

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Johnson Outdoors

Address: 1521 Madison Ave

Mankato, MN 56002

Product: Raptor Shallow-water Anchor

Test Report No: R20191119-21-E1C

Approved by:

Nic S. Johnson, NCE Technical Manager

INARTE Certified EMC Engineer #EMC-003337-NE

DATE: 7 May 2020

Total Pages: 54

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Prepared for: John

Johnson Outdoors

REVISION PAGE

Rev. No.	Date	Description	
0	26 March 2020	Original – NJohnson	
		Prepared by KVepuri/CFarrington	
А	29 April 2020	Specified FCC Part 15.249/RSS-210	
		Includes NCEE Labs report R20191119-21-E1 and its amendment in fullNJ	
В	5 May 2020	Updated calibration table	
		Includes NCEE Labs report R20191119-21-E1A and its amendment in fullNJ	
С	7 May 2020	Removed PSD measurements	
		Includes NCEE Labs report R20191119-21-E1B and its amendment in fullNJ	

Report Number:

Prepared for:

R20191119-21-E1

Johnson Outdoors

С

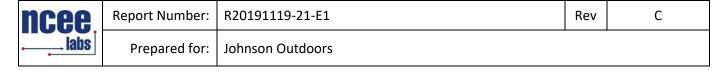
Rev

CONTENTS

Rev	ision Pa	age	2
1.0	Sur	mmary of test results	2
2.0	EU.	T Description	
	2.1	Equipment under test	
	2.2	Description of test modes	
	2.3	Description of support units	5
3.0	Lab	poratory and General Test Description	6
	3.1	Laboratory description	θ
	3.2	Test personnel	6
	3.3	Test equipment	
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	sultS	9
	4.1	Output Power	9
	4.2	Bandwidth	11
	4.3	Duty Cycle	12
	4.4	Radiated emissions	16
	4.5	Band edges	26
	4.6	Conducted AC Mains Emissions	27
Арр	endix A	A: Sample Calculation	28
Арр	endix E	3 – Measurement Uncertainty	30
App	andiv (C – Graphs and Tables	31
	CHUIX	5 - Graphis and Tables	

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

1.0 SUMMARY OF TEST RESULTS


The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section (Please see the checked box below for the rule part used):

FCC Part 15.249 ⊠

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-210, Issue 10

	SUMMARY					
Requirement	Requirement Test Type and Limit F		Remark			
FCC 15.203	Unique Antenna Requirement	Pass	PCB Antenna			
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	N/A	Not required			
NA	Maximum Peak Output Power	N/A	Informational Purpose Only			
NA	Minimum Bandwidth	N/A	Informational Purpose Only			
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.			
FCC 15.209 RSS-Gen, 8.9 RSS-210 A1.2 FCC 15.249(a)	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.			
FCC 15.209, 15.205, 15.249(d) RSS-Gen, 8.9 RSS-210, 5.5	Band Edge Measurement	Pass	Meets the requirement of the limit.			
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	Pass	Meets the requirement of the limit.			

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	Raptor Shallow-water Anchor
EUT Received	12 March 2020
EUT Tested	12 March 2020- 13 March 2020
Serial No.	00050 (Assigned by lab, used for conducted antenna port measurements); 00040 (Assigned by lab, used for radiated measurements);
Operating Band	2400 – 2483.5 MHz
Device Type	☑ BLE ☐ GFSK ☑ BT BR ☐ BT EDR 2MB ☐ BT EDR 3MB ☐ 802.11x
Power Supply / Voltage	12 VDC Marine Battery

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For Bluetooth Transmissions:

Channel	Frequency
Low	2402 MHz
Mid	2440/2441 MHz
High	2480 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01

FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review/editing
2	Karthik Vepuri	Test Engineer	Testing and report
3	Caleb Farrington	Test Engineer	Testing and report
4	April Inamura	Test Technician	Testing and report

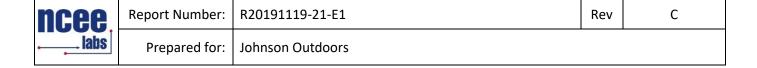
Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 6 of 54

Prepared for: Johnson Outdoors


3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer	N9038A	MY59050109	23 Apr 2019	23 Apr 2021
Keysight EXA Signal Analyzer	N9010A	MY56070862	14 Dec 2018	14 Dec 2020
SunAR RF Motion	JB1	A082918-1	15 Oct 2018	15 Oct 2020
EMCO Horn Antenna	3115	6416	26 Jul 2018	26 Jul 2021
EMCO Horn Antenna	3116	2576	31 Jan 2018	31 Jan 2021
Rohde & Schwarz Preamplifier	TS-PR18	3545700803	09 Mar 2018*	09 Mar 2021*
Trilithic High Pass Filter	6HC330	23042	09 Mar 2018*	09 Mar 2021*
Rohde & Schwarz LISN	ESH3-Z5	836679/010	25 Jul 2019	25 Jul 2020
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)	MFR-57500	01-07-002	09 Mar 2018*	09 Mar 2021*
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	09 Mar 2018*	09 Mar 2021*
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	09 Mar 2018*	09 Mar 2021*
RF Cable (Control room bulkhead to RF switch)	FSCM 64639	01E3871	09 Mar 2018*	09 Mar 2021*
RF Cable (RF switch to test receiver)	FSCM 64639	01F1206	09 Mar 2018*	09 Mar 2021*
RF switch – Rohde and Schwarz	TS-RSP	1113.5503.14	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (control room)	PE9128	NCEEBH2	09 Mar 2018*	09 Mar 2021*

^{*}Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted ⊠

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

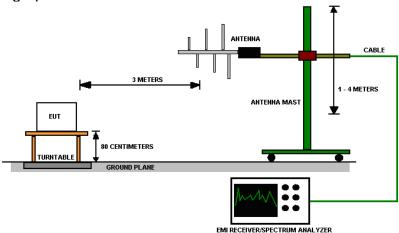


Figure 2 - Radiated Emissions Test Setup

4.0 RESULTS

4.1 OUTPUT POWER

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.249 Device:

For Informational Purposes only

For FCC Part 15.247 Device:

The maximum allowed peak output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results: Pass

Comments:

- 1. All the output power plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the table below.

Prepared for: Johnson Outdoors

Peak Output Power

CHANNEL	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	RESULT	Transmitter
Low	5.423	3.486	PASS	BLE
Mid	5.137	3.264	PASS	BLE
High	4.984	3.151	PASS	BLE
Low	5.894	3.885	PASS	BT BR
Mid	5.701	3.716	PASS	BT BR
High	5.608	3.637	PASS	BT BR

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

4.2 BANDWIDTH

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.249 Device:

For Informational Purposes only

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

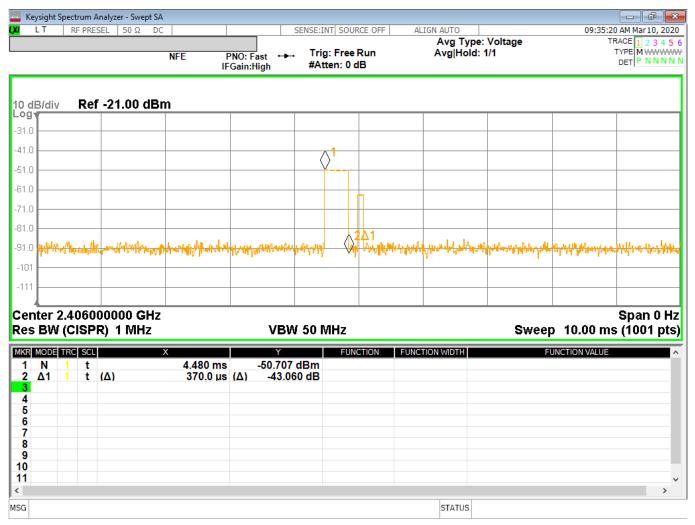
EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

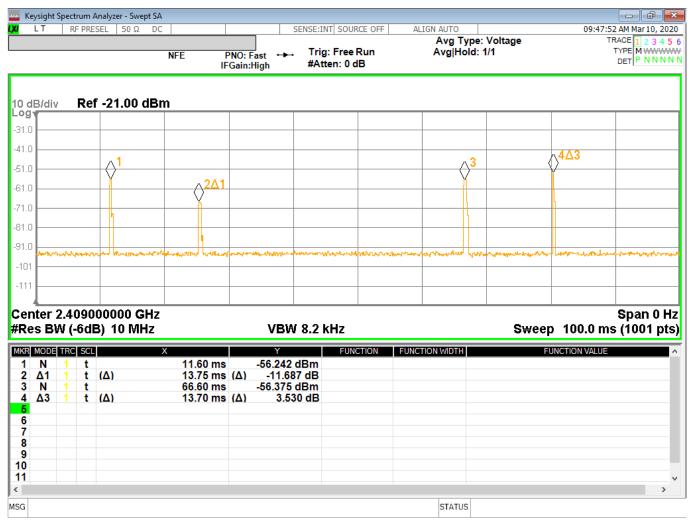
Pass

Comments:


- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.

 Report Number:
 R20191119-21-E1
 Rev
 C

Prepared for: | Johnson Outdoors

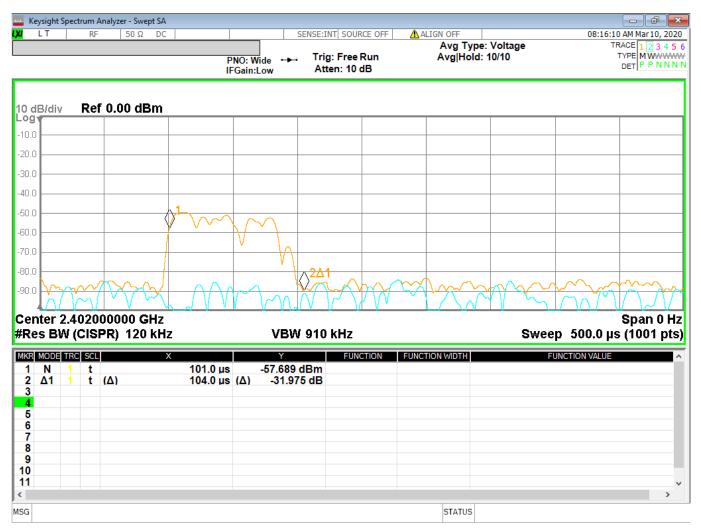

4.3 DUTY CYCLE

On Time Raptor Pump, BLE

Prepared for: Johnson Outdoors

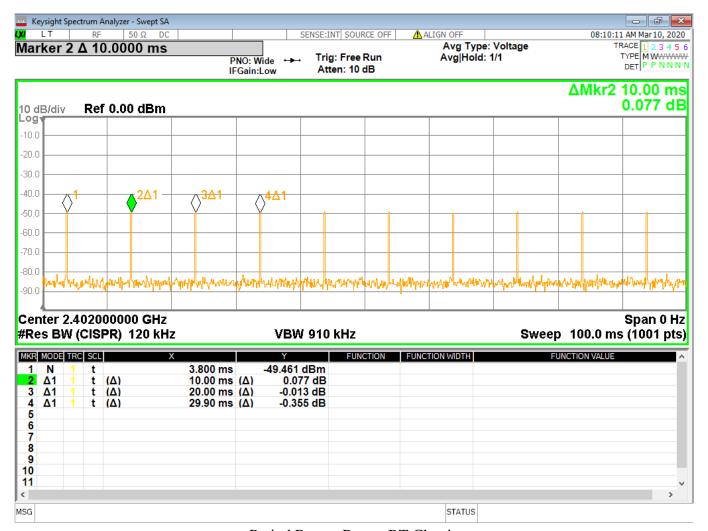
Period Raptor Pump, BLE

Duty cycle correction factor = $\frac{20 \log((0.37 \times 4)/100)}{100} = -36.59 \text{ dB}$


On time = 0.37

Period = 100 ms (worst case was used per FCC Part 15.35)

20dB is the maximum useable averaging factor. So, 20 dB of correction was applied to the peak measurements in section 4.4 to get average measurements.


Prepared for: Johnson Outdoors

On Time Raptor Pump, BT Classic

Prepared for: Johnson Outdoors

Period Raptor Pump, BT Classic

Duty cycle correction factor = $20*\log((0.14x10)/100) = -37.07$ dB

On time = 0.14

Period = 100 ms (worst case was used)

20dB is the maximum useable averaging factor. So, 20 dB of correction was applied to the peak measurements in section 4.4 to get average measurements.

Prepared for:

Johnson Outdoors

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.
- 4. The EUT was tested for spurious emissions while running off of battery power.

Report Number: R20191119-21-E1 Rev C

Prepared for: Johnson Outdoors

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz the 10th harmonic.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

 Report Number:
 R20191119-21-E1
 Rev
 C

 Prepared for:
 Johnson Outdoors

Test setup:

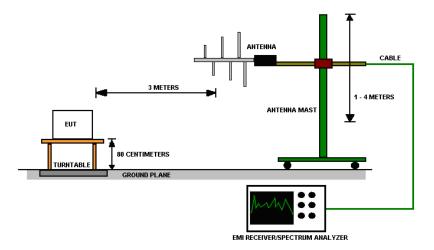


Figure 3 - Radiated Emissions Test Setup

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

 Report Number:
 R20191119-21-E1
 Rev
 C

 Prepared for:
 Johnson Outdoors

Test results:

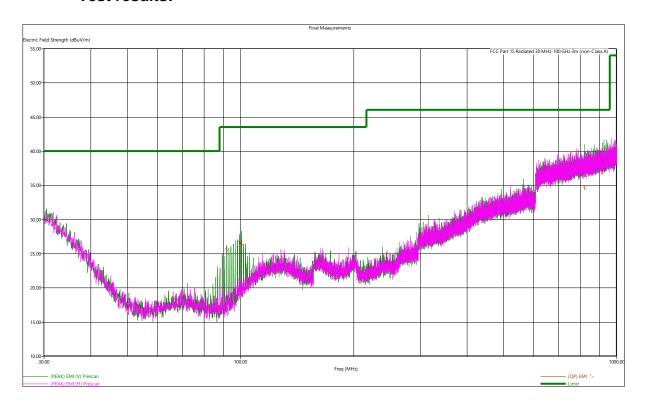
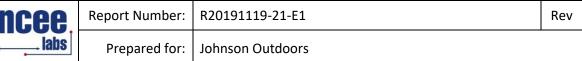



Figure 4 - Radiated Emissions Plot, Receive, BLE & BTBR

Quasi-Peak Measurements, BLE & BTBR, RX Mode								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dΒμV/m	dB	cm.	deg.			
91.810000	25.50	43.52	18.02	114	264	٧	Low	GMSK
99.260000	26.61	43.52	16.91	106	212	٧	Low	GMSK
100.510000	26.46	43.52	17.06	103	353	٧	Low	GMSK
820.380000	34.59	46.02	11.43	354	41	٧	Low	GMSK

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 19 of 54

C

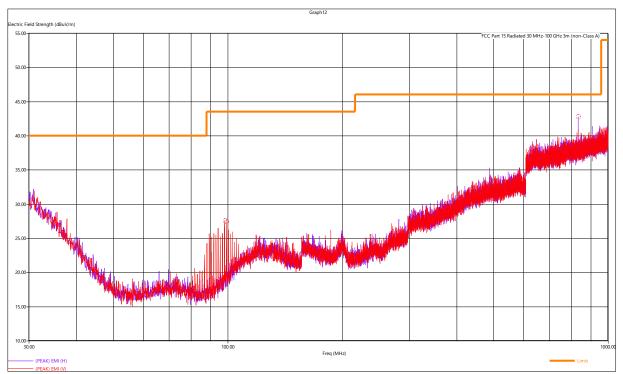


Figure 5 - Radiated Emissions Plot, Low Channel, BLE

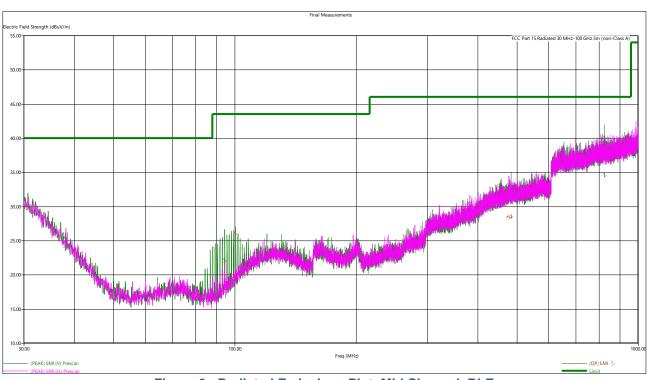


Figure 6 - Radiated Emissions Plot, Mid Channel, BLE

Report Number: R20191119-21-E1 Rev C

Prepared for: Johnson Outdoors

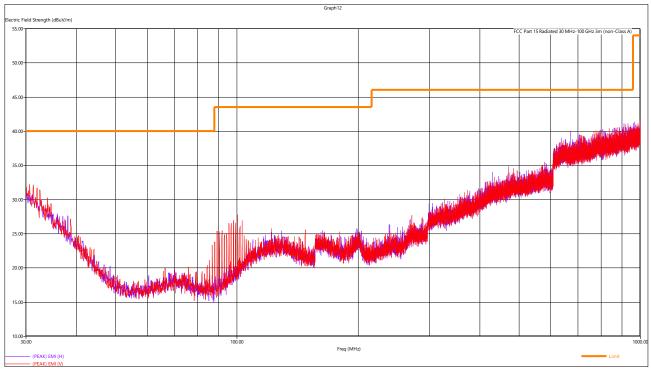


Figure 7 - Radiated Emissions Plot, High Channel, BLE

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

	Quasi-Peak Measurements, BLE									
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation		
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
833.580000	34.60	46.02	11.42	133	26	Н	Low	BLE		
98.040000	26.44	43.52	17.08	107	213	V	Low	BLE		
99.240000	26.45	43.52	17.07	109	181	V	Low	BLE		
477.540000	28.42	46.02	17.60	154	360	Н	Mid	BLE		
94.320000	22.14	43.52	21.38	106	263	V	Mid	BLE		
100.500000	26.11	43.52	17.41	108	18	V	Mid	BLE		
483.240000	28.53	46.02	17.49	366	63	V	Mid	BLE		
825.840000	34.58	46.02	11.44	231	109	V	Mid	BLE		

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above

Prepared for: Johnson Outdoors

		Pe	eak Measu	urements,	BLE			
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2402.000000	104.23	113.98	9.75	203	206	Ι	Low	BLE
2404.000000	103.09	113.98	10.89	203	206	Ι	Mid	BLE
2480.000000	101.54	113.98	12.44	203	206	Ι	High	BLE
4803.500000	67.74	73.98	6.24	187	191	Ι	Low	BLE
7206.500000	58.24	73.98	15.74	232	146	Ι	Low	BLE
14412.500000	62.6	73.98	11.38	230	62	Ι	Low	BLE
9608.500000	58.18	73.98	15.8	201	130	>	Low	BLE
4879.500000	68.76	73.98	5.22	190	176	Ι	Mid	BLE
14640.500000	65.14	73.98	8.84	224	82	Ι	Mid	BLE
7319.500000	53.14	73.98	20.84	224	145	>	Mid	BLE
9759.500000	60.05	73.98	13.93	213	280	٧	Mid	BLE
4959.500000	69.87	73.98	4.11	194	170	Ι	High	BLE
7440.000000	57.4	73.98	16.58	174	110	Ι	High	BLE
9919.500000	59.95	73.98	14.03	134	213	Ι	High	BLE
14881.000000	67.04	73.98	6.94	178	258	Ι	High	BLE
14880.500000	66.88	73.98	7.1	179	258	>	High	BLE
		Ave	rage Mea	surements	s, BLE			
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2402.000000	84.23	93.98	9.75	203	206	Н	Low	BLE
2404.000000	83.09	93.98	10.89	203	206	Н	Mid	BLE
2480.000000	81.54	93.98	12.44	203	206	Н	High	BLE
4803.500000	47.74	53.98	6.24	187	191	Н	Low	BLE
7206.500000	38.24	53.98	15.74	232	146	Н	Low	BLE
14412.500000	42.6	53.98	11.38	230	62	Н	Low	BLE
9608.500000	38.18	53.98	15.8	201	130	V	Low	BLE
4879.500000	48.76	53.98	5.22	190	176	Н	Mid	BLE
14640.500000	45.14	53.98	8.84	224	82	Н	Mid	BLE
7319.500000	33.14	53.98	20.84	224	145	V	Mid	BLE
9759.500000	40.05	53.98	13.93	213	280	V	Mid	BLE
4959.500000	49.87	53.98	4.11	194	170	Н	High	BLE
7440.000000	37.4	53.98	16.58	174	110	Н	High	BLE
9919.500000	39.95	53.98	14.03	134	213	Н	High	BLE
14881.000000	47.04	53.98	6.94	178	258	Н	High	BLE
14880.500000	46.88	53.98	7.1	179	258	V	High	BLE

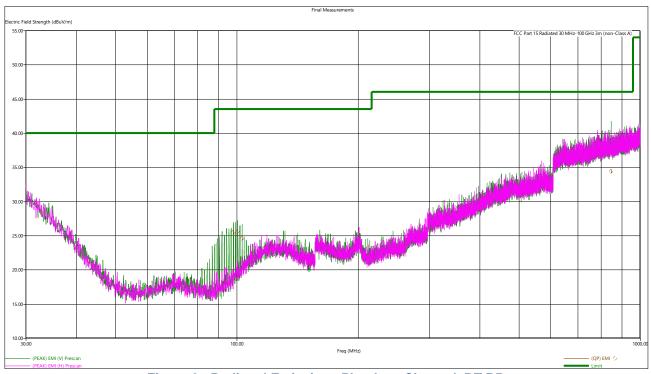


Figure 8 - Radiated Emissions Plot, Low Channel, BT BR

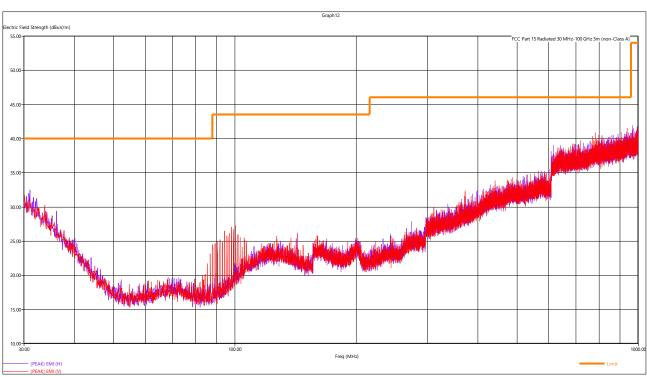


Figure 9 - Radiated Emissions Plot, Mid Channel, BT BR

Report Number: R20191119-21-E1 Rev C

Prepared for: Johnson Outdoors

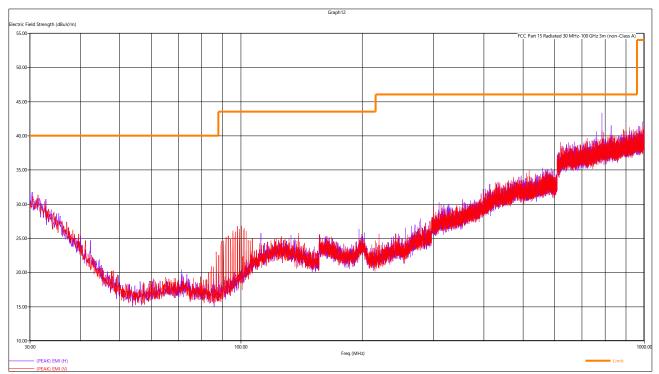


Figure 10 - Radiated Emissions Plot, High Channel, BT BR

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

	Quasi-Peak Measurements, Bluetooth Classic, BTBR								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation	
MHz	dBµV/m	dBμV/m	dB	cm.	deg.				
98.040000	25.5	43.52	18.02	122	196	V	Low	BT BR	
100.500000	25.63	43.52	17.89	130	297	V	Low	BT BR	
103.020000	24.6	43.52	18.92	111	344	V	Low	BT BR	
846.300000	34.44	46.02	11.58	276	279	V	Low	BT BR	

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above.

Prepared for: Johnson Outdoors

	Peak Measurements, Bluetooth Classic, BTBR							
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2402.000000	103.62	73.98	NA	203	206	Н	Low	BT BR
2441.000000	102.34	73.98	NA	203	206	Н	Mid	BT BR
2480.000000	100.93	73.98	NA	203	206	Н	High	BT BR
4804.000000	66.75	73.98	7.23	186	189	Н	Low	BT BR
7206.000000	60.23	73.98	13.75	233	150	Н	Low	BT BR
14412.500000	61.33	73.98	12.65	219	62	Н	Low	BT BR
9608.000000	56.16	73.98	17.82	214	130	V	Low	BT BR
4882.000000	65.92	73.98	8.06	184	172	Н	Mid	BT BR
7323.000000	50.91	73.98	23.07	214	260	Н	Mid	BT BR
9764.000000	56.45	73.98	17.53	204	230	V	Mid	BT BR
14645.500000	63.17	73.98	10.81	199	79	V	Mid	BT BR
7440.000000	53.05	73.98	20.93	192	97	Н	High	BT BR
14880.000000	63.78	73.98	10.2	222	255	Н	High	BT BR
4960.000000	66.52	73.98	7.46	192	173	V	High	BT BR
9920.000000	58.9	73.98	15.08	133	212	V	High	BT BR

Average Measurements, Bluetooth Classic, BTBR

Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2402.000000	83.62	53.98	NA	203	206	Η	Low	BT BR
2441.000000	82.34	53.98	NA	203	206	Η	Mid	BT BR
2480.000000	80.93	53.98	NA	203	206	Η	High	BT BR
4804.000000	46.75	53.98	7.23	186	189	Н	Low	BT BR
7206.000000	40.23	53.98	13.75	233	150	Η	Low	BT BR
14412.500000	41.33	53.98	12.65	219	62	Η	Low	BT BR
9608.000000	36.16	53.98	17.82	214	130	>	Low	BT BR
4882.000000	45.92	53.98	8.06	184	172	Η	Mid	BT BR
7323.000000	30.91	53.98	23.07	214	260	Н	Mid	BT BR
9764.000000	36.45	53.98	17.53	204	230	V	Mid	BT BR
14645.500000	43.17	53.98	10.81	199	79	V	Mid	BT BR
7440.000000	33.05	53.98	20.93	192	97	Η	High	BT BR
14880.000000	43.78	53.98	10.2	222	255	Н	High	BT BR
4960.000000	46.52	53.98	7.46	192	173	V	High	BT BR
9920.000000	38.9	53.98	15.08	133	212	V	High	BT BR

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

4.5 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements: For FCC Part 15.249 Device:

For emissions outside of the allowed band of operation, the emission level needs to be 50dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

For FCC Part 15.247 Device:

For emissions outside of the allowed band of operation (2400.0MHz – 2480.0MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

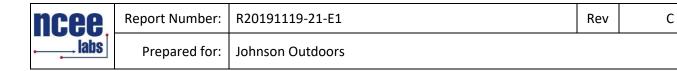
No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.


Test results: Pass

Comments:

- 1. All the band edge plots can be found in the Appendix C.
- If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. If the device falls under FCC Part 15.249 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 50 dB between peak and the band edge.
- 4. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 54

4.6 CONDUCTED AC MAINS EMISSIONS

N/A

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 dB\mu V/m$$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = 10^{P} (dBm)/10] / 1000 Voltage (dBμV) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{P} (dBμV/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

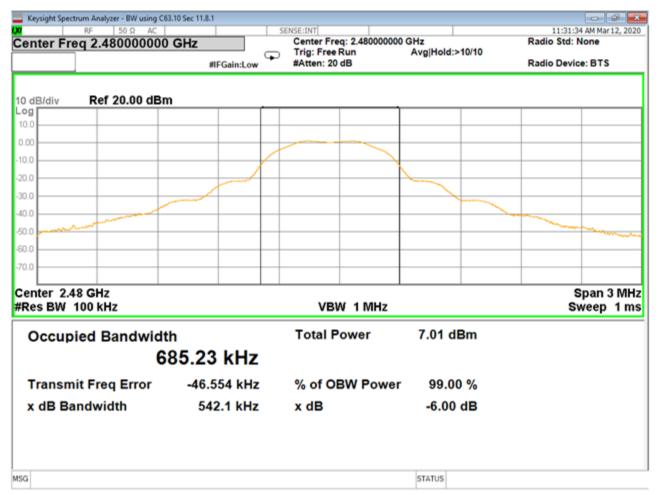
10log(10^9) is the conversion from micro to milli

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB


Expanded uncertainty values are calculated to a confidence level of 95%.

C

Prepared for: | Johnson Outdoors

APPENDIX C - GRAPHS AND TABLES


Bandwidth Plot, High Channel, BLE

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 54

Prepared for: | Johnson Outdoors


Bandwidth Plot, Low Channel, BLE

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 54

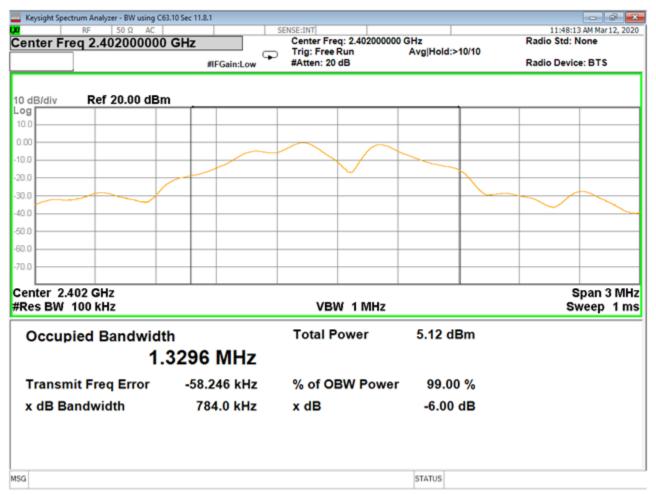
Prepared for: | Johnson Outdoors

Bandwidth Plot, Mid Channel, BLE

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 33 of 54

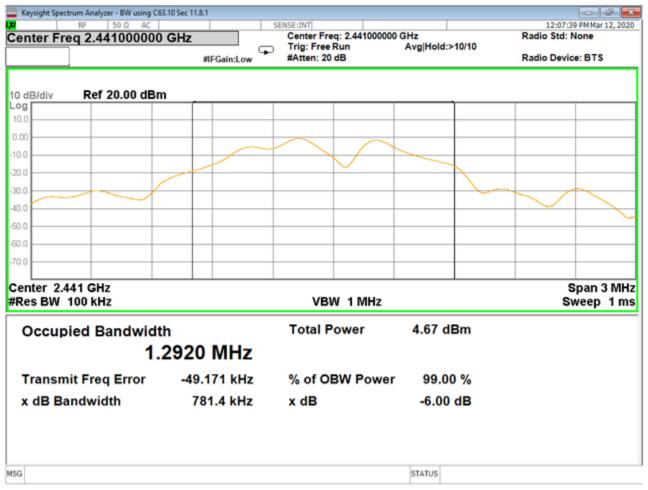
Prepared for: | Johnson Outdoors


Bandwidth Plot, High Channel, BTBR

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 34 of 54

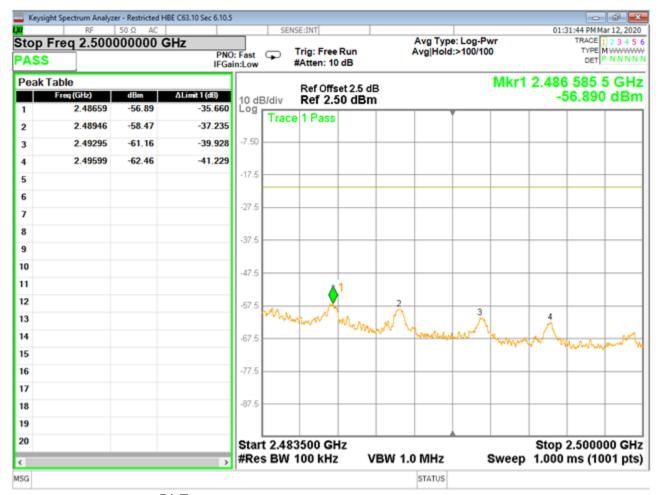
Prepared for: | Johnson Outdoors


Bandwidth Plot, Low Channel, BTBR

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 54

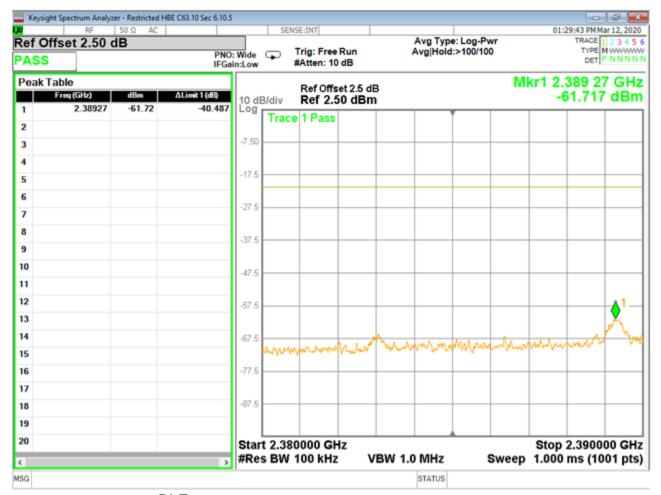
Prepared for: Johnson Outdoors


Bandwidth Plot, Mid Channel, BTBR

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 36 of 54

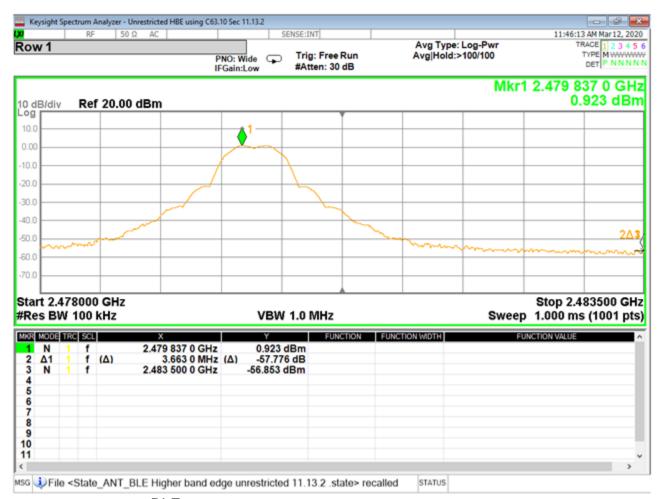
Prepared for: | Johnson Outdoors



BLE Restricted Higher Band Edge with Antenna Gain

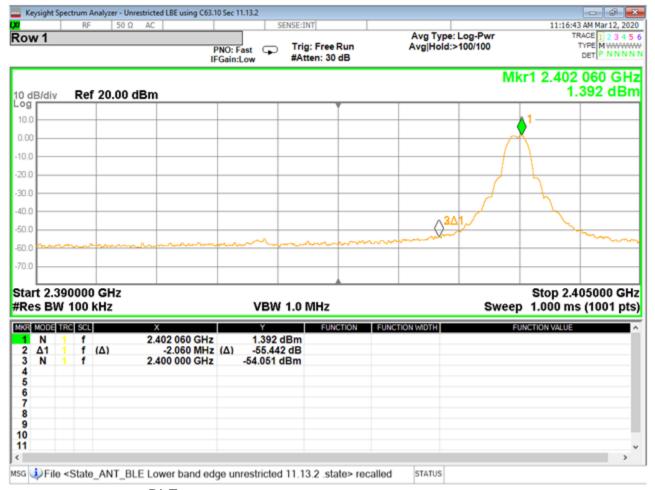
Page 37 of 54

Prepared for: | Johnson Outdoors

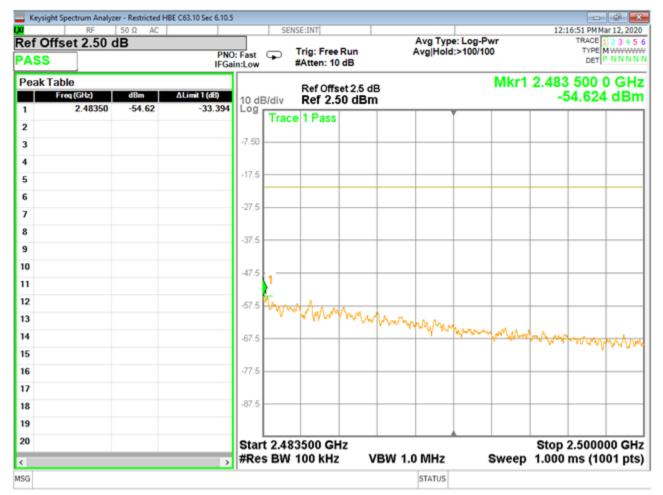


BLE Restricted Lower Band Edge with Antenna Gain

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

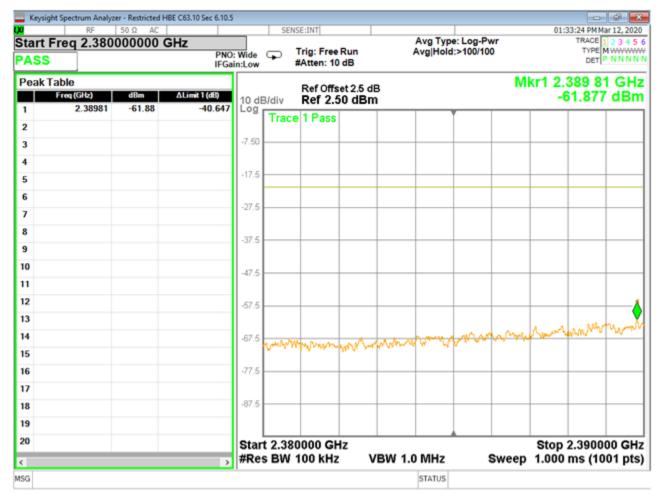

Page 38 of 54

BLE Unrestricted Higher Band Edge with Antenna Gain



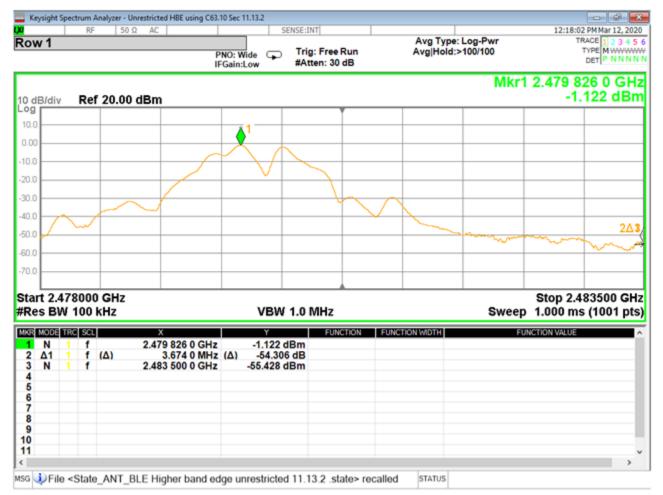
BLE Unrestricted Lower Band Edge with Antenna Gain

Prepared for: | Johnson Outdoors

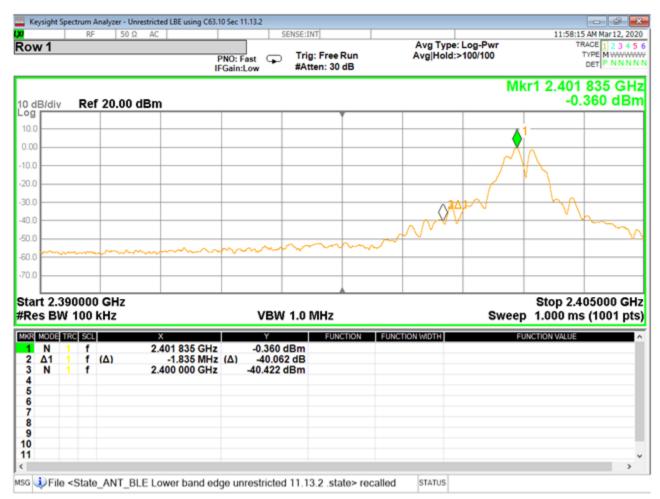


BTBR Restricted Higher Band Edge with Antenna Gain

Page 41 of 54


Prepared for: Johnson Outdoors

BTBR Restricted Lower Band Edge with Antenna Gain


The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

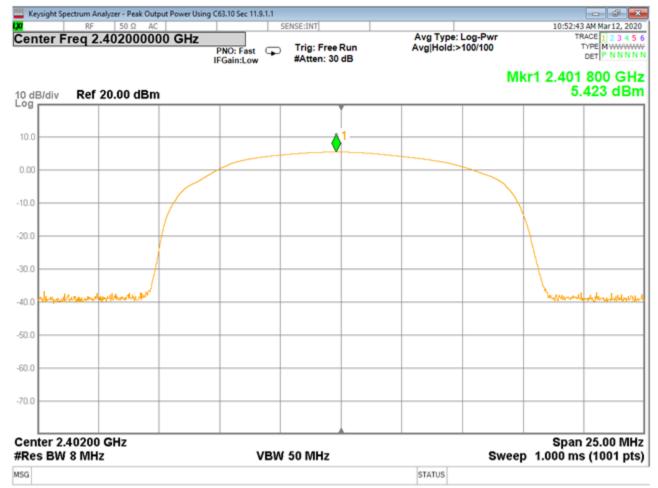
BTBR Unrestricted Higher Band Edge

BTBR Unrestricted Lower Band Edge with Antenna Gain

Keysight Spectrum Analyzer - Peak Output Power Using C63.10 Sec 11.9.1.1 RF 50 Ω AC 11:38:05 AM Mar 12, 2020 Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 TRACE 1 2 3 4 5 6
TYPE M WWWWW P NNNNN Trig: Free Run PNO: Fast #Atten: 30 dB IFGain:Low Mkr1 2.479 775 GHz 4.984 dBm 10 dB/div Log Ref 20.00 dBm 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0

Power Plot, High Channel, BLE

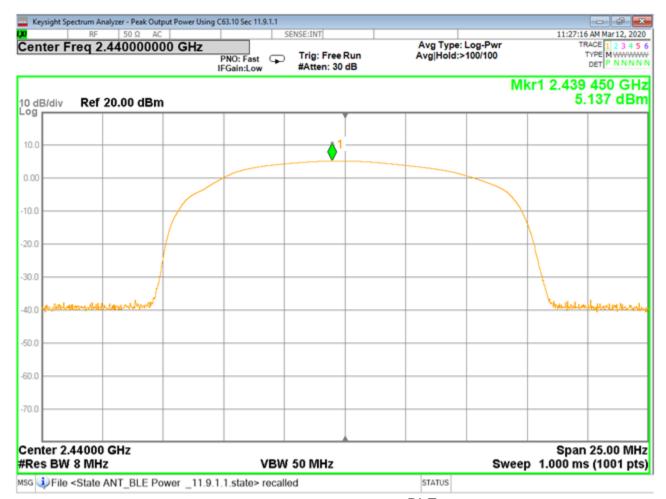
STATUS


VBW 50 MHz

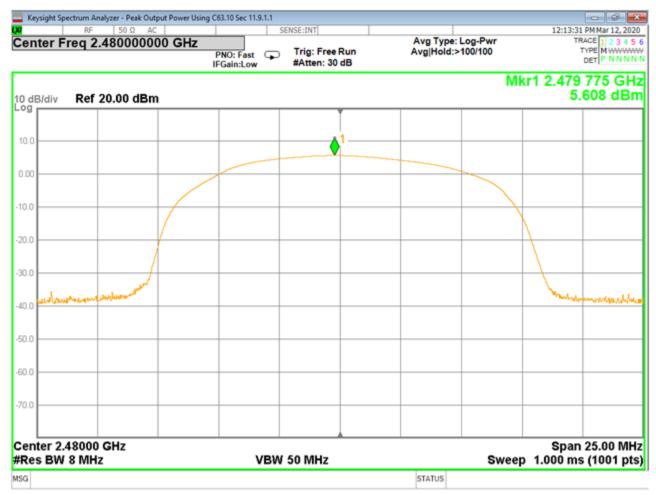
Span 25.00 MHz

Sweep 1.000 ms (1001 pts)

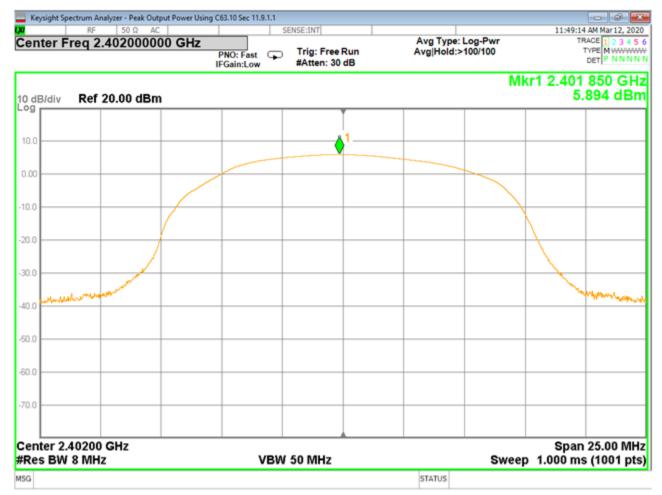
Center 2.48000 GHz #Res BW 8 MHz



Power Plot, Low Channel, BLE


Report Number: R20191119-21-E1 Rev C

Prepared for: Johnson Outdoors


Power Plot, Mid Channel, BLE

Power Plot, High Channel, BTBR



Power Plot, Low Channel, BTBR

Report Number: R20191119-21-E1 Rev C

Prepared for: Johnson Outdoors

Power Plot, Mid Channel, BTBR

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(48.1 dB<math>\mu V/m)/20] = 254.1 \mu V/m$

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = 10^{P} (dBm)/10] / 1000 Voltage (dBμV) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{P} (dBμV/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Report Number:	R20191119-21-E1	Rev	С
Prepared for:	Johnson Outdoors		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521