission in Received Mode	CFR47 15.109, RSS-GEN Sect.7.2.3	Class B	Complied
Spurious Emission in Transmitted Mode	CFR47 15.209, RSS-GEN Sect.7.2.3	Class B	Complied
Restricted Bands of Operation	CFR47 15.205, RSS 210 Sect.2.6	Class B	Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.7.2.2	Class B	Complied
Occupied Bandwidth	CFR47 15.247 (a2), RSS GEN Sect.4.4.1	≥ 500 kHz	Complied
Maximum Transmitted Power	CFR47 15.247 (b3), RSS 210 Sect. A.8.4	30 dBm	Complied
Peak Power Spectral Density	CFR47 15.247 (e), RSS 210 Sect. A.8.2	8 dBm/ 3 kHz.	Complied
Bandedge Measurement	CFR47 15.247 (d), RSS 210 Sect. A.8.5	20 dBr	Complied

Note: Since EUT is portable device where the end user will have the direct contact, RF Exposure/ SAR test requirements are evaluated separately

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 6 of 78

1.3.1 Measured values of key parameters

Test	Test Method ANSI C63.4	Measured value	Result
	2400 MHz to 2483.5 MHz Band		
Maximum Transmitted Power	CFR47 15.247 (b3), RSS 210 Sect. A.8.4	1.79 dBm	Complied
Occupied Bandwidth	CFR47 15.247 (a2), RSS GEN Sect.4.4.1	2.74MHz	Complied
Peak Power Spectral Density	CFR47 15.247 (e), RSS 210 Sect. A.8.2	-12.00dBm	Complied
Spurious Emission in Transmitted Mode	CFR47 15.209, RSS-GEN Sect.7.2.3	49.65dBuV at 3 meters	Complied
Spurious Emission in Received Mode	CFR47 15.109, RSS-GEN Sect.7.2.3	15.34dBuV at 3 meters	Complied

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 7 of 78

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 2305 Mission College Blvd, Ste. 105, Santa Clara, CA 95054, are recognized by the Commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Pleasanton Registration No. US5254, Santa Clara Registration No. US5251). The laboratory Scopes of Accreditation include Title 47 CFR Parts 15, 18 and 90. The accreditations are updated every three years.

2.1.2 A2LA

TUV Rheinland of North America EMC test facilities are accredited by the American Association for Laboratory Accreditation (A2LA). The laboratories have been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Pleasanton Testing Certificate #3331.02, Santa Clara Testing Certificate #3331.03). The Scope of Laboratory Accreditation

includes emission and immunity testing. The accreditations are updated annually.

2.1.3 Industry Canada

Industry Canada Canada The Pleasanton 5-meter Semi-Anechoic Chamber, Registration No. 2932M-1, has been accepted by Industry Canada to perform testing to 3 and 5 meters based on the test procedures described in ANSI C63.4-2009. The Santa Clara 10-meter Semi-Anechoic Chamber, Registration No. 2932D-1, has been accepted by Industry Canada to perform testing to 3 and 10 meters based on the test procedures described in ANSI C63.4-2009.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information

Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 2305 Mission College Blvd, Ste. 105, Santa Clara, CA 95054, have been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0031 VCCI Registration No. for Santa Clara: A-0032

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 8 of 78

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland of North America EMC test results and test reports generated from facilities located at 1279 Quarry Lane, Ste. A,

Pleasanton, CA, 94566, and 2305 Mission College Blvd, Ste. 105, Santa Clara, CA 95054, within the Scope of the Laboratory A2LA Accreditation, will be accepted by each member country.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 9 of 78

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA. The 2305 Mission College, Santa Clara, 95054, USA location is considered a Pleasanton annex.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at a test distance of 3 meter and 5 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, and PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, POF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 10 of 78

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: RAW = Measured level before correction $(dB\mu V)$

$$CBL = Cable Loss (dB)$$

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{\textit{dB}\mu V\,/\,\textit{m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

 $\label{loss-Radiated Emissions} Measurement \ + Antenna \ Factor-Amplifier \ Gain+Cable \ loss=Radiated \ Emissions \ (dBuV/m)$

$$25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m$$

2.3.2 Measurement Uncertainty

	$\mathbf{U_{lab}}$	$ m U_{cispr}$		
Radiated Disturbance				
30 MHz – 40,000 MHz	3.2 dB	5.2 dB		
Conducted Disturbance @ Mains Terminals				
150 kHz – 30 MHz	2.4 dB	3.6 dB		
Disturbance Power				
30 MHz – 300 MHz	3.92 dB	4.5 dB		

Report Number: 31261836.003

Measurement Uncertainty – Immunity Testing

The estimated combined standard uncertainty for ESD immunity measurements is $\pm 4.1\%$.

The estimated combined standard uncertainty for radiated immunity measurements is ± 2.7 dB.

The estimated combined standard uncertainty for conducted immunity measurements is \pm 1.4 dB.

The estimated combined standard uncertainty for damped oscillatory wave immunity measurements is \pm 8.8%.

The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 0.45\%$.

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is \pm 3.88 Hz

The estimated combined standard uncertainty for carrier power measurements is ± 1.59 dB.

The estimated combined standard uncertainty for adjacent channel power measurements is \pm 1.47 dB.

The estimated combined standard uncertainty for modulation frequency response measurements is \pm 0.46 dB.

The estimated combined standard uncertainty for transmitter conducted emission measurements is \pm 4.01 dB

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 12 of 78

3 Product Information

3.1 Product Description

The FWCS is Zigbee radio module used in Fluke Portable measuring devices.

The radio module will be used in future Fluke products to provide wireless communication between a central module radio device and satellite radio devices. The protocol used will be similar to Zigbee but tailored to meet Fluke proprietary requirements.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with test standards. The EUT was programed to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

EUT was programed to operate at > 99% duty for the purpose of testing. This operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Duty Cycle:

None

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 13 of 78

3.5 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.5.1 Results

The Radio Module has one internal antenna. The antenna is integral part of module PCB. EUT is compliant.

Report Number: 31261836.003

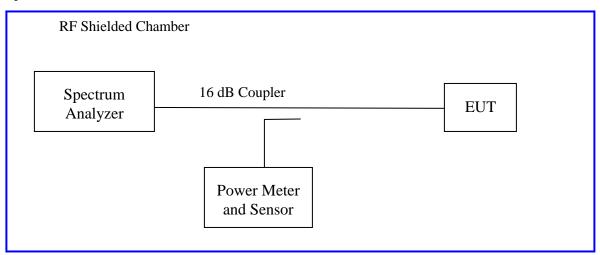
EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 14 of 78

4 Emission Requirements – 2400 MHz to 2483.5 MHz Band

Testing was performed in accordance with CFR 47 Part 15.247: 2011 and RSS 210 Annex 8: 2010. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.


The maximum output power and harmonics shall not exceed CFR47 Part 15.247 (b3):2009 and RSS 210 A.8.4: 2010

The maximum transmitted power is +30 dBm or 1 Watt.

4.1.1 Test Method

The conducted method was used to measure the channel power output according to ANSI C63.10:2009 Section 6.10.3.1. The measurement was performed with modulation per CFR47 Part 15.247 (b3):2011 and RSS 210 A.8.4. This test was conducted on 3 channels in each operating range. The worst mode result indicated below.

Test Setup:

Method #1 of "Measurement of Digital Transmission Systems Operating under Section 15.247" applies since the EUT continuously transmit; where T, Transmission Duration Pulse, is greater than analyzer sweep time.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 15 of 78

+30.00

4.1.2 Results

2480MHz

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 2: RF Output Power at the Antenna Port – Test Results

Test Conditions: Conducted Measurement, Normal Temperature					
Antenna Typ	e: Internal	Power S	Power Setting: See test plan Duty Cycle: 100%		
Max. Antenn	a Gain: +3 dBi	Duty Cy			
Ambient Ten	пр.: 21 °С	Relative	Humidity:39%		
802.15.4 Mode					
Operating Channel	Limit [dBm]	[dBm]	Power [mWatts]	Margin [dB]	
2405MHz	+30.00	1.79	1.51	-28.21	
2430MHz	+30.00	1.63	1.45	-28.37	

Note: EUT has duty cycle EUT was modified to transmit continuously for test purpose. EUT normal data rate is 1Mbps. No duty was applied

1.07

1.27

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 -28.93

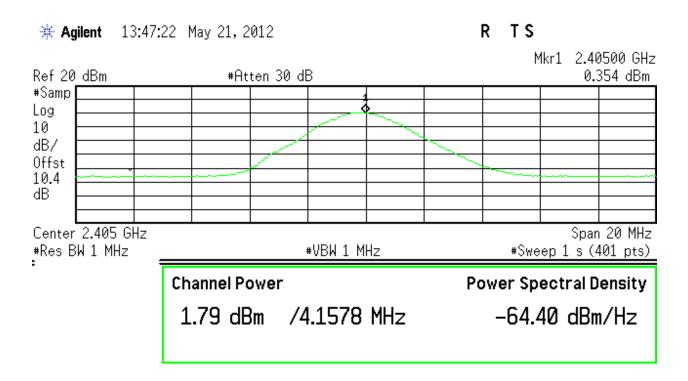


Figure 1: Maximum Transmitted Power, 2405 MHz

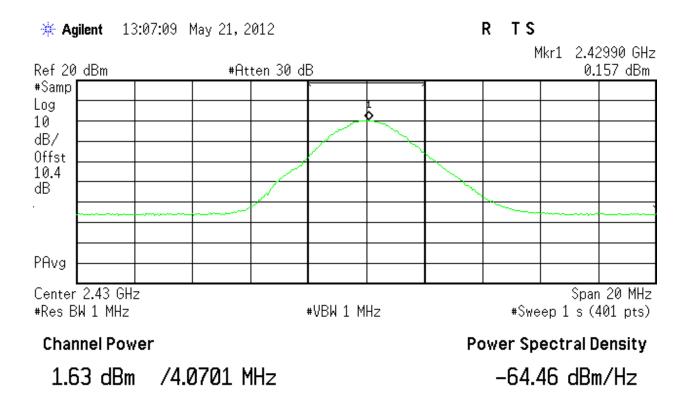


Figure 2: Maximum Transmitted Power, 2430 MHz

Report Number: 31261836.003

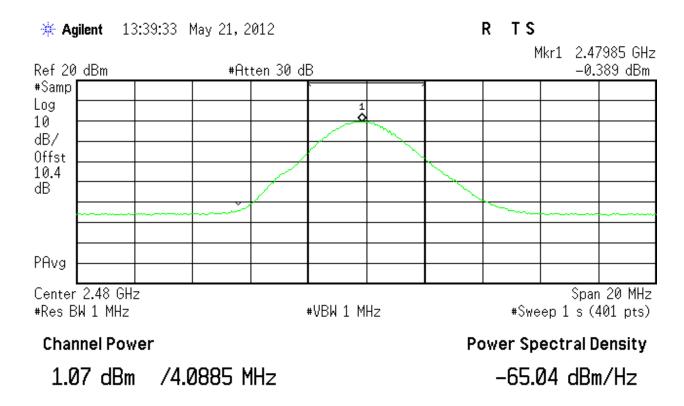


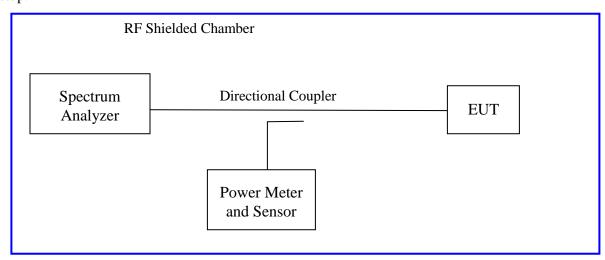
Figure 3: Maximum Transmitted Power, 2480 MHz, 1Mbps

Report Number: 31261836.003

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.


The 6 dB bandwidth is defined the bandwidth of 6 dBr from highest transmitted level of the fundamental frequency.

The bandwidth shall be at least 500 kHz per Section CFR47 15.247(a2) 2011and RSS Gen Sect. 4.4.1: 2010.

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth. The measurement was performed with modulation per CFR47 15.247(a2) 2011 and RSS Gen Sect. 4.4.1:2010. Initial investigation was performed at different data rates. The narrowest bandwidths of the operational mode were measured on 3 operating channels. The worst sample result indicated below.

Test Setup:

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 20 of 78

4.2.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 3: Occupied Bandwidth – Test Results

Test Cond	litions: Conducted 1	Measurement, Normal Tempe	rature and Voltage only		
Antenna T	Type: Internal	Power	Setting: See test plan		
Max. Antenna Gain: + 3.0 dBi Signal State: Modulated					
Ambient T	Гетр.: 21 °С	Relativ	Relative Humidity:33%		
Bandwidth (MHz) for 802.15.4					
Freq. (MHz)	Limit (kHz)	99% BW(MHz)	6 dB BW (MHz)	Results	
2405	500	2.73	1.64	Pass	
2430	500	2.74	1.64	Pass	
	500	2.74	1.62	Pass	

Report Number: 31261836.003

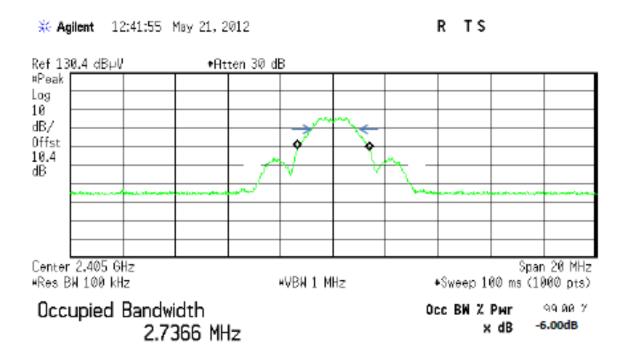


Figure 4: Occupied Bandwidth at Operating Channel 2405 MHz

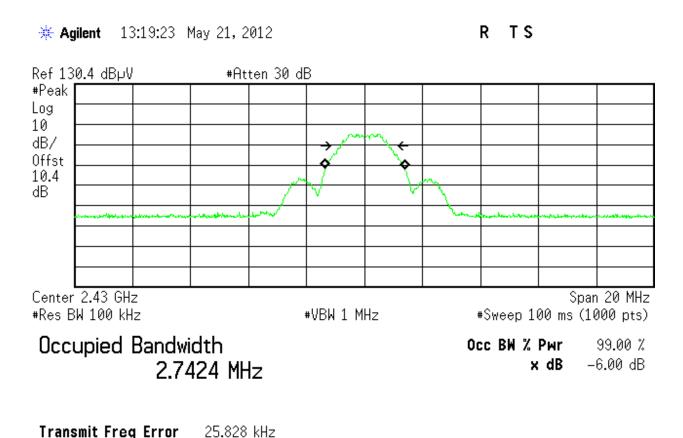


Figure 5: Occupied Bandwidth at Operating Channel 2430 MHz

1.649 MHz

x dB Bandwidth

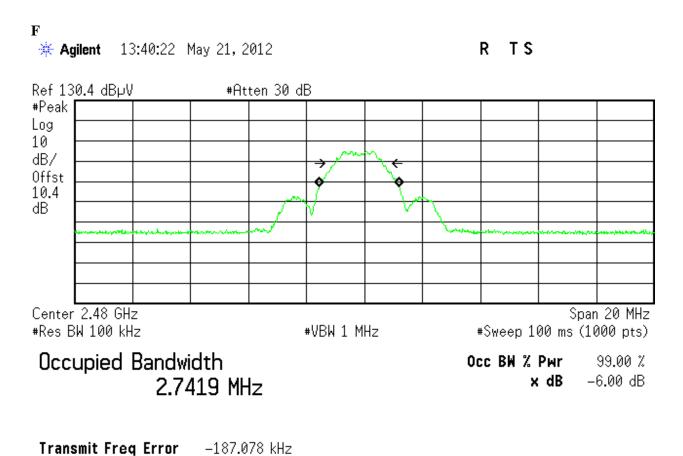


Figure 6: Occupied Bandwidth at Operating Channel 2480 MHz

1.626 MHz

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012

x dB Bandwidth

4.3 Band-edge Requirements

The setup was identical to RF output power measurement. Intentional radiators operating under the alternative provisions to the general emission limits, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If the frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Any frequency outside the band of 2400 MHz to 2483.5 MHz, the power output level must be below 20 dB from the in-band transmitting signal; CFR 47 Part 15.215, 15.247(d) and RSS 210 A8.5

4.3.1 Results

The Out of band emission was performed on the conducted test Sample.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 4: Band-Edge Requirements – Test Results

		urement, Normal Temper		
Antenna Type:	: Internal	Power Setting: See test plan		
Max. Antenna Gain: +3 dBi Signal State: Modulated				
Ambient Temp	⊳.: 21 °C	Relative Humidity:39%		
30dBr Band-Edge Results				
Operating Freq.	Mode	Limit (dBm)	Measured Value (dBm)	Result
2405 MHz	1Mbps	-34.90	-44.03	Pass
2430 MHz	1Mbps	-34.34	-44.75	Pass
2480 MHz	1Mbps	-35.22	-44.34	Pass

Note: All bandedge measurements were performed as indicated in the above table. Only worst case/limited number of plots are placed in the report.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 25 of 78

Table 5: Out of band Conducted Emission – Test Results

Mode	Result
1Mbps	Pass
1Mbps	Pass
1Mbps	Pass
	1Mbps 1Mbps

Note: All out of band emissions are at least 30 dB below their transmitting power levels.

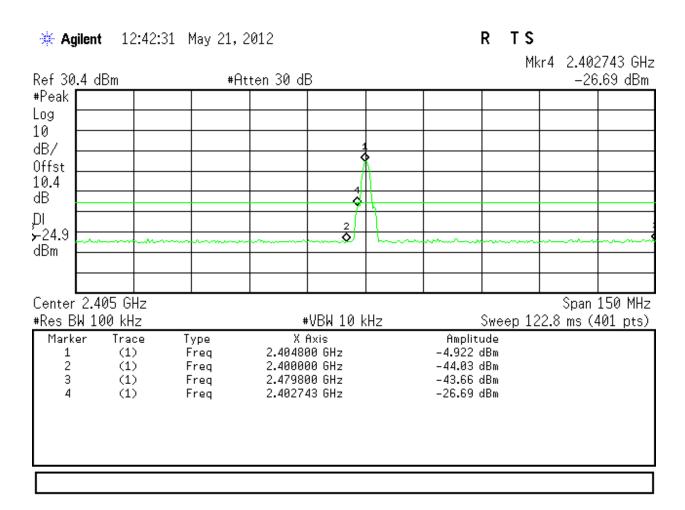


Figure 7: Band-edge Requirement at Operating Channel 2405 MHz,

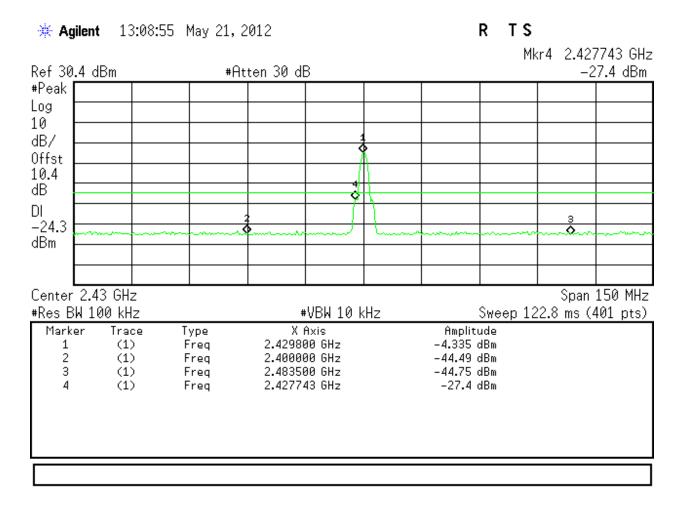


Figure 8: Band-edge Requirement at Operating Channel 2430 MHz

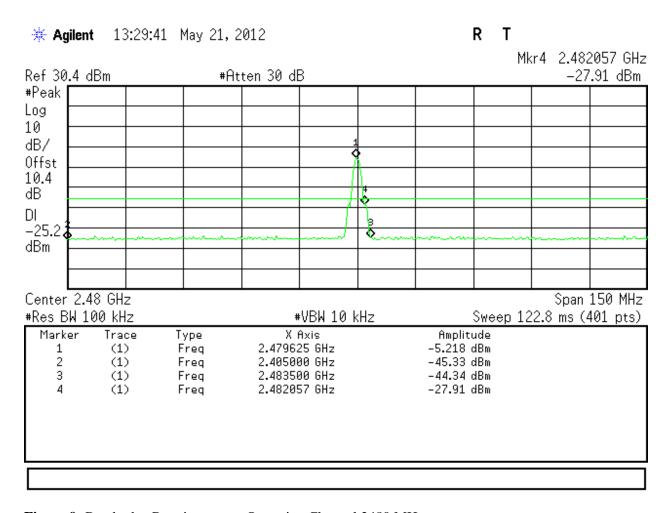


Figure 9: Band-edge Requirement at Operating Channel 2480 MHz

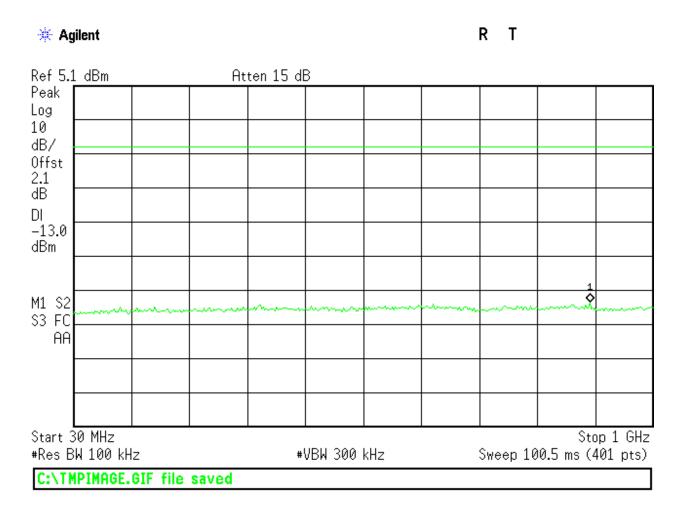


Figure 10: Out of band emissions at Operating Channel 2405 MHz – Plot 1

Report Number: 31261836.003

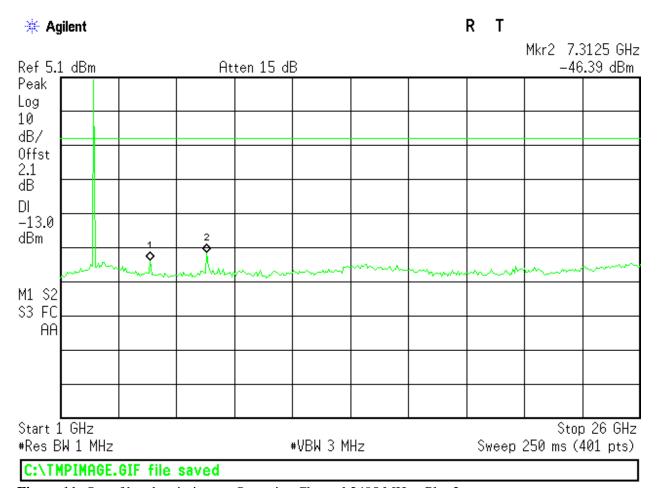


Figure 11: Out of band emissions at Operating Channel 2405 MHz - Plot 2

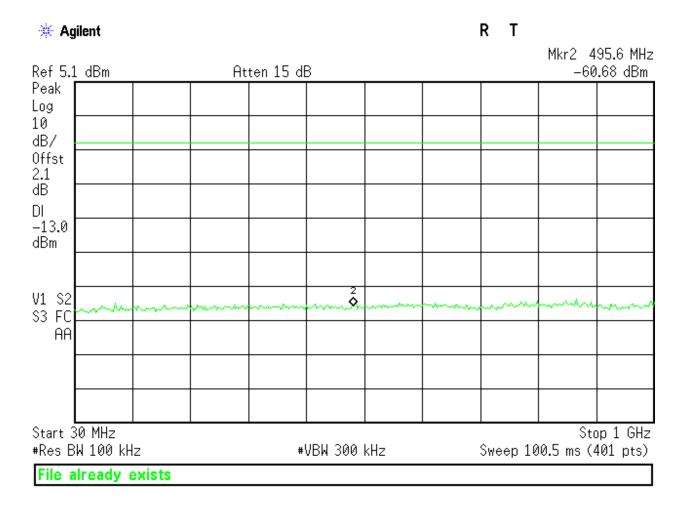


Figure 12: Out of band emissions at Operating Channel 2430 MHz - Plot 1

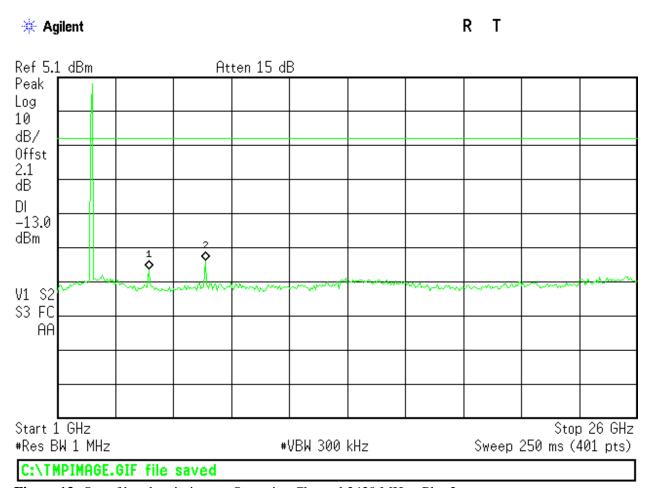


Figure 13: Out of band emissions at Operating Channel 2430 MHz - Plot 2

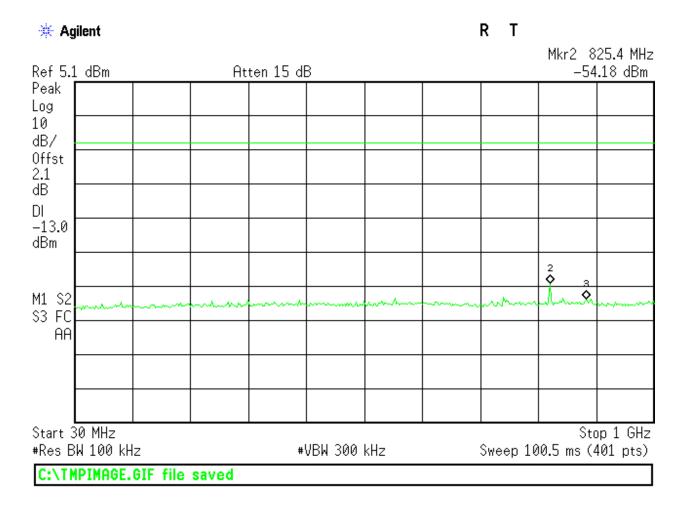


Figure 14: Out of band emissions at Operating Channel 2480 MHz - Plot 1

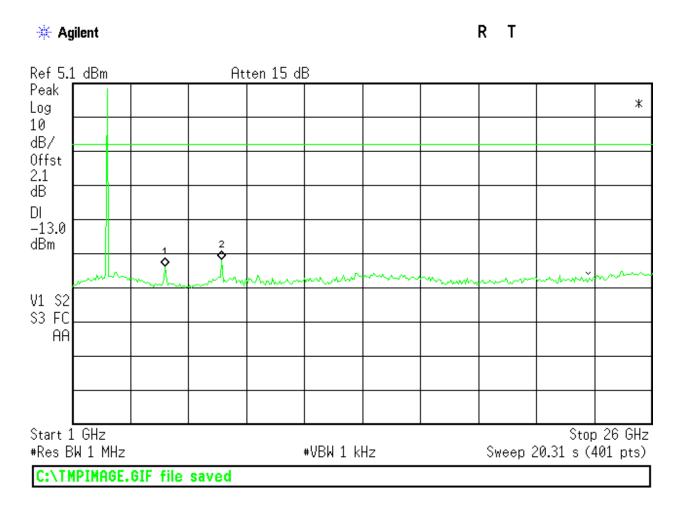
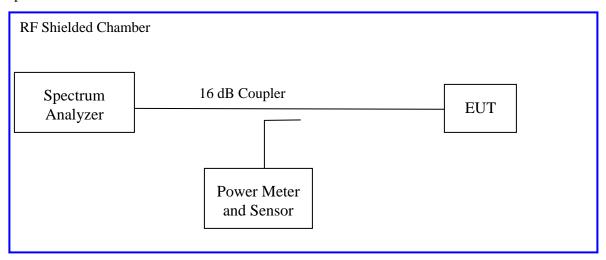


Figure 15: Out of band emissions at Operating Channel 2480 MHz - Plot 2

4.4 Peak Power Spectral Density


According to the CFR47 Part 15.247 (e) and RSS 210 (A8.2), the spectral power density output of the antenna port shall be less than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.4.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10:2009 Section 6.11.2

The measurement was performed with modulation per CFR47 Part 15.247 (e) and RSS 210 (A8.2). This test was conducted on 3 channels in each mode. The worst sample result indicated below.

Test Setup:

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 36 of 78

.... (---, ----, -----, (----, -----

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 6: Peak Power Spectral Density – Test Results

Table 6: 1	Table 6: Peak Power Spectral Density – Test Results							
Test Cond	Test Conditions: Conducted Measurement, Normal Temperature and Voltage only							
Antenna '	Гуре: Internal	Power Setting: See te	st plan					
Max. Ant	enna Gain: 3.0dBi	Signal State: Modulat	ed					
Ambient Temp.: 21 °C Relative Humidity:39%								
	Peak Power Spectral Density							
Freq. (MHz)	Mode	Max. PPSD [dBm]	Limit [dBm]	Margin [dB]				
2405	1Mbps	-12.00	8.00	-20.00				
2430	1Mbps	-12.07	8.00	-20.07				
2480	1Mbps	-12.64	8.00	-20.64				

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 37 of 78

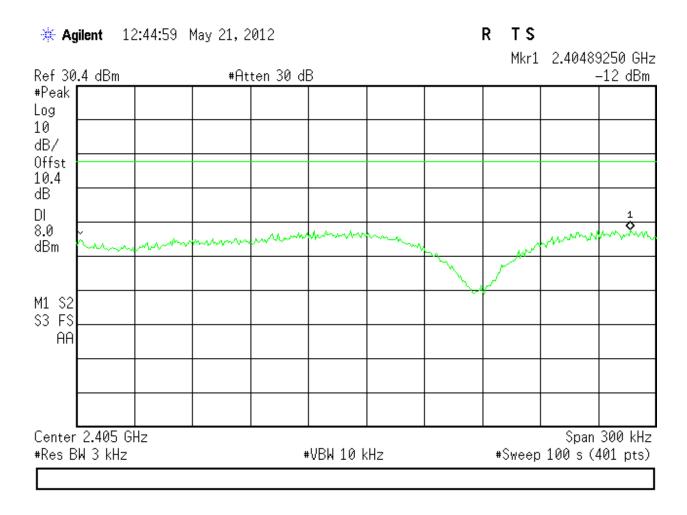


Figure 16: Peak Power Spectral Density for Operating Channel 2405MHz

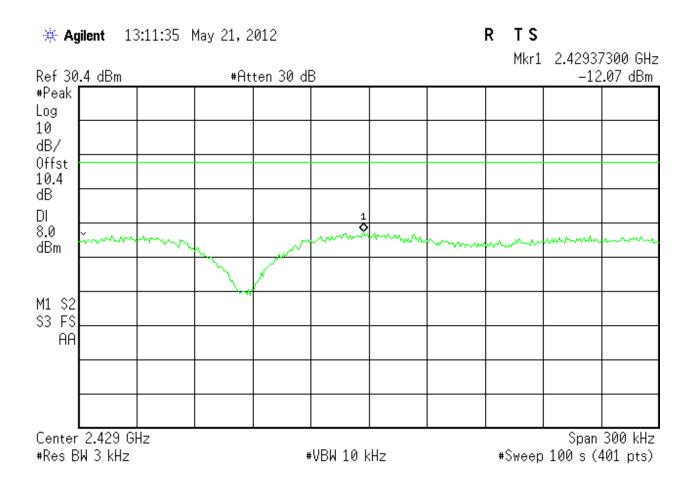
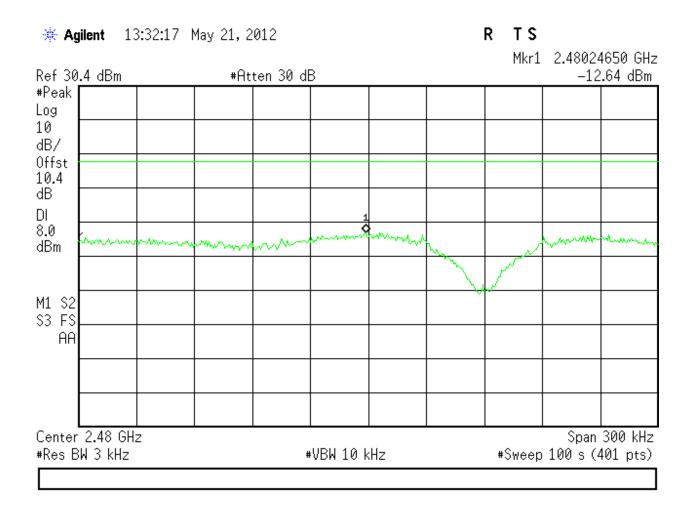



Figure 17: Peak Power Spectral Density for Operating Channel 2430MHz

Figure 18: Peak Power Spectral Density for Operating Channel 2480MHz

4.5 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmitting mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS 210 Sect. A.8.5

4.5.1 Test Methodology

4.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

4.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans performed on the worst axis, Y-Axis, for three operating channels;

2405MHz, 2430MHz, and 2480MHz at 1Mbit/s

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 41 of 78

4.5.1.3 Deviations

None.

4.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2011 and RSS 210 A1.1.2 2010.

Measurement Frequency (MHz) Field strength distance (microvolts/meter) (meters) _____ 30 30 3 3 216-960..... 200 ** 3 Above 960..... 500

All harmonics and spurious emission which are outside of the restricted band shall be 20 dB below the inband emission.

4.5.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and Test Plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 42 of 78

Table 7: Transmit Spurious Emission at Band-Edge Requirements

Test Conditions: Radiated Measurement, at 3 meters

Antenna Type: Internal Power Setting: See test plan

Max. Antenna Gain: + 3dBi Signal State: Modulated at 99%

Ambient Temp.: 22 °C **Relative Humidity:** 34%

Band-Edge Results

Operating Channel MHz	Polarity	Peak Field Strength Measured dBuV	Peak Limit dBuV	Margin dB	Avg Field Strength Measured dBuV	Avg Limit dBuV Margin dB		Resul t
2405	Н	37.25	74.0	-36.75	24.15	54.00	-29.85	Pass
2405	V	35.76	74.0	-38.24	22.26	54.00	-31.74	Pass
2480	Н	50.49	74.0	-23.55	42.91	54.00	-11.09	Pass
2480	V	54.26	74.0	-19.75	46.34	54.00	-7.66	Pass

Report Number: 31261836.003

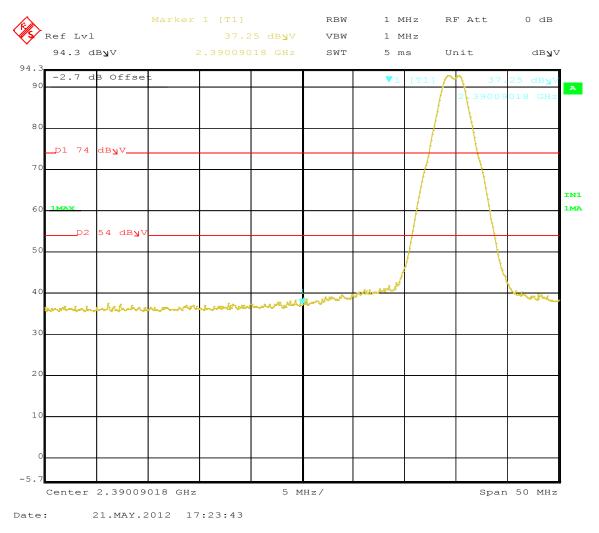


Figure 19: Radiated Emission at the Edge for Channel 2405MHz at 1Mbps – Horizontal (Peak)

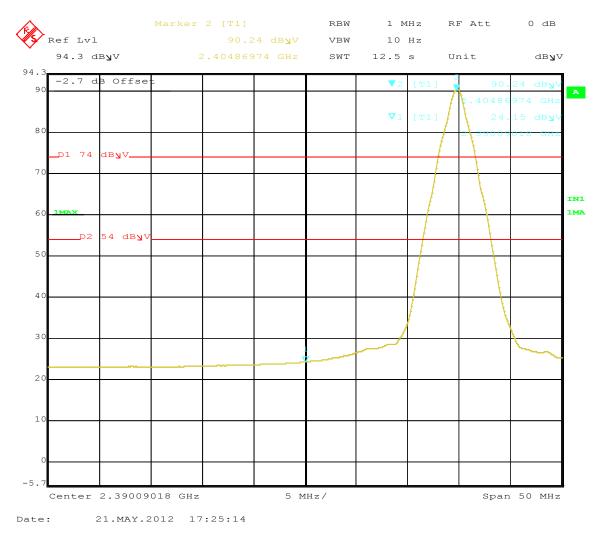


Figure 20: Radiated Emission at the Edge for Channel 2405MHz at 1Mbps – Horizontal (Avg)

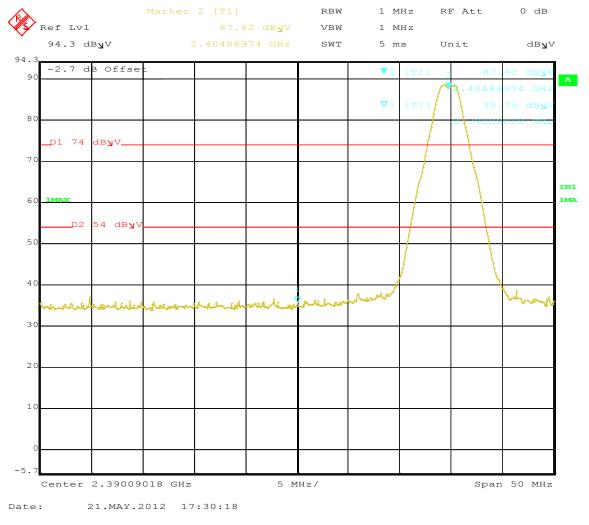


Figure 21: Radiated Emission at the Edge for Channel 2405MHz at 1Mbps – Vertical (Pk)

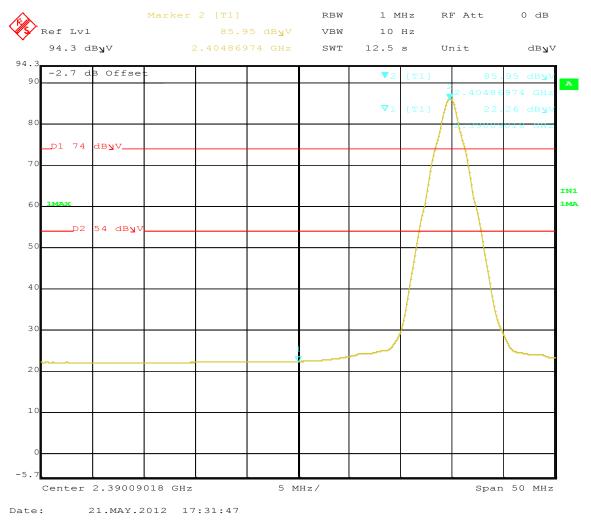


Figure 22: Radiated Emission at the Edge for Channel 2405MHz at 1Mbps – Vertical (avg)

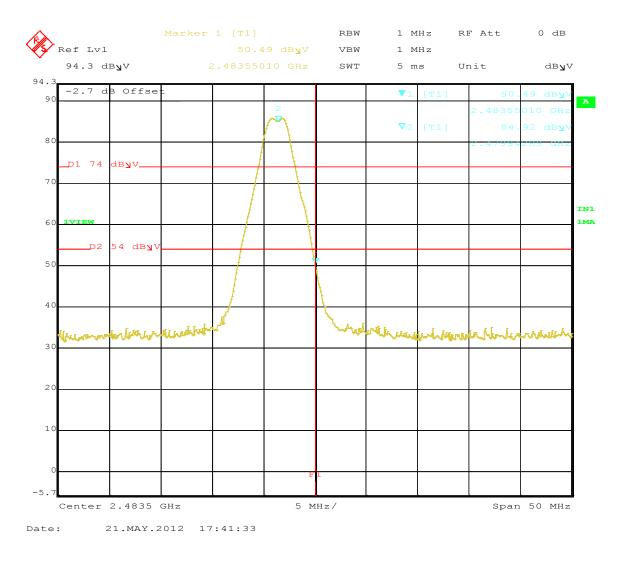


Figure 23: Radiated Emission at the Edge for Channel 2480MHz at 1Mbps – Horizontal (Pk)

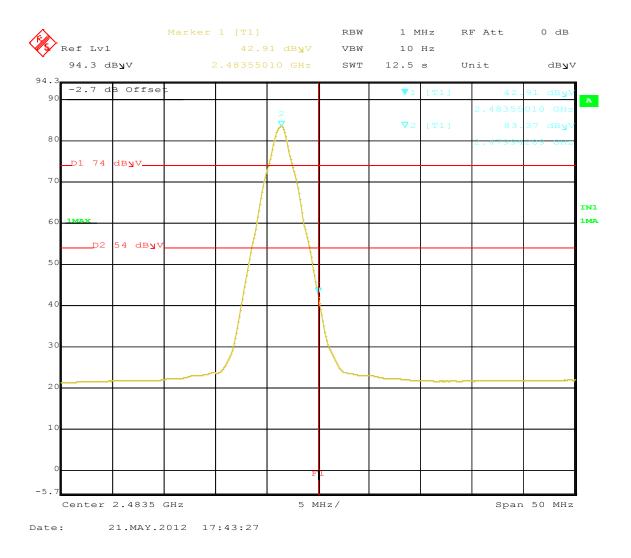


Figure 24: Radiated Emission at the Edge for Channel 2480MHz at 1Mbps – Horizontal (Avg)

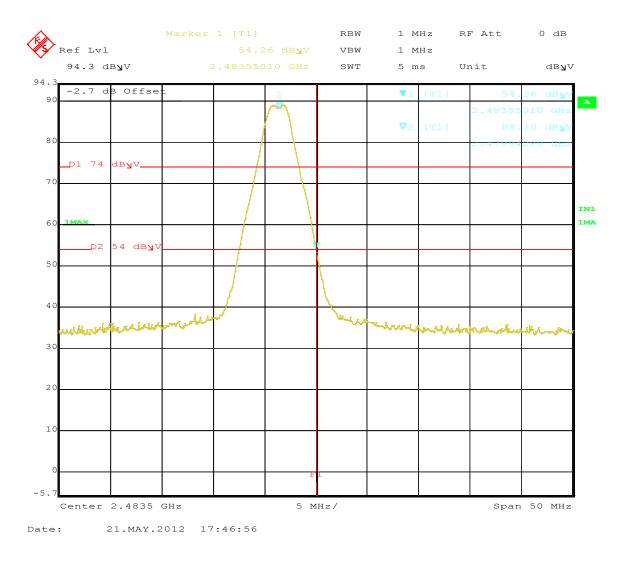


Figure 25: Radiated Emission at the Edge for Channel 2480MHz at 1Mbps – Vertical (Pk)

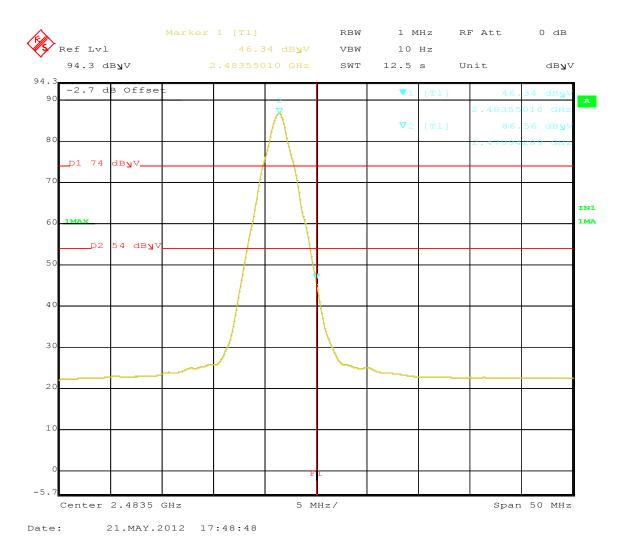
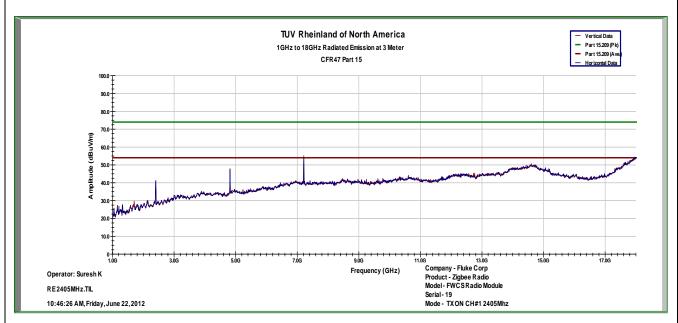
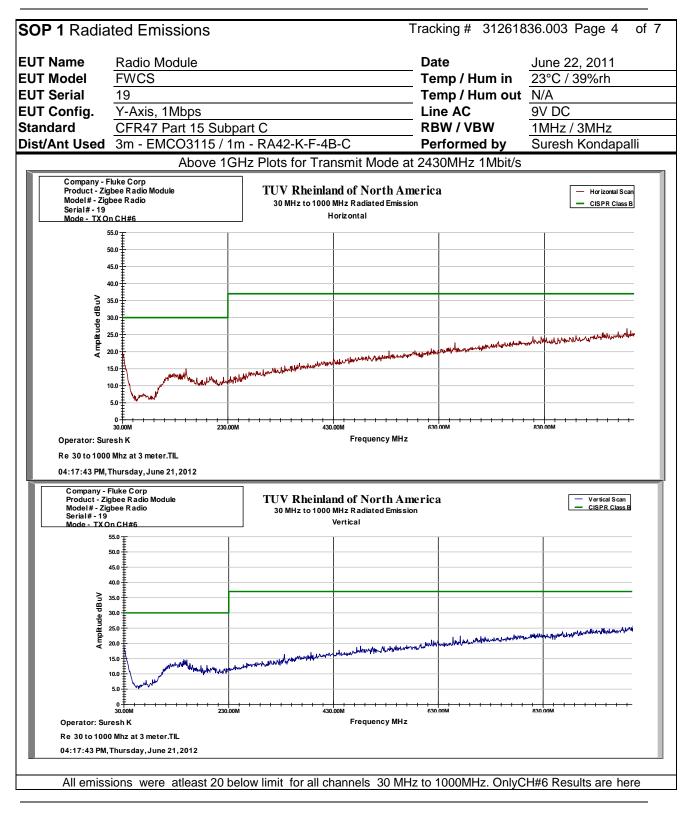



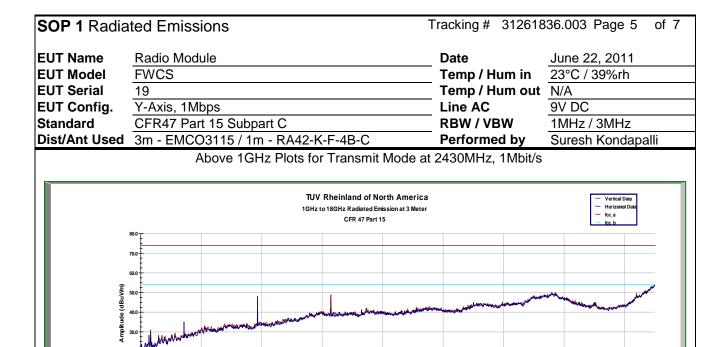
Figure 26: Radiated Emission at the Edge for Channel 2405MHz at 1Mbps – Vertical (Avg)


SOP 1 Radiated Emissions					Trackir	ng # 312	261836.	003 Pag	e 1 of 6	
EUT Name Radio Module					Date			June 22, 2012		
EUT Model	F	WCS			Tem	p / Hum	in 23°	°C / 39%	rh	
EUT Serial	<u>1</u>	9			Tem	p / Hum	out N/A	4		
EUT Comfi	t. <u>Y</u>	-Axis			Line	AC / Fre	e q <u>9</u> V	DC		
Standard	C	FR47 Part 15	Subpart C		RBW	//VBW	<u>1 N</u>	/IHz/ 3 M	lHz	
Dist/Ant Us	ed 3	m / EMCO311	5 / 1m - RA42-K-F	-4B-C	Perf	ormed b	y Su	resh Kor	ndapalli	
Emission	E F	ield	E-Field	Spec	Spec	Table	ANT	ANT	Type	
Freq	P	k	Ave	Limit	Margin	Pos	Pos	Pola		
MHz	dΒι	ıV	dBuV	dBuV	dB	deg	cm			
			Transmitte	ed Data at	2405MHz					
4810.03		45.30	38.26	53.98	-15.72	28	128	Н	Harmonic	
4810.06		51.17	45.48	53.98	-8.50	343	124	V	Harmonic	
7213.74		60.99	49.65	53.98	-4.33	442	129	V	Harmonic	
			E-Field QP = FIM Q	P+ Total CF	\pm Uncertain	ty				
		n + Cable Loss								
		, ,,,	= \pm 3.2 dB Expanded	•	- (5 /		r 95% con			
Notes: Wo results are r			red on Y-axis, 1Mb	ps. No dut	y cycle red	uction w	as applie	ed. Only	worst case	

SOP 1 Radiated Emissions		Tracking # 31261836.003 Page 2 o		
EUT Name	Radio Module	Date	June 22, 2012	
EUT Model	FWCS	Temp / Hum in	23°C / 39%rh	
EUT Serial	19	Temp / Hum out	N/A	
EUT Config.	Y-Axis,	Line AC	9V DC	
Standard	CFR47 Part 15 Subpart C	RBW / VBW	1MHz / 3MHz	
Dist/Ant Used	3m - EMCO3115 / 1m - RA42-K-F-4B-C	Performed by	Suresh Kondapalli	



Notes: All Emissions 18 to 26 Ghz were at least 20dB below the limt 1GHz – 25 GHz Setting: RBW = 1MHz/ VBW = 3MHz



SOP 1 Radiated Emissions Tracking # 31261836.003 Page 3 of						e 3 of 7					
EUT Name Radio Module			Date June 22, 2012			12					
EUT Model		FWCS				Tem	p / Hum	in	23°	°C / 39%ı	·h
EUT Serial		19				Tem	p / Hum	out	N/A	4	
EUT Comfit	t.	Y-Axis, at 1 M	ops			Line	AC / Fre	q	9V	DC	
Standard		CFR47 Part 15	Subpart C			RBW	/ VBW	-	1 N	/Hz/ 3 MI	Hz
Dist/Ant Us	ed	3m / EMCO311	5 / 1m - RA42-K-F	-4B-C				Sui	Suresh Kondapalli		
Emission	Е	Field	E-Field	Spec	Spec	С	Table	AN	T	ANT	Type
Freq		Pk	Ave	Limit	Mar	gin	Pos	Pos		Pola	
MHz		BuV	dBuV	dBuV	dB	8	deg	cm		1 014	
			Transmitte	ed Data at	2430	MHz					
1330.71		36.32	16.79	53.98	-3	7.19	95	1	00	V	Spurious
4859.67		51.09	46.47	53.98	-7	7.51	382	1	47	V	Harmonic
7290.66		53.50	42.91	53.98	-1	1.07	95	1	27	V	Harmonic
9786.84		46.06	31.88	53.98	-2	22.1	482	1	00	V	Harmonic
Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor											
Combined Star	Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										
	Notes: Worst case was observed on Y-axis, 1Mbps. No duty cycle reduction was applied. Only worst case results are reported here. All Emissions in 18 to 26 Ghz were at least 20dB below the limt.										

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 54 of 78

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 55 of 78

Company - Fluke Corp

Product - Zigbee Radio Model - FWCS Radio Module

Serial - 19 Mode - TX ON CH#6 2430Mhz

Frequency (GHz)

Notes: All Emissions 18 to 26 Ghz were at least 20dB below the limt 1GHz – 25 GHz Setting: RBW = 1MHz/ VBW = 3MHz

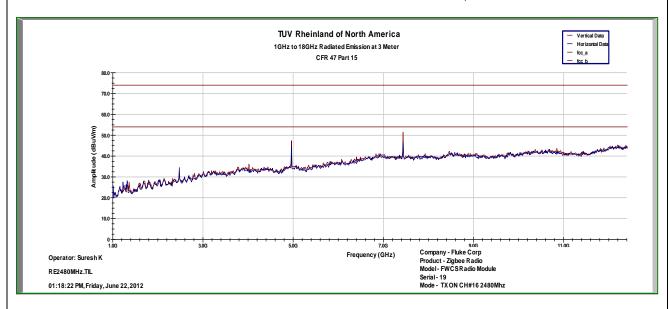
Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012

Operator: Suresh K

RE2430MHz June 21.TIL

02:52:28 PM, Friday, June 22, 2012



Tracking # 31261836.003 Page 6 **SOP 1** Radiated Emissions **EUT Name** Radio Module Date June 22, 2012 **EUT Model FWCS** Temp / Hum in 23°C / 39%rh Temp / Hum out N/A **EUT Serial** 19 **EUT Comfit.** Y-Axis, at 1Mbps Line AC / Freq 9V DC Standard CFR47 Part 15 Subpart C RBW / VBW 1 MHz/3 MHz Dist/Ant Used 3m / EMCO3115 / 1m - RA42-K-F-4B-C Suresh Kondapalli Performed by **Emission** E Field E-Field Spec Spec Table ANT **ANT** Type Freq Pk Ave Limit Margin Pos Pos Pola MHz dBuV dBuV deg dBuV dB cm Transmitted Data at 2480MHz Harmonic 4959.61 48.07 53.98 102 52.54 -5.91 23 4960.06 40.23 Harmonic 46.99 53.98 -13.75 23 97 7440.57 56.55 46.01 53.98 -7.97 90 125 V Harmonic 9921.23 100 Harmonic 43.85 31.82 53.98 -22.16 336 Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor Combined Standard Uncertainty $U_c(y) = \pm 3.2 \text{ dB}$ Expanded Uncertainty $U = k U_c(y)$ k = 2 for 95% confidence Notes: Worst case was observed on Y-axis, 1Mbps. No duty cycle reduction was applied. Only worst case results are reported here.

Report Number: 31261836.003

SOP 1 Radiated Emissions		Tracking # 31261836.003 Page 7		
EUT Name	Radio Module	Date	June 22, 2012	
EUT Model	FWCS	Temp / Hum in	23°C / 40%rh	
EUT Serial	19	Temp / Hum out	N/A	
EUT Config.	Y-Axis, 1Mbps	Line AC	9V DC	
Standard	CFR47 Part 15 Subpart C	RBW / VBW	1MHz / 3MHz	
Dist/Ant Used	3m - EMCO3115 / 1m - RA42-K-F-4B-C	Performed by	Suresh Kondapalli	
	AL 4011 DL (T 1114			

Notes: All Emissions 18 to 26 Ghz were at least 20dB below the limt 1GHz – 25 GHz Setting: RBW = 1MHz/ VBW = 3MHz

4.5.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB) CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\frac{dB\mu V/m}{20}$

 $\mu V/m = 10^{\frac{m-\mu}{20}}$

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 59 of 78

4.6 Receiver Spurious Emissions

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

The spurious emissions of the receiver shall not exceed the values in CFR47 Part 15.109 and RSS GEN Sect 6.1.

4.6.1 Test Methodology

4.6.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

4.6.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

4.6.1.3 Deviations

None.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 60 of 78

4.6.2 Receiver Spurious Emission Limit

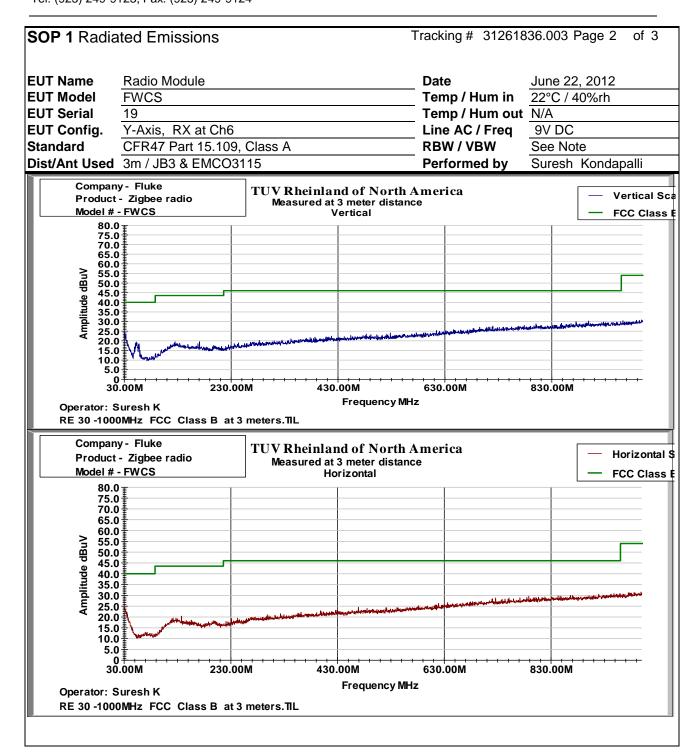
The spurious emissions of the receiver shall not exceed the values in CFR47 Part 15.109: 2011 and RSS GEN Sect 6.1 2010.

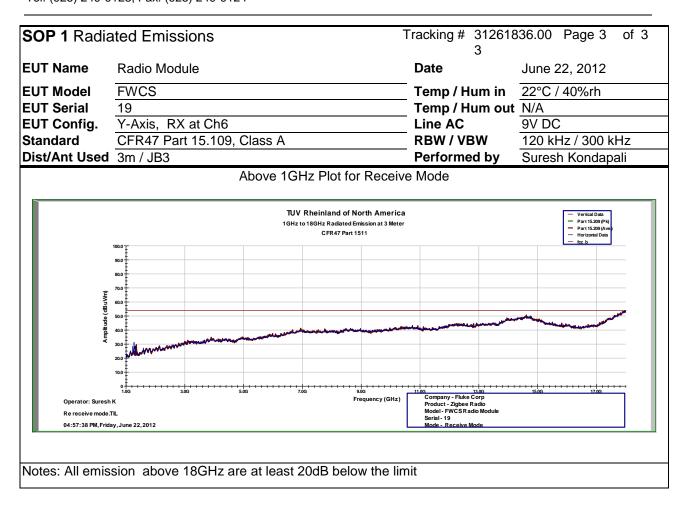
Measurement Frequency (MHz) Field strength distance (microvolts/meter) (meters) ______ 300 30 1.705-30.0.... 30 30-88..... 100 ** 3 3 Above 960..... 500

4.6.3 Test Results

The final measurement data indicates the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).


4.6.3.1 Final Data


The data recorded in this section contains the final results under the worst-case conditions and without any modifications or special accessories implemented as the manufacturer intends.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 61 of 78

SOP 1 Radiated Emissions					Trackin	ıg# 312	261836.0	003 Page	e 1 of 6
EUT Name		Radio Module					Jur	ne 22, 20	12
EUT Model		FWCS			Tem	o / Hum	in 23°	°C / 39%i	rh
EUT Serial		19			Tem	o / Hum	out N/A	Ą	
EUT Comfi	t.	Y-Axis, Receiv	re Mode		Line	AC / Fre	9 √	DC	
Standard		CFR47 Part 15	Subpart C		RBW	/ VBW	1 N	//Hz/ 3 M	Hz
Dist/Ant Us	ed	3m / EMCO311	15 / 1m - RA42-K-F	-4B-C	Perfo	rmed b	y Su	resh Kon	dapalli
Emission	Е	Field	E-Field	Spec	Spec	Table	ANT	ANT	Type
Freq		Pk	Ave	Limit	Margin	Pos	Pos	Pola	
MHz	dl	BuV	dBuV	dBuV	dB	deg	cm		
			Re	ceive Mod	e				
1231.06		27.32	14.56	53.98	-39.42	123	167	V	Spurious
1278.72		30.38	15.34	53.98	-38.64	-22	167	V	Spurious
1350.03		32.6	14.20	53.98	-39.78	60	166	V	Spurious
			E-Field QP = FIM Q	P+ Total CF	± Uncertaint	ЗУ			
	•	ain + Cable Loss							
Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence									
All other en	niss	ions atleast 20d	b below the margin	l					

4.6.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = FIM - AMP + CBL + ACF$$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\mu V/m = 10^{\frac{\textit{dB}\mu V \, / \, \textit{m}}{20}}$

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 64 of 78

4.7 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.4-2009. These test methods are listed under the laboratory's A2LA Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207: 2011 and RSS 210: 2010.

4.7.1 Test Methodology

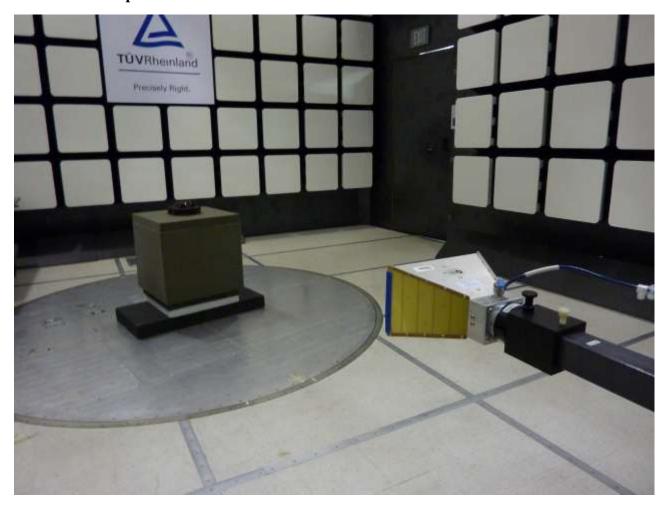
A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of $50\mu\text{H}/50\Omega$ LISNs.

Testing is either performed inLab 5. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

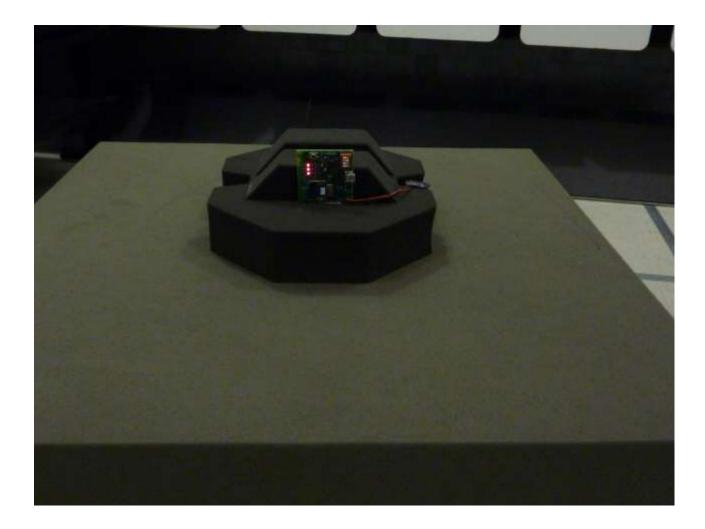
4.7.1.1 Deviations

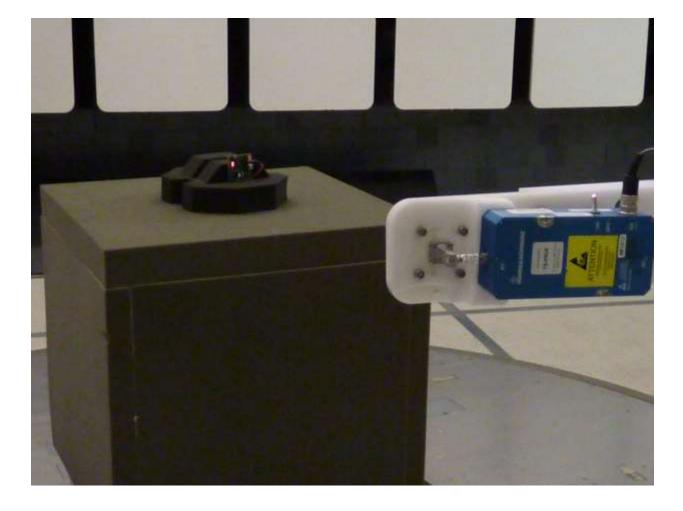
There were no deviations from this test methodology.


4.7.2 Test Results

Test is Not applicable. EUT is powered from Host device and Host device is alkaline battery operated.


Report Number: 31261836.003


EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 65 of 78


4.7.3 Test Setup Photos

Report Number: 31261836.003 EUT: Radio Module

5 Test Equipment Use List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
Bilog Antenna	Sunol Science	JB3	A061907	5/15/2012	05/15/2014
Horn Antenna	Sunol Scienece	DRH-118	A040806	9/29/2010	9/29/2012
Antenna (18-26GHz)	CMT	RA42-K-F-4B-C	020131-004	1/17/2012	1/17/2013
EMI Receiver	Hewlett Packard	8546A	3807A00445	1/17/2012	1/17/2013
Preselector	Hewlett Packard	85460A	3704A00407	1/17/2012	1/17/2013
Amplifier	Hewlett Packard	8447D	2944A07996	1/16/2012	1/16/2013
Spectrum Analyzer	Rhode&Schwarz	ESIB	832427/002	1/17/2012	1/17/2013
Amplifier	Rhode&Schwarz	TS-PR18	3545.7008.03	9/29/2010	9/29/2012
Amplifier	Rhode&Schwarz	TS-PR26	100011	1/16/2012	1/16/2013
Signal Generator	Anritsu	MG3694A	42803	1/17/2012	1/17/2013
Notch Filter	Micro-Tronics	BRM50702	37	1/17/2012	1/17/2013
Notch Filter	Micro-Tronics	BRC50705	9	1/17/2012	1/17/2013
High Pass Filter (8.5 GHz)	Micro-Tronics	HPM50107	4	1/17/2012	1/17/2013
Digital Multimeter	Fluke	177	92780314	1/18/2012	1/18/2013
LISN	Com-Power	LI-215	24548	1/19/2012	1/19/2013
Signal Generator	Anritsu	MG3694A	42803	1/17/2012	1/17/2013
Spectrum Analyzer	Agilent	E4407B	SG43330468	10/05/2011	10/05/2012

^{*} Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 70 of 78

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

Table 8: Customer Information

Company Name	Fluke Corporation.
Address	6920 Seaway Blvd
City, State, Zip	Everett, WA 98203
Country	USA
Phone	425 446-5626
Fax	None

Table 9: Technical Contact Information

Name	Joseph E. Swanzy
E-mail	swanzy@fluke.com
Phone	425 446-5626
Fax	None

Report Number: 31261836.003

6.3 Equipment Under Test (EUT)

Table 10: EUT Specifications

EUT Specification					
Dimensions	25mm x 19mm x 2.5mm				
Power EUT is Battery Operated Input Voltage: 3.3V DC (9V DC at input of test jig) Input Current: 50mA					
Environment	Portable				
Operating Temperature Range:	-10 to +50 degrees C				
Multiple Feeds:	☐ Yes and how many ☐ No				
Hardware Version	None				
Part Number	None				
RF Software Version	None				
Radio Module 802.15.4 -radio	module				
Operating Mode	EUT Operates on 802.15.4 Zigbee protocol				
Transmitter Frequency Band	2.400GHz to 2.4835 GHz				
Max. Rated Power Output	See Channel Planning Table.				
Power Setting @ Operating Channel	See Channel Planning Table.				
Antenna Type	Internal Antenna 3.0dBi				
Modulation Type	☐ AM ☐ FM ☐ DSSS ☐ OFDM ☐ OPSK				
Data Rate	250Kbps to 1Mbps EUT Operates on 802.15.4 Zigbee protocol				
TX/RX Chain (s)	1				
Directional Gain Type	✓ Uncorrelated✓ No Beam-Forming✓ Other describe:				
Type of Equipment	☐ Table Top ☐Wall-mount ☐ Floor standing cabinet ☐ Other <i>Portable</i>				

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 72 of 78

Table 11: EUT Channel Power Specifications

No.	Frequency (MHz)	802.15.4 Radio Module
1	2405	4.5dBm
2	2430	4.5dBm
3	2480	4.5dBm

Note: 1. The power levels shown here are with 100% duty cycle. Duty cycle factor for a comparison with limits.

2. This report is only documented for frequency ranges, 2400-2483.5 MHz

 Table 12: Interface Specifications: None

 Table 13: Supported Equipment : None

 Table 14: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.247
Radio Module	19	Internal antenna	TX Emission, RX Emission,
	20	SMA Connector (This was setup by BW Technologies for test purposes only)	RF Power Output, Out of Band Emission, Peak Power Spectral Density, Occupied Bandwidth

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 73 of 78

 Table 15: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
Radio Module	Internal	* Transmit * Receive	Flat on table	EUT set on wall laying on longer side.	EUT vertical

Note: Pre-scans were performed in 3 orthogonal axes and Y-Axis was worst case.

Table 16: Final Test Mode for 2400 MHz to 2483.5 MHz Band

Test	802.15.4
Occupied Bandwidth	2405, 2430, 2480 MHz @ 1Mbps
Output Power	2405, 2430, 2480 MHz @ 1Mbps
Peak Power Spectral Density	2405, 2430, 2480 MHz @ 1Mbps
Out-of-Band (-20 dBr)	2405, 2430, 2480 MHz @ 11Mbps
Band-Edge (Radiated)	2405, 2430, 2480 MHz @ 1Mbps
Transmitted Spurious Emission	2405, 2430, 2480 MHz @ 1Mbps
Received Spurious Emission	2430 MHz
AC Conducted Emission	Test Not Applicable

6.4 Test Specifications

Testing requirements

Table 17: Test Specifications

Emissions and Immunity		
Standard	Requirement	
CFR 47 Part 15.247: 2011	All	
RSS 210 Issue 8, 2010	All	

Report Number: 31261836.003 EUT: Radio Module

7 Revision History

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	08/22/2012	Original Document	SK
1	09/06/2012	Revised to add revision history, changed protocol 8011.b to 802.15.4 (Zigbee) protocol	SK
		-	

Note: Latest revision report will replace all previous reports.

Report Number: 31261836.003

EUT: Radio Module Model: FWCS EMC / Rev 09/06/2012 Page 77 of 78

END OF REPORT

Report Number: 31261836.003 EUT: Radio Module

Model: FWCS EMC / Rev 09/06/2012 Page 78 of 78