

Page 1 (37)

RADIO TEST REPORT

No. 605178R-2

EQUIPMENT UNDER TEST

Equipment:	Tag
Type / model:	T301-A
Manufacturer:	Ekahau Inc.
Tested by request of:	Ekahau Inc

SUMMARY

The equipment complies with the requirements of the following standards:

FCC, Part 15, Subpart B (2005) and Subpart C (2005);

RSS-210, Issue 6 (September 2005); RSS-Gen, Issue 1 (September 2005).

Industry Canada listed test facility No. IC 3481

Date of issue: 2006-12-06

Tested by: thehill

Martin Karlsson

Approved by:

Björn Utermöhl

This report may not be reproduced other than in full, except with the prior written approval by SEMKO.

Intertek Semko AB

Torshamnsgatan 43, Box 1103, SE-164 22 Kista, Sweden Telephone +46 8 750 00 00, Fax +46 8 750 60 30, www.sweden.intertek-etlsemko.com Registered in Sweden: No SE556024059901, Registered office: As address

Page

CONTENTS

1	lient information	;
2	quipment under test (EUT)32.1Identification of the EUT according to the manufacturer/client declaration2.2Additional information about the EUT2.3Test specifications2.4Standards2.5Additions, deviations and exclusions from standards2.6Test set-up2.7Operating environment	8 8 1 1 1 1
3	est summary5	;
4	eak output power	
5	dB Bandwidth	
6	and edge compliance, conducted	
7	ower spectral density	
8	adiated spurious emissions203.1Measurement uncertainty203.2Test equipment203.3Measurement set-up213.4Test protocol23)
9	uty Cycle	;
10	ppendix I – Photos of the EUT	,

1 CLIENT INFORMATION

The EUT has been tested by request of

Company:

Name of contact:

Ekaha Inc. Tallberginkatu 2 00180 Helsinki FINLAND Arttu Huhtiniemi

2 EQUIPMENT UNDER TEST (EUT)

2.1 Identification of the EUT according to the manufacturer/client declaration

Equipment:	Tag
Type / Model:	T301-A
Brand name:	
Serial number:	
Manufacturer:	Ekahau Inc.
Rating/Supplying voltage:	Battery operated
Rating RF output power:	3,0 V Lithium CR2 2dBm
Antenna gain:	1,5 dBi
External antenna connector:	None
Operating temperature range:	-20 to +55 °C
Frequency range:	2400 - 2483,5 MHz
Number of channels:	11
Modulation characteristics:	DSSS (QPSK)
Stand by mode supported:	Yes
Low channel = 1	2412 MHz
Mid channel = 6	2437 MHz
High channel = 11	2462 MHz

2.2 Additional information about the EUT

The EUT were temporally equipped with an antenna connector (standard SMA) for the conducted measurements.

2.3 Test specifications

2.4 Standards

FCC 47 CFR part 15 (2005) Subpart B – Unintentional radiators FCC 47 CFR part 15 (2005) Subpart C – Intentional Radiators; §15.247 Operation within the bands 902-928 MHz, 2400 – 2483.5 MHz and 5725 – 5850 MHz.

Measurements methods according to ANSI C63.4-2003

RSS-210, Issue 6 (September 2005): Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment.

RSS-Gen, Issue 1 (September 2005): General Requirements and Information for the Certification of Radiocommunication Equipment.

2.5 Additions, deviations and exclusions from standards

No additions, deviations or exclusions have been made from standards.

2.6 Test set-up

Measurement set-up radiated spurious emissions test is described in corresponding section. During other tests the EUT was connected to the spectrum analyser by cable.

2.7 Operating environment

If not additionally specified, the tests were performed under the following environmental conditions:

Air temperature:	23	°C
Relative humidity:	33	%

Intertek ETL SEMKO

3 TEST SUMMARY

The results in this report apply only to the sample tested.

FCC reference	Test	Result	Note
15.247(b)	Peak output power	Pass	
15.247(a)	6 dB Bandwidth	Pass	
15.247(a)	Carrier frequency separation	NA	
15.247(a)	Number of hopping frequencies (channels)	NA	
15.247(a)	Time of occupancy (dwell time)	NA	
15.215	Band edge compliance	Pass	
15.247(e)	Power spectral density	Pass	
15.205 15.209 15.247(d) 15.109	Out of band spurious emissions, radiated	Pass	
15.209 15.247(d)	Out of band spurious emissions, conducted	NA	
15.107 15.207	Conducted emission at AC port	NA	

NT = Not Tested

NA = Not Applicable

4 PEAK OUTPUT POWER

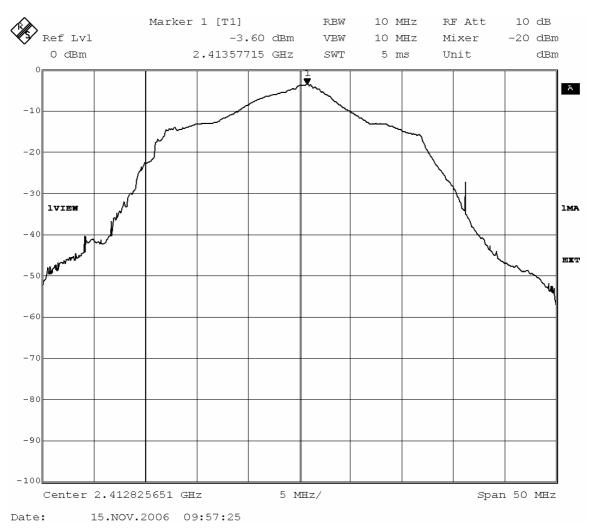
4.1 Test protocol

Date of test: 2006-11-15

Spectrum analyzer settings:

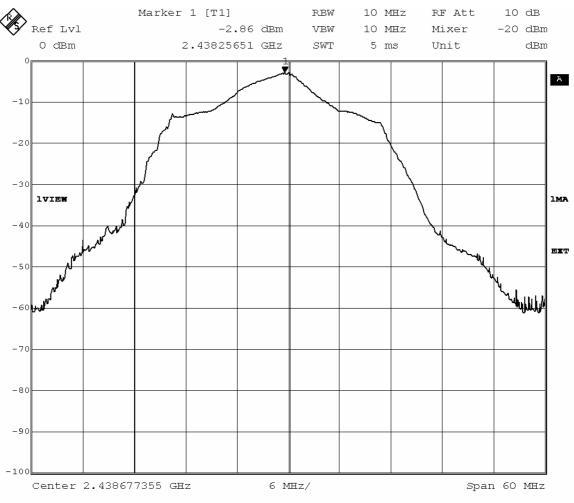
Span: 60 MHz RBW: 10 MHz VBW: 10 MHz Sweep time: Auto Detector: Peak Trace: Max Hold

QPSK modulation, 11 Mbps data rate

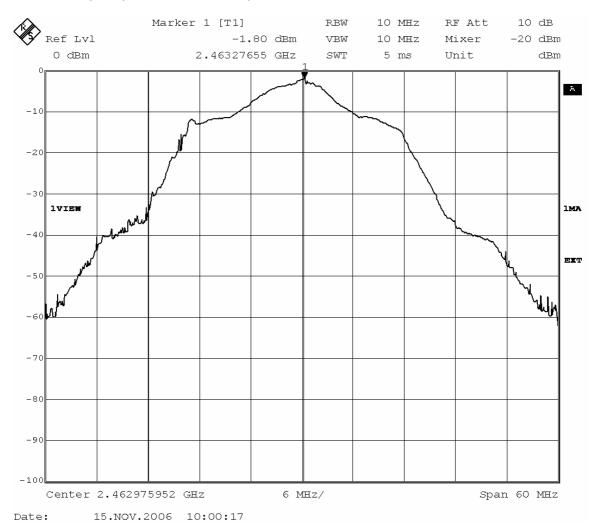

Test conditions	Peak	Limit		
Test conditions	2412 MHz	2437 MHz	2462 MHz	[dBm]
V _{nom} 3 V DC	-3,0	-2,3	-1,2	30

Measurement results are corrected for attenuation in the set-up configuration. The antenna gain was not included in the correction factor.

In the following graphs no ref level offset were used for compensating the attenuation in the measuring setup. The attenuation in the measuring setup was 0.6 dB.



Channel 1, peak power, QPSK, 11 Mbps data rate

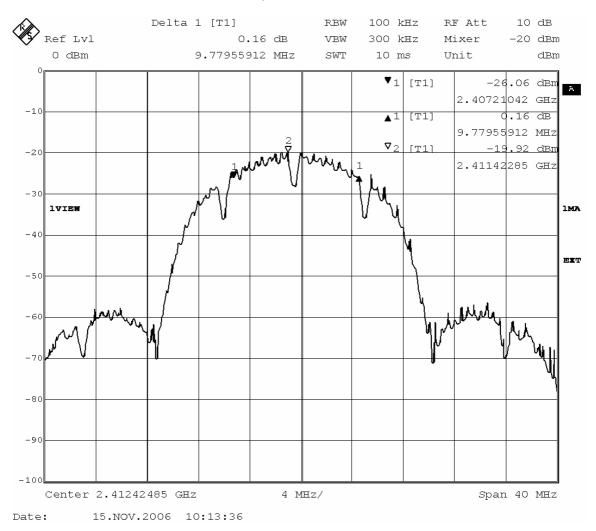


Channel 6, peak power, QPSK, 11 Mbps data rate

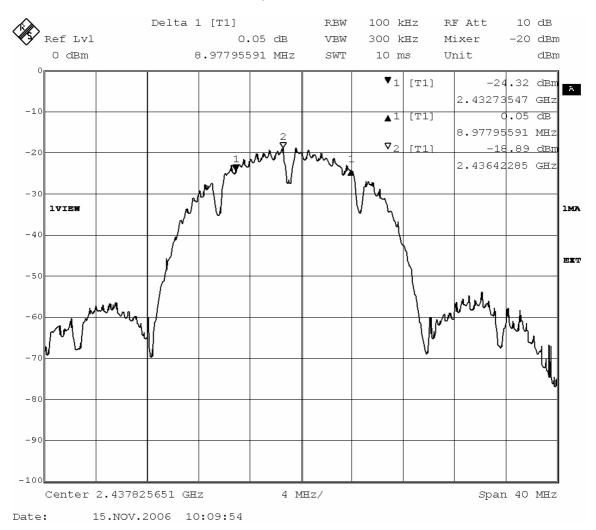
Channel 11, peak power, QPSK, 11 Mbps data rate

5 6 DB BANDWIDTH

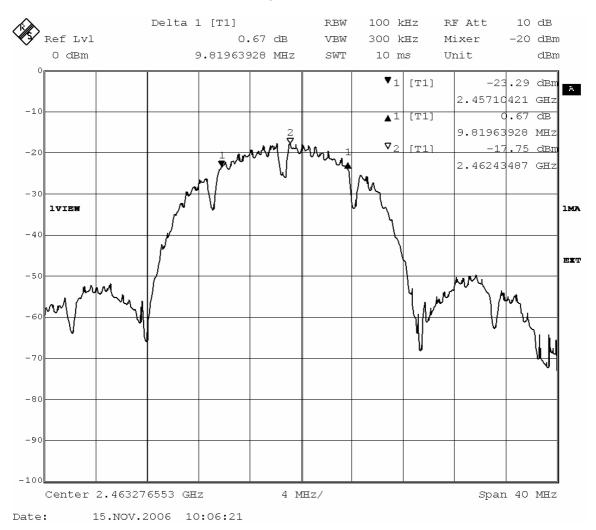
5.1 Test protocol


Date of test: 2006-11-15

Spectrum analyser settings:


Span: 40 MHz RBW: 100 kHz VBW: 300 kHz Sweep time: Auto Detector: Peak Trace: Max Hold

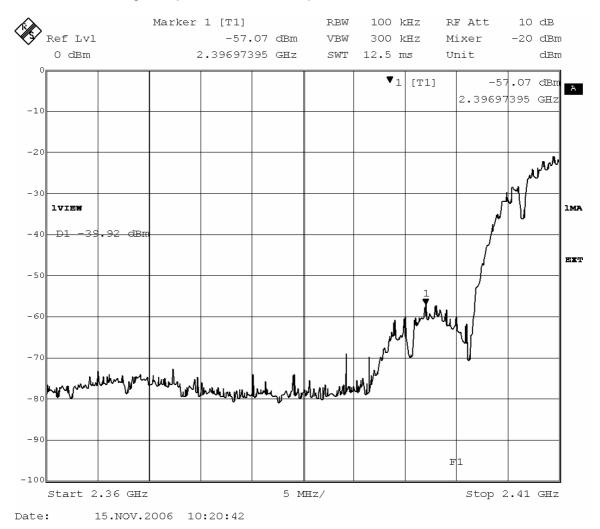
QPSK modulation, 11 Mbps data rate


Channel	6 dB Bandwidth	Limit value
(MHz)	(MHz)	(MHz)
2412	9,8	
2437	9,0	> 0,5
2462	9,8	

Channel 1, 6 dB bandwidth, QPSK, 11 Mbps data rate

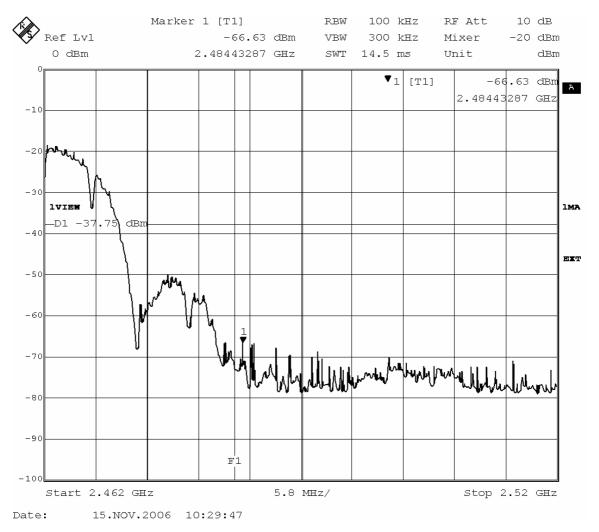
Channel 6, 6 dB bandwidth, QPSK, 11 Mbps data rate

Channel 11, 6 dB bandwidth, QPSK, 11 Mbps data rate


6 BAND EDGE COMPLIANCE, CONDUCTED

6.1 Test protocol

Date of test: 2006-11-15


Band edge compliance at low channel

Channel 1, Band edge compliance, QPSK, 11 Mbps data rate

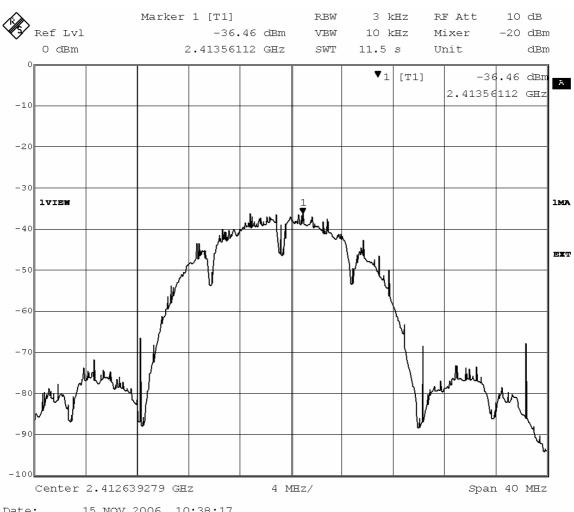
Band edge compliance at high channel

Channel 11, Band edge compliance, QPSK, 11 Mbps data rate

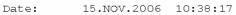
7 POWER SPECTRAL DENSITY

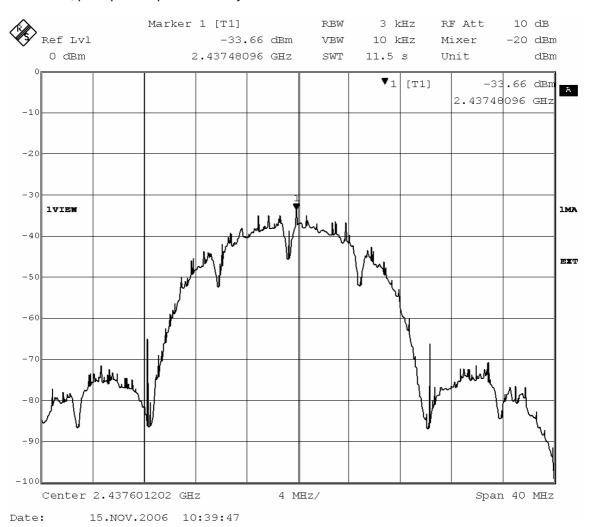
7.1 Test protocol

Date of test: 2006-11-15

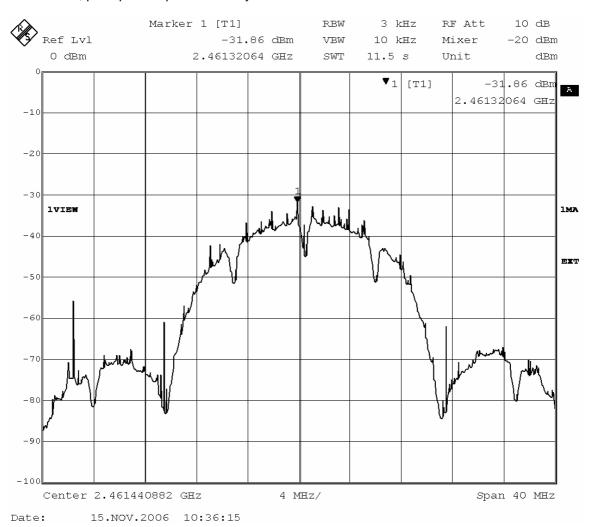

Spectrum analyzer settings:

Span: 40 MHz RBW: 3 kHz VBW: 10 kHz Sweep time: Auto Detector: Peak Trace: Max Hold


di el meddialien, i i mope data i die						
Channel	Peak Power Spectral	Limit value				
	Density					
(MHz)	(dBm)	(dBm)				
2412	-35,9					
2437	-33,1	< 8				
2462	-31,3					


QPSK modulation, 11 Mbps data rate

Measurement results are corrected for attenuation in the set-up configuration.



Channel 1, peak power spectral density

Channel 6, peak power spectral density

Channel 11, peak power spectral density

8 RADIATED SPURIOUS EMISSIONS

8.1 Measurement uncertainty

Radiated disturbance electric field intensity, 30 - 1000 MHz: $\pm 4,6$ dB Radiated disturbance electric field intensity, 1000 - 25000 MHz: $\pm 6,0$ dB

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997. The measurement uncertainty is given with a confidence of 95%.

8.2 Test equipment

Equipment	Manufacturer	Туре	SEMKO No.		
Test site: Semi-anechoic shiel	Test site: Semi-anechoic shielded chamber, 5,9 x 8,9 x 6,0 m (W x L x H)				
Software:	Rohde & Schwarz	EMC 32			
Measurement receiver:	Rohde & Schwarz	ESCI	12798		
Antenna, bilog:	Rohde & Schwarz	HL562	30711		
Test site: Radio anechoic shie	x 2,4 m (W x L x H)	12285			
Software: Signal analyser:	Rohde & Schwarz Rohde & Schwarz	ES-K1, V1.70 FSIQ 40	12793		
Preamplifier:	MITEQ	AFS6/AFS44	12335		
Antennas: Double Ridge Guide Horn: Horn antenna: Horn antenna:	EMCO EMCO EMCO	3115 3160-08 3160-09	4936 30099 30101		

8.3 Measurement set-up

Test site: Semi-anechoic shielded chamber (30 - 1000 MHz)

The radiated disturbance electric field intensity was measured in a semi-anechoic chamber at a distance of 3 m and the EUT was placed on a non-metallic table, 0,8 m above the reference ground plane. The specified test mode was enabled. Test set-up photos are given below.

An overview sweep with peak detection of the electric field intensity was performed with the measurement receiver in max-hold and with the antenna placed 1,5 m, 2,5 m and 3,5 m above the floor. The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with quasi-peak detector were carried out.

The EUT was supplied with 3,0 VDC during the test.

Test set-up photos:

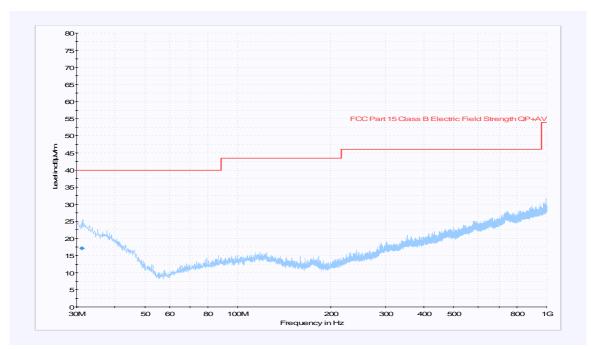
Test site: Bluetooth anechoic shielded chamber (1 - 26 GHz)

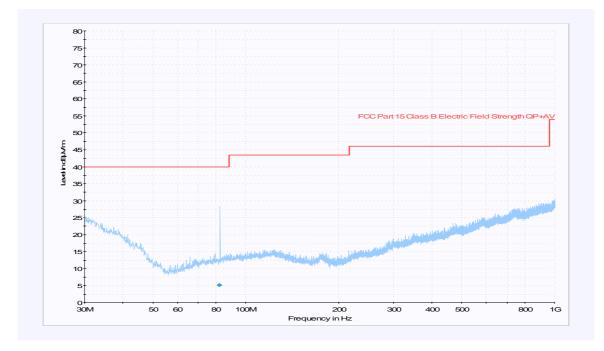
In the Bluetooth anechoic chamber the EUT was placed on a non-metallic table, 1,4 m above the floor. The radiated disturbance electric field intensity was measured at a distance of 3 m. The specified test mode was enabled.

An overview sweep with peak detection of the electric field intensity was performed with the spectrum analyser in max-hold and with the antenna height adjusted at the level of the EUT center (placed 1,4 m above the floor). The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with peak and average detectors were carried out.

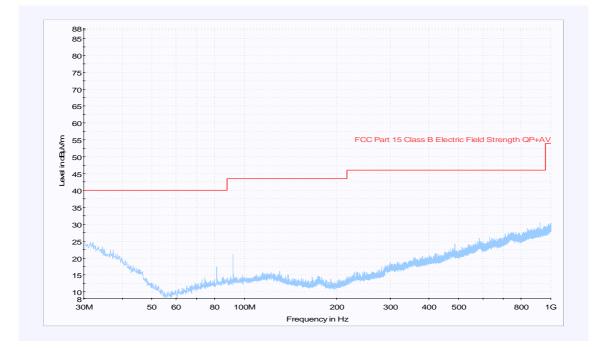
The EUT was supplied by 3 VDC during the test.

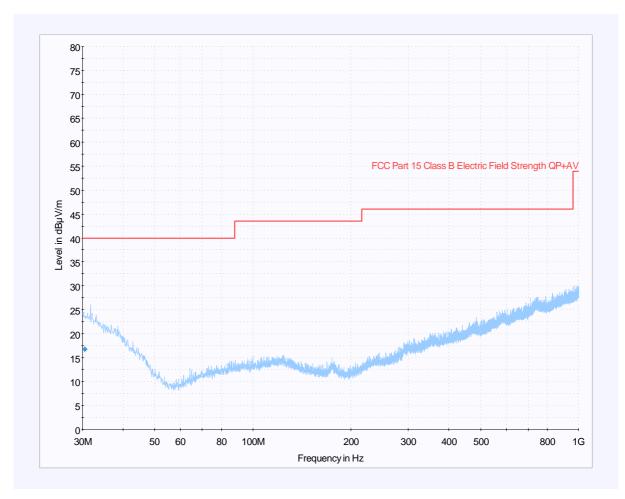



8.4 Test protocol

Semi-anechoic shielded chamber

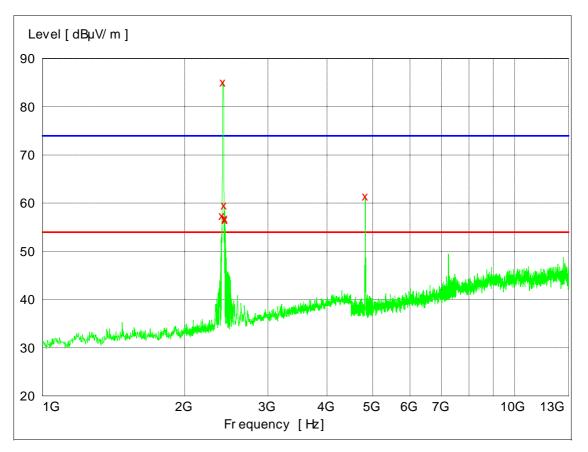
Date of test: 2006-11-14

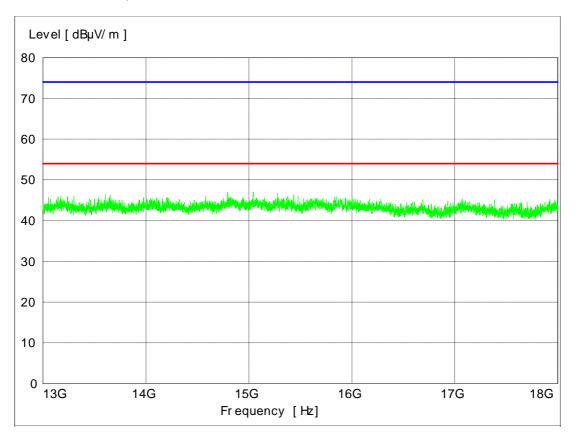

30 - 1000 MHz, max peak at a distance of 3 m on the lowest TX channel



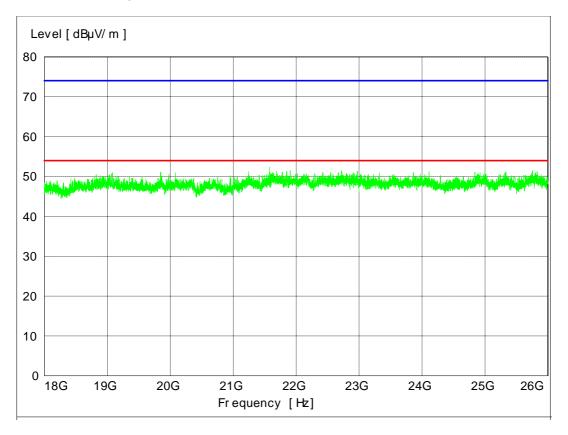
30 – 1000 MHz, max peak at a distance of 3 m on the middle TX channel

30 - 1000 MHz, max peak at a distance of 3 m on the highest TX channel

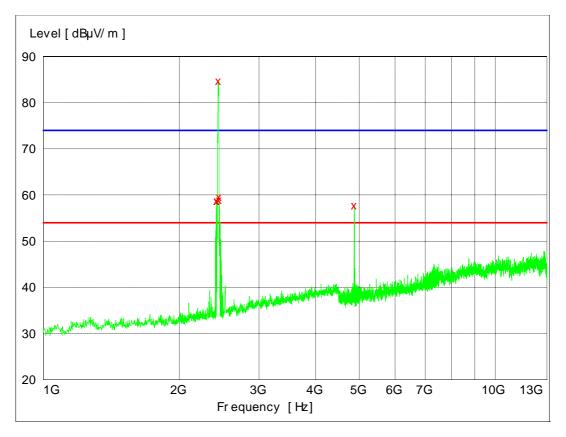


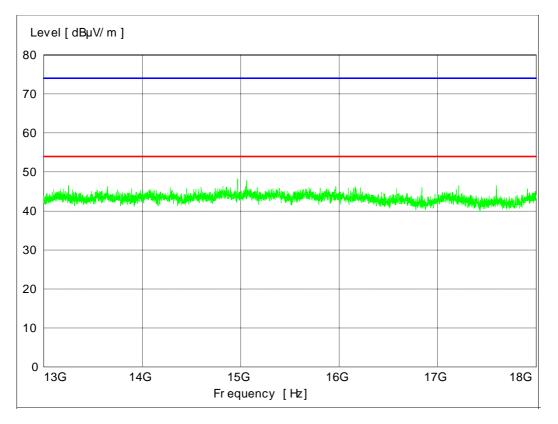


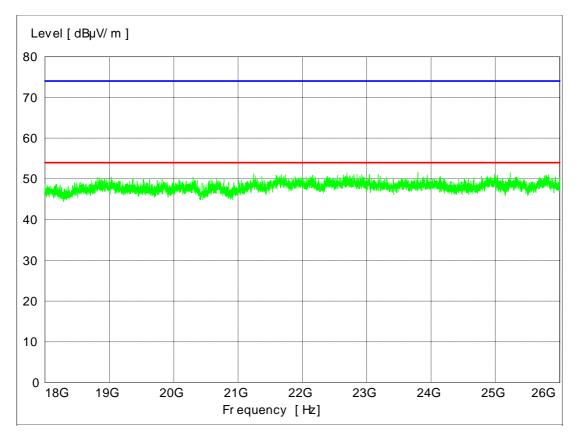
Radio anechoic shielded chamber

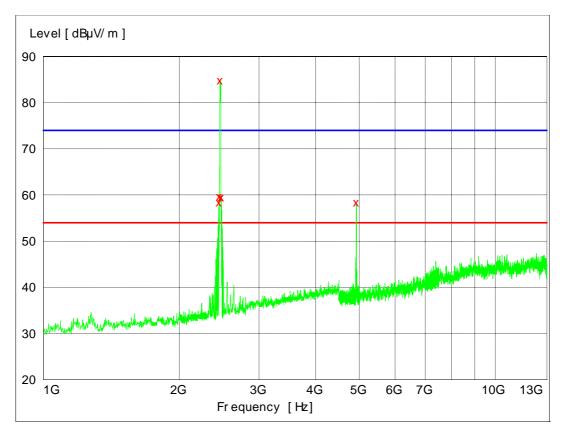

Date of test: 2006-11-14

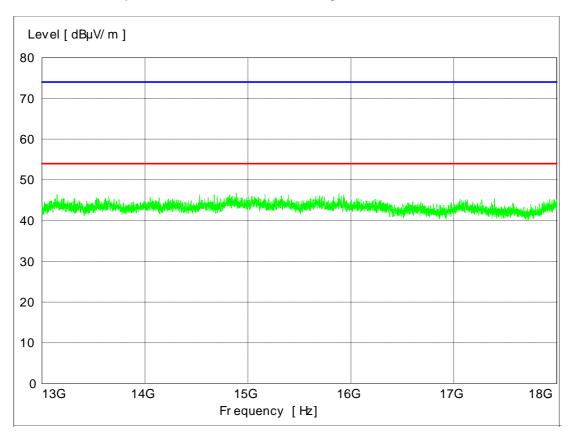
1000 - 13000 MHz, max peak at a distance of 3 m on the lowest TX channel

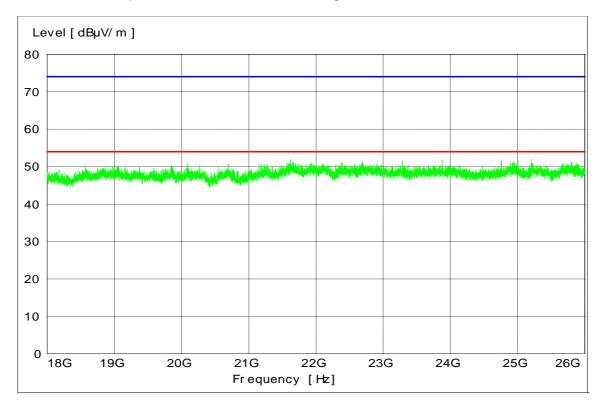



13 - 18 GHz, max peak at a distance of 3 m on the lowest TX channel

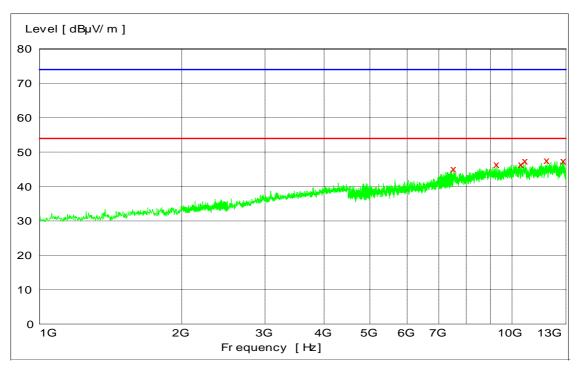

18 – 26 GHz, max peak at a distance of 3 m on the lowest TX channel


1000 - 13000 MHz, max peak at a distance of 3 m on the middle TX channel


13 - 18 GHz, max peak at a distance of 3 m on the middle TX channel, QPSK, 11 Mbps


18 – 26 GHz, max peak at a distance of 3 m on the middle TX channel, QPSK, 11 Mbps

1000 - 13000 MHz, max peak at a distance of 3 m on the highest TX channel



13 - 18 GHz, max peak at a distance of 3 m on the highest TX channel

18 – 26 GHz, max peak at a distance of 3 m on the highest TX channel

1 – 13 GHz, max peak at a distance of 3 m, Standby mode

Data summary

Low channel 1

Low channe	I, I				
Detector	Frequency	Measured	Limit	Bandwidth	Note
Туре	MHz	level		kHz	
		dBuV/m	dBuV/m		
QP	31,2	17,1	46	120	
Pk	4824,2	65,2	74	1000	
Avg	4824,2	41,1	54	1000	
Pk	7235,1	55,4	74	1000	
Avg	7235,1	44,9	54	1000	

Middle channel, 6

Detector Type	Frequency MHz	Measured level	Limit	Bandwidth kHz	Note
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		dBuV/m	dBuV/m	10.12	
QP	82,1	5,1	46	120	
Pk	4873,9	63,8	74	1000	
Avg	4873,9	41,1	54	1000	

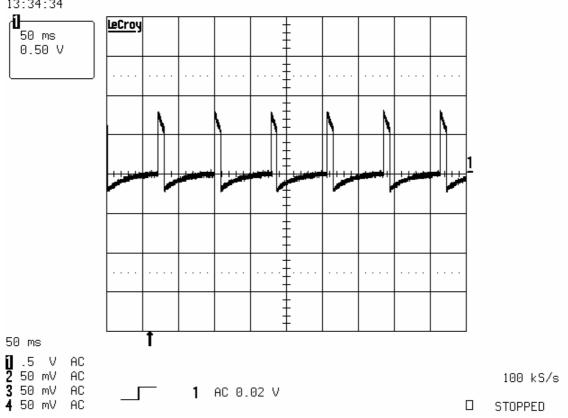
High channel, 11

Detector Type	Frequency MHz	Measured level	Limit	Bandwidth kHz	Note
		dBuV/m	dBuV/m		
QP	92,1	6,1	46	120	
Pk	4924,0	64,3	74	1000	
Avg	4924,0	41,5	54	1000	

Standby/Rx

Detector Type	Frequency MHz	Measured level	Limit	Bandwidth kHz	Note
		dBuV/m	dBuV/m		
Pk	30-1000	< 26		120	Noise floor
Pk	1000 – 13000		74 (54)	1000	Noise floor

Example calculation:


Measured level $[dB\mu V/m] =$ Analyser reading $[dB\mu V] +$ cable loss [dB] - preamplifier gain [dB] + antenna factor [1/m]

9 DUTY CYCLE

Date of test: 2006-12-07

Duty cycle is approx 10%

7-Dec-06 13:34:34

10 APPENDIX I – PHOTOS OF THE EUT