

ADDENDUM TO FLUKE CORPORATION TEST REPORT FC09-149

FOR THE

WIRELESS MULTIMETER (BASE), FLUKE 233

FCC PART 15 SUBPART C SECTION 15.247 AND RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: NOVEMBER 23, 2009

PREPARED FOR:

Fluke Corporation 6920 Seaway Blvd. Everett, WA 98203

P.O. No.: 383427 W.O. No.: 89609

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: September 3 – November 17, 2009

Report No.: FC09-149A

This report contains a total of 34 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	4
Equipment Under Test	4
Peripheral Devices	4
Measurement Uncertainties	5
Report of Emissions Measurements	5
Testing Parameters	5
FCC 15.247(a)(2) 6 dB Bandwidth	7
FCC 15.247(b)(3) RF Power Output	11
FCC 15.247(d) OATS Radiated Spurious Emissions	13
FCC 15.247(d) Bandedge	20
FCC 15.247(e) Peak Power Spectral Density	
RSS-210 99% Bandwidth	31

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 3 - November 17, 2009 **DATE OF RECEIPT:** September 3, 2009

REPRESENTATIVE: Thomas Smith

MANUFACTURER:

Fluke Corporation 6920 Seaway Blvd. Everett, WA 98203 **TEST LOCATION:** CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 and RSS GEN Issue 2

PURPOSE OF TEST:

Original Report: To perform the testing of the Wireless Multimeter (Base), Fluke 233 with the requirements for FCC Part 15 Subpart C Section 15.247 and RSS-210 devices. **Addendum A:** To add new FCC 15.247(d) OATS radiated emissions testing from 9 kHz – 30 MHz for the Wireless Multimeter (Base), Fluke 233.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

ton then kere

Steve Van Kirk, Senior EMC Engineer / Lab Manager

fint

Armando Del Angel, Test Engineer

SUMMARY OF RESULTS

Test	Specification/Method	Results
6dB Bandwidth	FCC 15.247(a)(2)	Pass
RF Power Output	FCC 15.247(b)(3)	Pass
OATS Spurious Emissions	FCC 15.247(d)	Pass
Bandedge	FCC 15.247(d)	Pass
Peak Power Spectral Density	FCC 15.247(e)	Pass
99% Bandwidth	RSS-210 Issue 7/RSS GEN Issue 2	Pass
Site File No.	FCC 318738	
	IC 3082C-1	

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Wireless Multimeter base. The EUT was operating from 2.405GHz to 2.48GHz.

EQUIPMENT UNDER TEST

Wireless Multimeter (Base)

Manuf: Fluke Corporation Model: Fluke 233 Serial: 0016

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

MEASUREMENT UNCERTAINTIES

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS					
	Meter reading	$(dB\mu V)$			
+	Antenna Factor	(dB)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	$(dB\mu V/m)$			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.247(a)(2) 6 dB BANDWIDTH

Asset #	Equipment	Manufacturer	Model	Serial	Cal Date	Cal Due
			32026-2-			
3121	Cable	Astrolab	29080-84		4/28/2009	4/28/2011
1412	Antenna, Horn	EMCO	3115	9606-4854	11/12/2007	11/12/2009
P05542	Cable, 23' blue	Andrews	Heliax		4/21/2009	4/21/2011
1271	Preamp	HP	83017A	3123A00464	10/2/2007	10/2/2009
	Spectrum					
2871	Analyzer	Agilent	E4440A	MY46186333	4/29/2009	4/29/2011

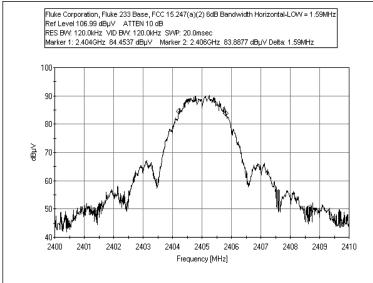

Test Equipment

Test Conditions

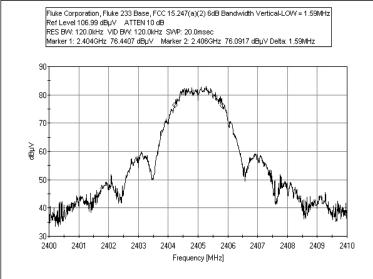
EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located on the center of the test table over 10cm of Styrofoam. PSA is on max hold, marker-to-peak function is set on the peak of each channel, and then the marker will be positioned 6dB below the peak on one side and then on the other side, the separation between those two points is the 6dB bandwidth. EUT will be tested in the LOW (2.405GHz), MID (2.44GHz), and HIGH (2.48GHz), test will be done with a set of new batteries.

RBW = 100 kHz VBW = 1 MHz Span = 10MHz

Test Setup Photo

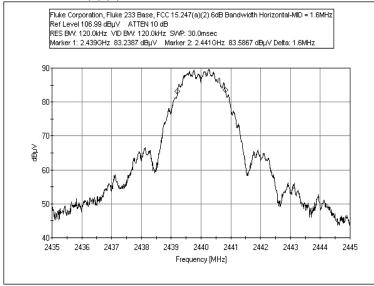


Test Data

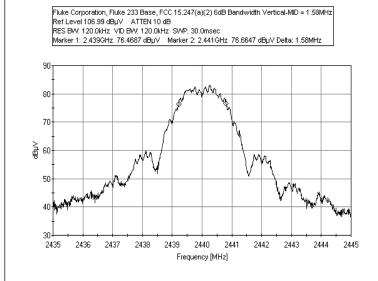

Channel	6dB Ba	Limit	
	Vertical	Horizontal	
LOW	1.59MHz	1.59MHz	500kHz
MID	1.58MHz	1.60MHz	500kHz
HIGH	1.60MHz	1.58MHz	500kHz

Test Plots

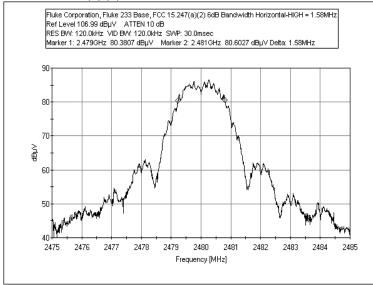
FCC 15.247(a)(2) 6dB BANDWIDTH-HORIZONTAL LOW CHANNEL



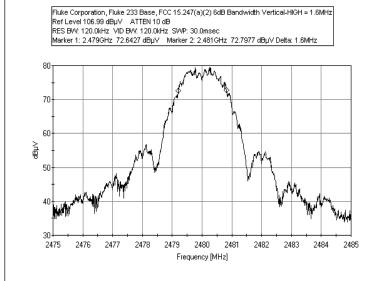
FCC 15.247(a)(2) 6dB BANDWIDTH-VERTICAL LOW CHANNEL



FCC 15.247(a)(2) 6dB BANDWIDTH-HORIZONTAL MID CHANNEL



FCC 15.247(a)(2) 6dB BANDWIDTH-VERTICAL MID CHANNEL



FCC 15.247(a)(2) 6dB BANDWIDTH-HORIZONTAL HIGH CHANNEL

FCC 15.247(a)(2) 6dB BANDWIDTH-VERTICAL HIGH CHANNEL

FCC 15.247(b)(3) RF POWER OUTPUT

Asset #	Equipment	Manufacturer	Model	Serial	Cal Date	Cal Due
			32026-2-			
3121	Cable	Astrolab	29080-84		4/28/2009	4/28/2011
1412	Antenna, Horn	EMCO	3115	9606-4854	11/12/2007	11/12/2009
P05542	Cable, 23' blue	Andrews	Heliax		4/21/2009	4/21/2011
1271	Preamp	HP	83017A	3123A00464	10/2/2007	10/2/2009
	Spectrum					
2871	Analyzer	Agilent	E4440A	MY46186333	4/29/2009	4/29/2011

Test Equipment

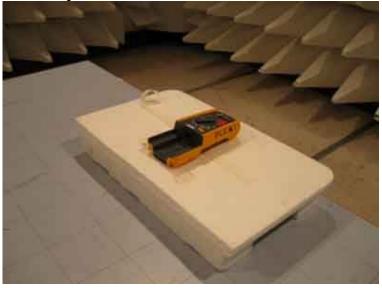
Test Conditions

EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located on the center of the test table over 10cm of Styrofoam. The Fundamental's emission will be maximized per ANSI C63.4 procedures. EMI test will be used with the solely purpose of accurate Field Strength data gathering. EUT will be tested in the LOW (2.405GHz), MID (2.44GHz), and HIGH (2.48GHz), test will be done with a set of new batteries. The gain (G) of the EUT's antenna is 3dBi.

The following calculation will be used per FCC procedures in order to obtain the transmitter peak power:

 $P = (E*d)^2 / (30*G)$

E: Is the field strength in V/m


G: Is the numeric gain of the transmitting antenna over an isotropic radiator.

d: Is the distance at which the measurement is being executed.

RBW = 1 MHzVBW = 1 MHzSpan = 5MHz

Test Setup Photo


Test Data

	Vertical		Horiz	LIMIIT	
	F/S	Power	F/S	Power	
LOW	86.6dBuV	-11.64dBm	93.5dBuV	-4.74dBm	30dBm
MID	86.1dBuV	-12.14dBm	92.9dBuV	-5.34dBm	30dBm
HIGH	83.2dBuV	-15.04dBm	89.7dBuV	-8.54dBm	30dBm

FCC 15.247(d) OATS RADIATED SPURIOUS EMISSIONS

Test Setup Photo

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Specification:	Fluke Corporation FCC 15.247/15.209		
Work Order #:	89609	Date:	11/17/2009
Test Type:	Radiated Scan	Time:	15:50:11
Equipment:	Wireless Multimeter (Base)	Sequence#:	2
Manufacturer:	Fluke Corporation	Tested By:	Armando Del Angel
Model:	Fluke 233		
S/N:	0016		

Test Equipment:

тем Бушртени.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
High freq. Cable	N/A	04/28/2009	04/28/2011	AN03121
Mag Loop 2156	6/4/2008	06/04/2008	06/04/2010	AN00052
Cable 30'	11	10/20/2009	10/20/2011	ANP05366

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Wireless Multimeter (Base)*	Fluke Corporation	Fluke 233	0016	

Support Devices:

Function	
----------	--

Model #

S/N

Test Conditions / Notes:

Temp: 24°C Humidity: 38% Pressure: 102.1kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is the base of a wireless multimeter.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW, MID, and HIGH channels.

Manufacturer

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans.

9KHz - 150kHz RBW= 200Hz, VBW= 200Hz 150kHz-30MHz RBW= 9kHz, VBW = 9kHz

Transducer Legend:

T1=CAB-ANP03121-042809	T2=CAB-ANP05360
T3=CAB-ANP05361	T4=CAB-ANP05366-102009
T5=ANT- AN00052-06042008	T6=AMP-AN01517-070808

Measur	ement Data:		eading lis	ted by ma	argin.			est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table		dBµV/m	dB	Ant
1	769.120k	62.2	+0.1	+0.1	+0.1	+0.0	-40.0	3.4	29.9	-26.5	180de
			+10.0	-29.1			360		Noisefloor		100
2	999.996k	59.8	+0.1	+0.1	+0.1	+0.0	-40.0	1.0	27.6	-26.6	90deg
			+10.0	-29.1					Noisefloor		100
3	26.680M	64.2	+0.2	+0.3	+0.1	+0.4	-40.0	2.8	29.5	-26.7	90deg
			+6.8	-29.2			68		Noisefloor		100
4	1.088M	58.3	+0.1	+0.1	+0.1	+0.0	-40.0	-0.5	26.8	-27.3	180de
			+10.0	-29.1			360		Noisefloor		100
5	1.540M	53.9	+0.1	+0.1	+0.1	+0.1	-40.0	-4.6	23.8	-28.4	90deg
			+10.2	-29.1			360		Noisefloor		100
6	26.595M	58.6	+0.2	+0.3	+0.1	+0.4	-40.0	-2.8	29.5	-32.3	180de
			+6.8	-29.2			360		Noisefloor		100
7	7.930M	45.5	+0.1	+0.2	+0.1	+0.2	-40.0	-13.5	29.5	-43.0	90deg
			+9.6	-29.2			360		Noisefloor		100
8	17.760M	44.2	+0.2	+0.3	+0.1	+0.3	-40.0	-15.6	29.5	-45.1	90deg
			+8.5	-29.2			238		Noisefloor		100
9	8.010M	42.6	+0.1	+0.2	+0.1	+0.2	-40.0	-16.5	29.5	-46.0	180de
			+9.5	-29.2			360		Noisefloor		100
10	160.770k	73.7	+0.1	+0.0	+0.1	+0.2	-80.0	-23.6	23.5	-47.1	180de
			+10.0	-27.7			360		Noisefloor		100
11	62.789k	63.5	+0.1	+0.0	+0.1	+0.1	-80.0	-31.1	31.6	-62.7	180de
			+10.1	-25.0			360		Noisefloor		100
12	113.390k	59.4	+0.1	+0.0	+0.1	+0.1	-80.0	-37.2	26.5	-63.7	90deg
			+10.0	-26.9					Noisefloor		100
13	104.030k	59.0	+0.1	+0.0	+0.1	+0.1	-80.0	-37.4	27.3	-64.7	180de
			+10.0	-26.7			360		Noisefloor		100
14	46.260k	62.3	+0.1	+0.0	+0.1	+0.1	-80.0	-30.5	34.3	-64.8	90deg
			+10.5	-23.6					Noisefloor		100
15	9.276k	43.6	+0.0	+0.0	+0.0	+0.0	-80.0	-36.4	48.2	-84.6	90deg
			+0.0	+0.0			84		Noisefloor		100

Customer: Specification:	Fluke Corporation FCC 15.247/15.209		
1			0/1/2000
Work Order #:	89608	Date:	9/4/2009
Test Type:	Radiated Scan	Time:	09:25:11
Equipment:	Wireless Multimeter (Base)	Sequence#:	1
Manufacturer:	Fluke Corporation	Tested By:	Armando Del Angel
Model:	Fluke 233		
S/N:	0016		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
High freq. Cable	N/A	04/28/2009	04/28/2011	AN03121
Cable, 23' blue Heliax	N/A	04/21/2009	04/21/2011	P05542
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
"Horn Antenna,	1114018	11/12/2008	11/12/2010	2742
Active 18-26GHz"				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Multimeter	Fluke Corporation	Fluke 233	0016
(Base)*			

Model #

S/N

Support Devices:

Function

Test Conditions / Notes:

Temp: 24°C Humidity: 38% Pressure: 102.1kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is the base of a wireless multimeter

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW, MID, and HIGH channels.

Manufacturer

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans.

Where needed, a Duty Cycle Correction Factor (DCCF) will be applied.

 $DCCF = 20 \log (ON time / 100ms)$

Transmitter ON time is 55ms on a 100ms window giving a DCCF of 5.192dB which were added to the spec limit where a harmonic was found to be above the limit.

30 - 1000MHz RBW=100kHz VBW=1MHz 1.0 - 24.8GHz RBW=1MHz VBW=3MHz

Transducer Legend: T1=CAB-ANP03121-042809 T3=CAB-ANP05361 T5=ANT AN01994 25-1000MHz T7=ANT-AN01412-111207 T9=AN01271 HP PreAmplifier

T2=CAB-ANP05360 T4=CAB-ANP05366 T6=AMP-AN01517-070808 T8=CAB-ANP05542-042109 T10=DCCF

Measu	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB			dBµV/m	dB	Ant
1	4959.135M	41.9	+2.0	+0.0	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Horiz
	Ave		+0.0	+0.0	+33.6	+4.2	101		HIGH chai	nnel	103
			-32.9	+0.0							
^	4959.135M	55.1	+2.0	+0.0	+0.0	+0.0	+0.0	62.0	54.0	+8.0	Horiz
			+0.0	+0.0	+33.6	+4.2	101		HIGH chai	nnel	103
			-32.9	+0.0							
3	4808.985M	42.3	+1.9	+0.0	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Horiz
	Ave		+0.0	+0.0	+33.2	+4.2	27		LOW chan	inel	125
			-32.8	+0.0							
^	4808.985M	55.5	+1.9	+0.0	+0.0	+0.0	+0.0	62.0	54.0	+8.0	Horiz
			+0.0	+0.0	+33.2	+4.2	27		LOW chan	inel	125
_			-32.8	+0.0							
5	4958.955M	41.9	+2.0	+0.0	+0.0	+0.0	+0.0	48.8	54.0	-5.2	Verti
	Ave		+0.0	+0.0	+33.6	+4.2	61		HIGH chai	nnel	102
			-32.9	+0.0							
^	4958.955M	55.5	+2.0	+0.0	+0.0	+0.0	+0.0	62.4	54.0	+8.4	Verti
			+0.0	+0.0	+33.6	+4.2	61		HIGH chai	nnel	102
		10.0	-32.9	+0.0	0.0			10.6			** *
1	4879.015M	42.0	+1.9	+0.0	+0.0	+0.0	+0.0	48.6	54.0	-5.4	Verti
	Ave		+0.0	+0.0	+33.4	+4.2	233		MID chann	nel	99
	4070 01514	<i>55</i> 1	-32.9	+0.0	.0.0	.0.0	.0.0	(17	54.0		¥7 /*
~	4879.015M	55.1	+1.9	+0.0	+0.0	+0.0	+0.0	61.7	54.0	+7.7	Verti
			+0.0	+0.0	+33.4	+4.2	233		MID chann	nel	99
-	4000 0001 4	41.1	-32.9	+0.0	.0.0	.0.0	.0.0	17.6	54.0	6.4	¥7 /*
9	4808.990M	41.1	+1.9	+0.0	+0.0	+0.0	+0.0	47.6	54.0	-6.4	Verti
	Ave		+0.0	+0.0	+33.2	+4.2	350		LOW chan	inel	105
•	4000 0001 4	EA C	-32.8	+0.0		.0.0		<i>c</i> 1 1	54.0	.7.1	Vat
	4808.990M	54.6	+1.9	+0.0	+0.0	+0.0	+0.0	61.1	54.0	+7.1	Verti
			+0.0	+0.0	+33.2	+4.2	350		LOW chan	inel	105
			-32.8	+0.0							

11 4881.025M	45.5	+1.9	+0.0	+0.0	+0.0	+0.0	46.9	54.0 -7.1	Horiz
Ave	10.0	+0.0	+0.0	+33.4	+4.2	96	1017	Mid Channel (Duty	126
		-32.9	+5.2					Cycle Correction	
								applied)	
^ 4881.025M	57.2	+1.9	+0.0	+0.0	+0.0	+0.0	58.6	54.0 +4.6	Horiz
		+0.0	+0.0	+33.4	+4.2	96		Mid Channel (Duty	126
		-32.9	+5.2					Cycle Correction	
								applied)	
13 17355.360	25.4	+3.7	+0.0	+0.0	+0.0	+0.0	46.0	54.0 -8.0	Horiz
М		+0.0	+0.0	+41.7	+8.1				
		-32.9	+0.0					Noisefloor readings	99
14 9920.930M	31.7	+2.4	+0.0	+0.0	+0.0	+0.0	45.2	54.0 -8.8	Verti
		+0.0	+0.0	+38.6	+5.9	360		Noisefloor readings	99
		-33.4	+0.0						
15 14880.930	27.1	+3.0	+0.0	+0.0	+0.0	+0.0	45.0	54.0 -9.0	Verti
М		+0.0	+0.0	+40.6	+7.2	2.00			00
16 7426 (10) 4	22.1	-32.9	+0.0	0.0	0.0	360	41.4	Noisefloor readings	99
16 7436.610M	32.1	+2.2	+0.0	+0.0	+0.0	+0.0	41.4	54.0 -12.6	Horiz
		+0.0 -34.6	$^{+0.0}_{+0.0}$	+36.5	+5.2			Noisefloor readings	106
17 7438.405M	31.9	+2.2	+0.0 +0.0	+0.0	+0.0	+0.0	41.2	54.0 -12.8	Verti
17 7458.405M	51.9	$^{+2.2}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 +36.5	+0.0 +5.2	+0.0 360	41.2	Noisefloor readings	125
		-34.6	$^{+0.0}_{+0.0}$	+30.5	+3.2	300		Noisemoor readings	123
18 7321.460M	31.8	+2.1	+0.0	+0.0	+0.0	+0.0	40.8	54.0 -13.2	Horiz
10 7521.400M	51.0	+0.0	+0.0	+36.4	+5.2	360	+0.0	Noisefloor readings	126
		-34.7	+0.0	150.4	13.2	500		roisenoor readings	120
19 9622.200M	24.5	+2.5	+0.0	+0.0	+0.0	+0.0	38.3	54.0 -15.7	Horiz
Ave	2.110	+0.0	+0.0	+38.7	+5.9	360	0010	LOW channel	125
		-33.3	+0.0	· · ·					-
^ 9622.200M	37.1	+2.5	+0.0	+0.0	+0.0	+0.0	50.9	54.0 -3.1	Horiz
		+0.0	+0.0	+38.7	+5.9	360		LOW channel	125
		-33.3	+0.0						
21 9758.029M	24.4	+2.5	+0.0	+0.0	+0.0	+0.0	38.2	54.0 -15.8	Horiz
Ave		+0.0	+0.0	+38.6	+6.0			MID channel	125
		-33.3	+0.0						
^ 9758.029M	37.4	+2.5	+0.0	+0.0	+0.0	+0.0	51.2	54.0 -2.8	Horiz
		+0.0	+0.0	+38.6	+6.0			MID channel	125
	<u> </u>	-33.3	+0.0			0.0	a a t		
23 9921.845M	24.6	+2.4	+0.0	+0.0	+0.0	+0.0	38.1	54.0 -15.9	Horiz
Ave		+0.0	+0.0	+38.6	+5.9	360		HIGH channel	99
A 0021 945M	20 E	-33.4	+0.0			10.0	52.0	54.0 -2.0	Uor!-
^ 9921.845M	38.5	+2.4 +0.0	+0.0	+0.0	+0.0 +5.9	+0.0	52.0	54.0 -2.0 HIGH channel	Horiz 99
		+0.0 -33.4	$^{+0.0}_{+0.0}$	+38.6	+3.9	360		THON Challine	77
25 9762.000M	24.2	+2.5	+0.0 +0.0	+0.0	+0.0	+0.0	38.0	54.0 -16.0	Verti
Ave	27.2	+2.3 +0.0	+0.0 +0.0	+38.6	+0.0 $+6.0$	10.0	56.0	MID channel	125
1110		-33.3	+0.0	100.0	10.0				120
^ 9762.000M	37.3	+2.5	+0.0	+0.0	+0.0	+0.0	51.1	54.0 -2.9	Verti
2702.000101	51.5	+0.0	+0.0	+38.6	+6.0	10.0	21.1	MID channel	125
		-33.3	+0.0	1000	10.0				120
27 903.600M	28.0	+0.9	+1.9	+0.5	+2.0	+0.0	27.1	46.0 -18.9	Verti
		+23.1	-29.3	+0.0	+0.0	356	_/	Noisefloor readings	97
		+0.0	+0.0					6	
ļ									Page

Page 18 of 34 Report No: FC09-149A

28	908.800M	25.2	+0.9	+1.9	+0.5	+2.0	+0.0	24.4	46.0 -21.	6 Horiz
			+23.2	-29.3	+0.0	+0.0	360		Noisefloor readin	gs 250
			+0.0	+0.0						-
29	733.200M	27.6	+0.8	+1.7	+0.5	+1.9	+0.0	24.1	46.0 -21.	9 Verti
			+21.2	-29.6	+0.0	+0.0	356		Noisefloor readin	gs 97
			+0.0	+0.0						
30	715.200M	24.7	+0.8	+1.7	+0.5	+1.9	+0.0	20.8	46.0 -25.	2 Horiz
			+20.8	-29.6	+0.0	+0.0	360		Noisefloor readin	gs 250
			+0.0	+0.0						
31	470.832M	28.1	+0.6	+1.5	+0.3	+1.6	+0.0	20.3	46.0 -25.	7 Verti
			+17.6	-29.4	+0.0	+0.0	356		Noisefloor readin	gs 97
			+0.0	+0.0						
32	407.980M	29.0	+0.6	+1.3	+0.3	+1.5	+0.0	20.0	46.0 -26.	0 Verti
			+16.4	-29.1	+0.0	+0.0	356		Noisefloor readin	gs 97
			+0.0	+0.0						
33	46.590M	27.6	+0.2	+0.4	+0.1	+0.4	+0.0	10.7	40.0 -29.	.3 Horiz
			+11.1	-29.1	+0.0	+0.0	360		Noisefloor readin	gs 250
			+0.0	+0.0						
34	145.225M	25.7	+0.4	+0.7	+0.2	+0.8	+0.0	10.4	43.5 -33.	1 Horiz
			+11.5	-28.9	+0.0	+0.0	360		Noisefloor readin	gs 250
			+0.0	+0.0						
35	117.150M	25.5	+0.3	+0.6	+0.2	+0.6	+0.0	9.7	43.5 -33.	8 Verti
			+11.5	-29.0	+0.0	+0.0	356		Noisefloor readin	gs 97
			+0.0	+0.0						
36	60.030M	29.5	+0.2	+0.4	+0.1	+0.4	+0.0	6.1	40.0 -33.	9 Verti
			+4.6	-29.1	+0.0	+0.0			Noisefloor readin	gs 99
			+0.0	+0.0						

FCC 15.247(d) BANDEDGE

Test Setup Photo

Page 20 of 34 Report No: FC09-149A

Test Data

Test Location:

CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Specification:	Fluke Corporation FCC 15.247(d) Bandedge Compliance		
Work Order #:	89608	Date:	9/3/2009
Test Type:	Radiated Scan	Time:	14:33:56
Equipment:	Wireless Multimeter (Base)	Sequence#:	2
Manufacturer:	Fluke Corporation	Tested By:	Armando Del Angel
Model:	Fluke 233		
S/N:	0016		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
High freq. Cable	N/A	04/28/2009	04/28/2011	AN03121
Cable, 23' blue Heliax	N/A	04/21/2009	04/21/2011	P05542
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Multimeter (Base)*	Fluke Corporation	Fluke 233	0016

Support Devices:

Function

Model #

S/N

Test Conditions / Notes:

Temp: 24°C Humidity: 38% Pressure: 102.1kPa

Testing Bandedge Compliance per FCC15.247(d)

The EUT is the base of a wireless multimeter

The EUT is located in the center of the test table raised 10cm with styrofoam.

Manufacturer

The EUT will be transmitting in the LOW and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans. Plot shows peak values only with 1MHz RBW, tabular data shows both peak and average values.

Limit line includes the 54dBuV/m at the restricted bands and 20dBc with respect to the fundamental on the rest of the frequencies.

RBW = 1MHzVBW = 1MHz

CKC M Testing the Future

Transducer Legend:

T1=CAB-ANP03121-042809	T2=ANT-AN01412-111207
T3=CAB-ANP05542-042109	T4=AN01271 HP PreAmplifier

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distance	e: 3 Meters	8	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2479.424M	89.6	+1.2	+29.0	+2.8	-33.3	+0.0	89.3	89.3	+0.0	Horiz
							165				104
2	2498.455M	49.3	+1.3	+29.1	+2.8	-33.3	+0.0	49.2	54.0	-4.8	Horiz
	- 100				• •		165				104
	2483.523M	40.9	+1.2	+29.1	+2.8	-33.3	+0.0	40.7	54.0	-13.3	Horiz
	Ave	(2.7	.1.0	. 20. 1	. 2.0	22.2	165	(2.5	54.0	.0.5	104
~	2483.523M	63.7	+1.2	+29.1	+2.8	-33.3	+0.0 165	63.5	54.0	+9.5	Horiz 104
5	2486.659M	36.9	+1.2	+29.1	+2.8	-33.3	+0.0	36.7	54.0	-17.3	Horiz
	Ave	50.9	+1.2	+29.1	+2.0	-55.5	+0.0 165	50.7	54.0	-17.5	10112
	2486.659M	58.0	+1.2	+29.1	+2.8	-33.3	+0.0	57.8	54.0	+3.8	Horiz
	2400.05714	50.0	11.2	127.1	12.0	55.5	165	57.0	54.0	15.0	104
7	2503.155M	48.0	+1.3	+29.1	+2.8	-33.3	+0.0	47.9	69.3	-21.4	Horiz
-				,			165				104
8	2501.772M	47.9	+1.3	+29.1	+2.8	-33.3	+0.0	47.8	69.3	-21.5	Horiz
							165				104
9	2501.889M	47.9	+1.3	+29.1	+2.8	-33.3	+0.0	47.8	69.3	-21.5	Horiz
							165				104
10	2502.088M	47.9	+1.3	+29.1	+2.8	-33.3	+0.0	47.8	69.3	-21.5	Horiz
							165				104
11	2502.510M	47.9	+1.3	+29.1	+2.8	-33.3	+0.0	47.8	69.3	-21.5	Horiz
							165				104
12	2502.862M	47.9	+1.3	+29.1	+2.8	-33.3	+0.0	47.8	69.3	-21.5	Horiz
					• •		165				104
13	2502.264M	47.6	+1.3	+29.1	+2.8	-33.3	+0.0	47.5	69.3	-21.8	Horiz
1.4	2502 41 () 4	17.6	.1.2	. 20.1	+2.8	22.2	165	17 5	(0.2	21.0	104
14	2502.416M	47.6	+1.3	+29.1	+2.8	-33.3	+0.0 165	47.5	69.3	-21.8	Horiz 104
15	2506.156M	46.7	+1.3	+29.1	+2.8	-33.3	+0.0	46.6	69.3	-22.7	Horiz
15	2500.1500	40.7	11.5	127.1	12.0	55.5	165	+0.0	07.5	22.1	104
16	2506.613M	46.5	+1.3	+29.1	+2.8	-33.3	+0.0	46.4	69.3	-22.9	Horiz
10	2000.010101	10.5	11.5	127.1	12.0	55.5	165	10.1	07.5		104
17	2507.550M	46.5	+1.3	+29.1	+2.8	-33.3	+0.0	46.4	69.3	-22.9	Horiz
							165				104
18	2505.757M	46.4	+1.3	+29.1	+2.8	-33.3		46.3	69.3	-23.0	Horiz
							165				104
19	2506.800M	46.4	+1.3	+29.1	+2.8	-33.3	+0.0	46.3	69.3	-23.0	Horiz
							165				104
20	2505.991M	46.2	+1.3	+29.1	+2.8	-33.3	+0.0	46.1	69.3	-23.2	Horiz
							165				104
21	2508.629M	45.9	+1.3	+29.1	+2.8	-33.3	+0.0	45.8	69.3	-23.5	Horiz
							165				104
22	2509.461M	45.9	+1.3	+29.1	+2.8	-33.3	+0.0	45.8	69.3	-23.5	Horiz
							165				104

Test Location:	CKC Laboratories	•22116 23rd Dr SE	• Bothell, WA 98021-4413	• 425-402-1717
----------------	------------------	-------------------	--------------------------	----------------

Customer: Specification:	Fluke Corporation FCC 15.247(d) Bandedge Compliance		
Work Order #:	89608	Date:	9/3/2009
Test Type:	Radiated Scan	Time:	14:27:33
Equipment:	Wireless Multimeter (Base)	Sequence#:	1
Manufacturer:	Fluke Corporation	Tested By:	Armando Del Angel
Model:	Fluke 233		
S/N:	0016		

Test Equipment:

1 1 1		•	•	
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
High freq. Cable	N/A	04/28/2009	04/28/2011	AN03121
Cable, 23' blue Heliax	N/A	04/21/2009	04/21/2011	P05542
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271

Equipment Under Test (* = EUT):

111	/			
Function	Manufacturer	Model #	S/N	
Wireless Multimeter (Base)*	Fluke Corporation	Fluke 233	0016	

Support Devices:

Function

Model #

S/N

Test Conditions / Notes:

Temp: 24°C Humidity: 38% Pressure: 102.1kPa

Testing Bandedge Compliance per FCC15.247(d)

The EUT is the base of a wireless multimeter

The EUT is located in the center of the test table raised 10cm with styrofoam.

Manufacturer

The EUT will be transmitting in the LOW and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans. Plot shows peak values only with 1MHz RBW, tabular data shows both peak and average values.

Limit line includes the 54dBuV/m at the restricted bands and 20dBc with respect to the fundamental on the rest of the frequencies.

RBW = 1MHz VBW = 1MHz CKC M Testing the Future

Transducer Legend:

T1=CAB-ANP03121-042809	T2=ANT-AN01412-111207
T3=CAB-ANP05542-042109	T4=AN01271 HP PreAmplifier

Measur	rement Data:		eading lis	ted by ma	argin.		Te	st Distance	e: 3 Meters	8	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2479.508M	83.2	+1.2	+29.0	+2.8	-33.3	+0.0	82.9	82.9	+0.0	Verti
	2405 12014	47.0	.1.0	. 20. 1	. 2.0	22.2	64	16.0	54.0	7.0	153
2	2495.129M	47.0	+1.2	+29.1	+2.8	-33.3	+0.0	46.8	54.0	-7.2	Verti
2	2496.820M	16 9	+1.2	+29.1	120	22.2	64	16.6	54.0	-7.4	153 Vorti
3	2490.820M	46.8	+1.2	+29.1	+2.8	-33.3	+0.0 64	46.6	54.0	-7.4	Verti 153
	2494.020M	46.6	+1.2	+29.1	+2.8	-33.3	+0.0	46.4	54.0	-7.6	Verti
4	2494.020101	40.0	71.2	729.1	72.0	-55.5	+0.0 64	40.4	54.0	-7.0	153
5	2494.370M	46.6	+1.2	+29.1	+2.8	-33.3	+0.0	46.4	54.0	-7.6	Verti
5	2191.370101	10.0	11.2	127.1	12.0	55.5	64	10.1	51.0	7.0	153
6	2493.285M	46.4	+1.2	+29.1	+2.8	-33.3	+0.0	46.2	54.0	-7.8	Verti
U	21901200111			,	1210	0010	64		0.110	1.0	153
7	2493.040M	46.3	+1.2	+29.1	+2.8	-33.3	+0.0	46.1	54.0	-7.9	Verti
							64				153
8	2495.234M	46.3	+1.2	+29.1	+2.8	-33.3	+0.0	46.1	54.0	-7.9	Verti
							64				153
9	2495.514M	46.3	+1.2	+29.1	+2.8	-33.3	+0.0	46.1	54.0	-7.9	Verti
							64				153
10	2495.700M	45.9	+1.2	+29.1	+2.8	-33.3	+0.0	45.7	54.0	-8.3	Verti
							64				153
11	2495.957M	45.7	+1.2	+29.1	+2.8	-33.3	+0.0	45.5	54.0	-8.5	Verti
							64				153
12	2496.155M	45.3	+1.2	+29.1	+2.8	-33.3	+0.0	45.1	54.0	-8.9	Verti
							64				153
13	2496.575M	45.2	+1.2	+29.1	+2.8	-33.3	+0.0	45.0	54.0	-9.0	Verti
							64				153
14	2496.622M	45.1	+1.2	+29.1	+2.8	-33.3	+0.0	44.9	54.0	-9.1	Verti
1.7	2406 20214	45.0	.1.0	. 20. 1	. 2.0	22.2	64	44.0	510	0.0	153
15	2496.202M	45.0	+1.2	+29.1	+2.8	-33.3	+0.0	44.8	54.0	-9.2	Verti
16	2409.00214	11.0	.1.2	. 20. 1	. 2.0	22.2	64	44.5	510	0.5	153
10	2498.092M	44.6	+1.3	+29.1	+2.8	-33.3	+0.0	44.5	54.0	-9.5	Verti 153
17	2498.666M	44.6	+1.3	+29.1	+2.8	-33.3	$\frac{64}{+0.0}$	44.5	54.0	-9.5	Verti
1/	2470.000W	44.0	+1.3	+∠9.1	+∠.0	-55.5	+0.0 64	44.3	54.0	-9.0	153
18	2498.923M	44.6	+1.3	+29.1	+2.8	-33.3		44.5	54.0	-9.5	Verti
10	2790.723WI	44.0	±1.3	⊤∠7.1	72.0	-55.5	+0.0 64	-++.J	54.0	-9.5	153
19	2499.849M	44.4	+1.3	+29.1	+2.8	-33.3	+0.0	44.3	54.0	-9.7	Verti
17		r -	11.5	- 27.1	12.0	55.5	64	17.5	57.0	2.1	153
20	2483.512M	35.3	+1.2	+29.1	+2.8	-33.3	+0.0	35.1	54.0	-18.9	Verti
	Ave	2010	. 1.2	/	. 2.0	20.0	64	2211	2 110	- 0.7	153
	2483.512M	56.6	+1.2	+29.1	+2.8	-33.3	+0.0	56.4	54.0	+2.4	Verti
		2010		/		20.0	64				153
22	2486.799M	32.4	+1.2	+29.1	+2.8	-33.3	+0.0	32.2	54.0	-21.8	Verti
	Ave						64				153
	2486.799M	51.6	+1.2	+29.1	+2.8	-33.3	+0.0	51.4	54.0	-2.6	Verti
							64				

Page 24 of 34 Report No: FC09-149A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Specification:	Fluke Corporation FCC 15.247(d) Bandedge Compliance		
Work Order #:	89608	Date:	9/3/2009
Test Type:	Radiated Scan	Time:	14:05:26
Equipment:	Wireless Multimeter (Base)	Sequence#:	3
Manufacturer:	Fluke Corporation	Tested By:	Armando Del Angel
Model:	Fluke 233		
S/N:	0016		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Function	S/1N	Calibration Date	Cal Due Dale	Assel #
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
High freq. Cable	N/A	04/28/2009	04/28/2011	AN03121
Cable, 23' blue Heliax	N/A	04/21/2009	04/21/2011	P05542
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Multimeter (Base)*	Fluke Corporation	Fluke 233	0016

Support Devices:

Function

Model #

S/N

Test Conditions / Notes:

Temp: 24°C Humidity: 38% Pressure: 102.1kPa

Testing Bandedge Compliance per FCC15.247(d)

The EUT is the base of a wireless multimeter

The EUT is located in the center of the test table raised 10cm with styrofoam.

Manufacturer

The EUT will be transmitting in the LOW and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans. Plot shows peak values only with 1MHz RBW, tabular data shows both peak and average values.

Limit line includes the 54dBuV/m at the restricted bands and 20dBc with respect to the fundamental on the rest of the frequencies.

RBW = 1MHzVBW = 1MHz

CKC M Testing the Future

Transducer Legend:

T1=CAB-ANP03121-042809	T2=ANT-AN01412-111207
T3=CAB-ANP05542-042109	T4=AN01271 HP PreAmplifier

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distance	e: 3 Meter	8	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2404.422M	94.0	+1.2	+28.8	+2.7	-33.3	+0.0	93.4	93.4	+0.0	Horiz
							295				153
2	2376.431M	49.8	+1.2	+28.7	+2.7	-33.3	+0.0	49.1	54.0	-4.9	Horiz
							295				153
3	2375.993M	49.4	+1.2	+28.7	+2.7	-33.3	+0.0	48.7	54.0	-5.3	Horiz
	0055 50015	10.0		20.5			295	10.6			153
4	2375.529M	49.3	+1.2	+28.7	+2.7	-33.3	+0.0	48.6	54.0	-5.4	Horiz
5	2275 (99M	40.2	1.1.0	1207	.27	22.2	295	10 6	510	5 1	153 Hari-
5	2375.688M	49.3	+1.2	+28.7	+2.7	-33.3	+0.0	48.6	54.0	-5.4	Horiz
6	2275 065M	40.2	+1.2	+28.7	127	-33.3	295 +0.0	48.5	54.0	-5.5	153 Horiz
0	2375.065M	49.2	+1.2	+20.7	+2.7	-35.5	+0.0 295	48.3	54.0	-3.3	153
7	2374.707M	49.1	+1.2	+28.7	+2.7	-33.3	+0.0	48.4	54.0	-5.6	Horiz
/	2374.7071 v 1	49.1	+1.2	+20.7	+2.7	-55.5	+0.0 295	40.4	54.0	-5.0	153
8	2371.631M	49.0	+1.2	+28.7	+2.7	-33.3	+0.0	48.3	54.0	-5.7	Horiz
0	2571.051141	ч <i>)</i> .0	11.2	120.7	12.1	-55.5	295	-0.5	54.0	-5.7	153
9	2373.394M	48.9	+1.2	+28.7	+2.7	-33.3	+0.0	48.2	54.0	-5.8	Horiz
	2375.57 111	10.9	11.2	120.7	12.7	55.5	295	10.2	51.0	5.0	153
10	2371.273M	48.8	+1.2	+28.7	+2.7	-33.3	+0.0	48.1	54.0	-5.9	Horiz
10	20111210111					0010	295	1011	0.110	0.15	153
11	2372.983M	48.7	+1.2	+28.7	+2.7	-33.3	+0.0	48.0	54.0	-6.0	Horiz
							295				153
12	2370.053M	48.5	+1.2	+28.7	+2.7	-33.3	+0.0	47.8	54.0	-6.2	Horiz
							295				153
13	2371.976M	48.5	+1.2	+28.7	+2.7	-33.3	+0.0	47.8	54.0	-6.2	Horiz
							295				153
14	2370.000M	48.2	+1.2	+28.7	+2.7	-33.3	+0.0	47.5	54.0	-6.5	Horiz
							295				153
15	2399.958M	65.1	+1.2	+28.8	+2.7	-33.3	+0.0	64.5	73.4	-8.9	Horiz
							295				153
16	2396.206M	60.1	+1.2	+28.8	+2.7	-33.3	+0.0	59.5	73.4	-13.9	Horiz
							295				153
	2389.219M	34.1	+1.2	+28.8	+2.7	-33.3	+0.0	33.5	54.0	-20.5	Horiz
	Ave			20.0			295	5 0 6		0.4	153
^	2389.219M	54.2	+1.2	+28.8	+2.7	-33.3	+0.0	53.6	54.0	-0.4	Horiz
10	2296 40034	20.2	.1.0		. 2.7	22.2	295	20.6	54.0	25.4	153
	2386.499M	29.2	+1.2	+28.8	+2.7	-33.3	+0.0	28.6	54.0	-25.4	Horiz
	Ave 2386.499M	52 5	+1.2	1200	+2.7	22.2	295	52.9	54.0	-1.1	153 Horiz
	2380.499M	53.5	+1.2	+28.8	+2.7	-33.3	+0.0	52.9	54.0	-1.1	Horiz
21	2382.875M	28.5	+1.2	+28.8	+2.7	-33.3	295	27.9	54.0	-26.1	153 Horiz
		28.3	+1.2	+20.0	+2.7	-33.3	$^{+0.0}_{295}$	21.9	54.0	-20.1	Horiz 153
	Ave 2382.875M	52.0	+1.2	+28.8	+2.7	-33.3	+0.0	51.4	54.0	-2.6	
	2382.873M	32.0	+1.2	+20.0	+2.7	-33.3	+0.0 295	31.4	54.0	-2.0	Horiz 153
L							273				133

Test Location:	CKC Laboratories	•22116 23rd Dr SE	• Bothell, WA 98021-4413	• 425-402-1717
----------------	------------------	-------------------	--------------------------	----------------

Customer: Specification:	Fluke Corporation FCC 15.247(d) Bandedge Compliance		
Work Order #:	89608	Date:	9/3/2009
Test Type:	Radiated Scan	Time:	2:14:59 PM
Equipment:	Wireless Multimeter (Base)	Sequence#:	4
Manufacturer:	Fluke Corporation	Tested By:	Armando Del Angel
Model:	Fluke 233		
S/N:	0016		

Test Equipment:

. 11				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
High freq. Cable	N/A	04/28/2009	04/28/2011	AN03121
Cable, 23' blue Heliax	N/A	04/21/2009	04/21/2011	P05542
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271

Equipment Under Test (* = EUT):

	===).		
Function	Manufacturer	Model #	S/N
Wireless Multimeter (Base)*	Fluke Corporation	Fluke 233	0016

Support Devices:

Function

Model #

S/N

Test Conditions / Notes:

Temp: 24°C Humidity: 38% Pressure: 102.1kPa

Testing Bandedge Compliance per FCC15.247(d)

The EUT is the Base of a wireless multimeter

The EUT is located in the center of the test table raised 10cm with styrofoam.

Manufacturer

The EUT will be transmitting in the LOW and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans. Plot shows peak values only with 1MHz RBW, tabular data shows both peak and average values.

Limit line includes the 54dBuV/m at the restricted bands and 20dBc with respect to the fundamental on the rest of the frequencies.

RBW = 1MHz VBW = 1MHz CKC M Testing the Future

Transducer Legend:

T1=CAB-ANP03121-042809	T2=ANT-AN01412-111207	
T3=CAB-ANP05542-042109	T4=AN01271 HP PreAmplifier	

Measu	rement Data:		eading lis	ted by ma	argin.		Te		e: 3 Meter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2404.490M	87.1	+1.2	+28.8	+2.7	-33.3	+0.0	86.5	86.5	+0.0	Verti
							64				105
2	2389.672M	48.6	+1.2	+28.8	+2.7	-33.3	+0.0	48.0	54.0	-6.0	Verti
							64				105
3	2387.046M	48.5	+1.2	+28.8	+2.7	-33.3	+0.0	47.9	54.0	-6.1	Verti
							64				105
4	2386.246M	48.2	+1.2	+28.8	+2.7	-33.3	+0.0	47.6	54.0	-6.4	Verti
_							64				105
5	2387.339M	47.7	+1.2	+28.8	+2.7	-33.3	+0.0	47.1	54.0	-6.9	Verti
				• • • •			64				105
6	2387.086M	47.5	+1.2	+28.8	+2.7	-33.3	+0.0	46.9	54.0	-7.1	Verti
7	2200 12014	477.5	.1.0		. 0.7	22.2	64	16.0	54.0	7 1	105
/	2388.139M	47.5	+1.2	+28.8	+2.7	-33.3	+0.0	46.9	54.0	-7.1	Verti
0	2387.646M	47.4	1.1.2	1000	+2.7	-33.3	64	46.8	54.0	-7.2	105
8	2387.040M	47.4	+1.2	+28.8	+2.7	-33.3	$\substack{+0.0\\64}$	40.8	54.0	-1.2	Verti 105
0	2388.392M	47.3	+1.2	+28.8	+2.7	-33.3	+0.0	46.7	54.0	-7.3	
9	2300.392W	47.5	+1.2	+20.0	+2.7	-33.3	+0.0 64	40.7	54.0	-7.5	Verti 105
10	2387.512M	47.1	+1.2	+28.8	+2.7	-33.3	+0.0	46.5	54.0	-7.5	Verti
10	2307.31211	4/.1	+1.2	+20.0	+2.7	-55.5	+0.0 64	40.5	54.0	-7.5	105
11	2382.755M	46.8	+1.2	+28.8	+2.7	-33.3	+0.0	46.2	54.0	-7.8	Verti
11	2562.755141	+0.0	11.2	120.0	12.7	-55.5	64	+0.2	54.0	-7.0	105
12	2384.419M	46.8	+1.2	+28.8	+2.7	-33.3	+0.0	46.2	54.0	-7.8	Verti
12	2504.417101	40.0	11.2	120.0	12.1	55.5	64	40.2	54.0	7.0	105
13	2382.795M	46.7	+1.2	+28.8	+2.7	-33.3	+0.0	46.1	54.0	-7.9	Verti
10	2002.7901.1	10.7	11.2	120.0	12.7	55.5	64	10.1	5 110	1.5	105
14	2384.232M	46.7	+1.2	+28.8	+2.7	-33.3	+0.0	46.1	54.0	-7.9	Verti
	· -						64				105
15	2385.046M	46.5	+1.2	+28.8	+2.7	-33.3	+0.0	45.9	54.0	-8.1	Verti
							64				105
16	2384.299M	46.4	+1.2	+28.8	+2.7	-33.3	+0.0	45.8	54.0	-8.2	Verti
							64				105
17	2382.251M	46.3	+1.2	+28.8	+2.7	-33.3	+0.0	45.7	54.0	-8.3	Verti
							64				105
18	2382.662M	46.3	+1.2	+28.8	+2.7	-33.3	+0.0	45.7	54.0	-8.3	Verti
							64				105
19	2399.877M	58.3	+1.2	+28.8	+2.7	-33.3	+0.0	57.7	66.5	-8.8	Verti
							64				105
20	2396.152M	53.9	+1.2	+28.8	+2.7	-33.3	+0.0	53.3	66.5	-13.2	Verti
							64				105

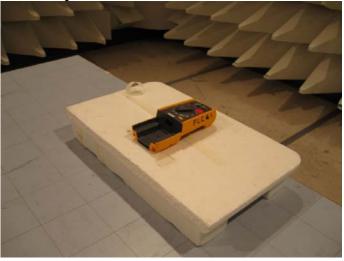
FCC 15.247(e) PEAK POWER SPECTRAL DENSITY

- tobe Eq.						
Asset #	Equipment	Manufacturer	Model	Serial	Cal Date	Cal Due
			32026-2-			
3121	Cable	Astrolab	29080-84		4/28/2009	4/28/2011
1412	Antenna, Horn	EMCO	3115	9606-4854	11/12/2007	11/12/2009
P05542	Cable, 23' blue	Andrews	Heliax		4/21/2009	4/21/2011
1271	Preamp	HP	83017A	3123A00464	10/2/2007	10/2/2009
	Spectrum					
2871	Analyzer	Agilent	E4440A	MY46186333	4/29/2009	4/29/2011

Test Equipment

Test Conditions

The EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located on the center of the test table over 10cm of Styrofoam. The Fundamental's emission will be maximized per ANSI C63.4 procedures. PSA is on max hold centered at the desired channel.


EMI test will be used with the solely purpose of accurate Field Strength data gathering.

Same calculation from the RF power output test will be used in order to convert the field strength to power. EUT will be tested in the LOW (2.405GHz), MID (2.44GHz), and HIGH (2.48GHz), test will be done with a set of new batteries.

RBW = 3 kHz VBW = 9 kHz Span = 1.5 kHzSweep Time = 500s

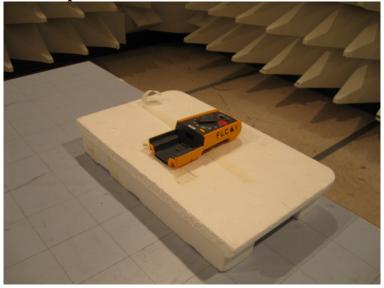
Test Setup Photo

Test Data

	Vertical	Horizontal	Limit
LOW	-25.54dBm/3kHz	-19.44dBm/3kHz	8dBm/3kHz
MID	-26.84dBm/3kHz	-20.34dBm/3kHz	8dBm/3kHz
HIGH	-30.04dBm/3kHz	-23.54dBm/3kHz	8dBm/3kHz

RSS-210 99% BANDWIDTH

Test Equipment


Asset #	Equipment	Manufacturer	Model	Serial	Cal Date	Cal Due
			32026-2-			
3121	Cable	Astrolab	29080-84		4/28/2009	4/28/2011
1412	Antenna, Horn	EMCO	3115	9606-4854	11/12/2007	11/12/2009
P05542	Cable, 23' blue	Andrews	Heliax		4/21/2009	4/21/2011
1271	Preamp	HP	83017A	3123A00464	10/2/2007	10/2/2009
	Spectrum					
2871	Analyzer	Agilent	E4440A	MY46186333	4/29/2009	4/29/2011

Test Conditions

EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located on the center of the test table over 10cm of Styrofoam. PSA is on max hold, Agilent procedure used for each channel. EUT will be tested in the LOW (2.405GHz), MID (2.44GHz), and HIGH (2.48GHz), test will be done with a set of new batteries.

RBW = 100 kHz VBW = 1 MHz Span = 10 MHz

Test Setup Photo

Test Data

Channel	99% Bandwidth					
	Vertical	Horizontal				
LOW	2.45MHz	2.45MHz				
MID	2.44MHz	2.45MHz				
HIGH	2.42MHz	2.44MHz				

RSS-210 99% BANDWIDTH-HORIZONTAL LOW CHANNEL

RSS-210 99% BANDWIDTH-VERTICAL LOW CHANNEL

RSS-210 99% BANDWIDTH-HORIZONTAL MID CHANNEL

RSS-210 99% BANDWIDTH-VERTICAL MID CHANNEL

RSS-210 99% BANDWIDTH-HORIZONTAL HIGH CHANNEL

RSS-210 99% BANDWIDTH-VERTICAL HIGH CHANNEL

