Kogeto, LLC.

UPCS Radio Module

Report No. KOGE0001

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: September 29, 2010 Kogeto, LLC. Model: UPCS Radio Module

Emissions					
Test Description Specification Test Method Pass/Fail					
Out of Band Emissions	FCC 15D:2010	ANSI C63.4:2003	Pass		
Band Edge Compliance	FCC 15D:2010	ANSI C63.4:2003	Pass		

Modifications made to the product
Modifications made to the product
See the Modifications section of this report
dee the modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By:

Don Facteau, IS Manager

QAIVN

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Kogeto, LLC.
Address:	154 Grand St.
City, State, Zip:	New York, NY 10013
Test Requested By:	David Sosnow
Model:	UPCS radio module
First Date of Test:	September 28, 2010
Last Date of Test:	September 29, 2010
Receipt Date of Samples:	September 22, 2010
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

UPCS radio module

Testing Objective:

To demonstrate compliance with the spurious radiated emissions requirements of FCC 15D while tested in a stand-alone confirmation. This data along with the previous testing of this same radio under FCC ID: T5V02HDDUALNM will be used for modular approval of the radio.

Customer Provided Information:

The UPCS radio module will be used in Kogeto's, Model Lucy, which is a consumer-oriented panoramic video capturing system that provides an immersive video experience of a recorded environment. The system is designed to interface with a personal computer. It features a secondary HD video camera for a detailed perspective, and twin wireless microphones for high fidelity audio. The UPCS radio module is contained in the base unit of the system.

Configurations

CONFIGURATION 1 KOGE0001

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Revolabs.	UPCS Radio Module	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Brick	Revolabs	None	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power leads	No	1.6m	No	Power Brick	EUT
USB	Yes	1.2m	No	EUT	Unterminated
Audio x4	No	1.4m	No	EUT	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	9/28/2010	Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	9/29/2010	Band Edge	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

OUT OF BAND EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx

POWER SETTINGS INVESTIGATED

120VAC/60Hz

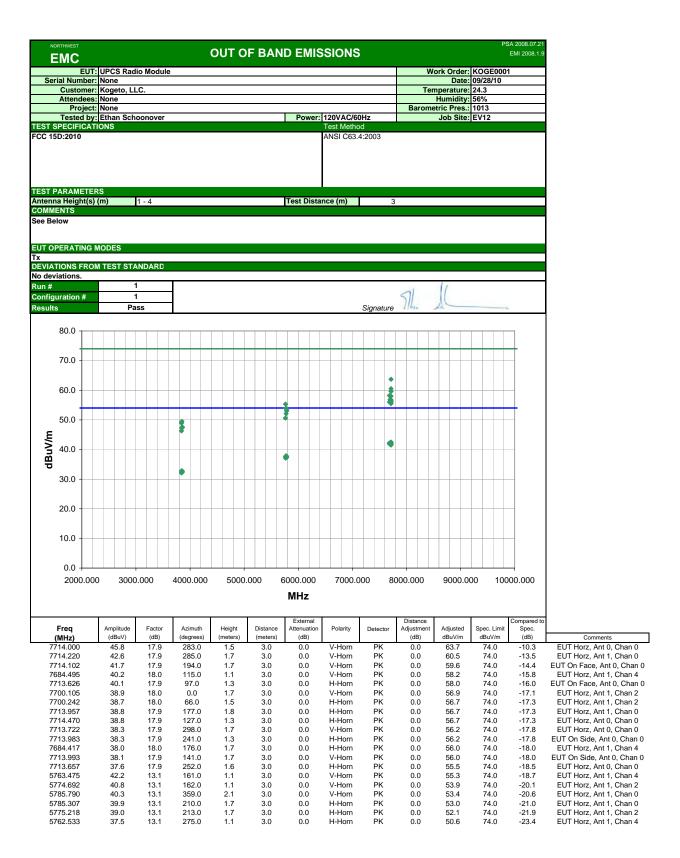
FREQUENCY RANGE INVESTIGATED					
Start Frequency	30MHz	Stop Frequency	26000MHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	9/15/2010	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/15/2010	13
Antenna, Horn	ETS	3160-08	AIA	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVI	7/14/2010	13
Antenna, Horn	ETS	3160.07	AHZ	9/8/2010	24
EV12 Cables	N/A	Standard Gain Horn Cables	EVU	7/14/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	7/14/2010	13
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/23/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	7/14/2010	13
Antenna, Biconilog	EMCO	3141	AXG	2/15/2010	13
EV12 Cables	N/A	Bilog Cables	EVS	7/14/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	7/14/2010	13
Spectrum Analyzer	Agilent	E4440A	AAX	5/14/2010	12

MEASUREMENT BANDWIDTHS						
	Frequency Range Peak Data Quasi-Peak Data Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
	Measurements were made us	sing the bandwidths and dete	ctors specified. No video filte	r was used.		


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization.

For unlicensed personal communication services (PCS) operating in the 1920-1930 MHz band, the FCC references ANSI C63.17 as the measurement procedure standard. Section 6.1.6.2 describes this method.

BAND EDGE EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx Channels 0 and 4

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED					
Start Frequency	1910 MHz	Stop Frequency	1940 MHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/23/2009	13
Spectrum Analyzer	Agilent	E4440A	AAX	5/14/2010	12

MEASUREMENT BANDWIDTHS											
	Frequency Range Peak Data Quasi-Peak Data Average Da										
	(MHz)	(kHz)	(kHz)	(kHz)							
	Above 1000	10.0	N/A	N/A							
M	easurements were made usi	ng the bandwidths and dete	ctors specified. No video filt	er was used.							

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization.

For unlicensed personal communication services (PCS) operating in the 1920-1930 MHz band, the FCC references ANSI C63.17 as the measurement procedure standard. Section 6.1.6.2 describes this method.

NORTHWEST																											PSA	2008.07.2
EMC								BA	MI) E	EDO	GE	E	М	ISS	SIO	NS	3									E	MI 2008.1.9
EU		UPCS Rad	io M	odul	е																V	Vork			: KO			
Serial Numb			_																						: 09/		0	
Attende		Kogeto, Ll None	_C.																		16				: 24. : 56%			
Proje	ct:	None																			Baron	netri	сΡ	res.:	: 101	3		
Tested I		Ethan Sch	oond	over										Pov	ver:	120V Test						J	ob :	Site	: EV	12		
FCC 15D:2010	- TIV	JNS																	7:2006									
TEST PARAMET Antenna Height(1 - 4										Te	st D	istai	nce (m)		3									
COMMENTS	5) (,	1 7										10	0t <u>D</u>	Total	100 (,											
EUT Horizontal <i>i</i>	Ante	enna 1																										
EUT OPERATING																												
Tx Channels 0 a DEVIATIONS FR	OM	TEST STA	ANDA	ARD																								
No deviations. Run #			3		I															_		1	1					
Configuration #		1			-															<	11		1					
Results			ISS		1														Signature)	lben	A	-					
																			<u> </u>									
0.0 T					1			1						-											1			1
-10.0						4															4	_						
-20.0																												
-30.0				Ш																		4		-				
E 400 ⊥																								L				Ţ
-40.0				•	• •																Ĭ	•	•	I				T
-50.0										-																		-
-60.0																												
300.0																												
-70.0					+				++						+		+	\Box						+	+			
- _{80.0} ⊥																												
1915.	000	1917.0	00	191	9.00	00	192	1.000) 1	923	3.000)	192	25.0	000	192	27.0	00	1929.0	00	1931	.00	0	193	3.00	00	193	5.000
														ЛΗ														
														14	-													
Freq						Azimu	ıth	LI-	ight							Del	larity		Detector		EIRP		EIR	D D	C-	ec. Li	mit	compared to
(MHz)						Azımı degre		(mei								-0	anty		Detector		Watts)		(dBi			dBm		Spec. (dB)
1917.858		<u>u</u>				244.			.0				•				Horn		PK		09E-07		-39			29.5		-10.1
1931.649 1918.502						190. 16.0			.0 .0								Horn Horn		PK PK		26E-08 71E-08		-40 -41			29.5 29.5		-11.3 -11.6
1931.958						258.			.0								Horn		PK PK		71E-08 20E-08		-41 -41			29.5		-11.6 -11.9
1930.153						152.	.0	1.	.0							H-H	Horn	1	PK	1.	47E-07	,	-38	.3		-9.5		-28.8
1930.098						333.			.0								Horn		PK		19E-07		-39			-9.5		-29.7
1919.468 1919.158						17.0 14.0			.5 .0								Horn Horn		PK PK		85E-08 20E-08		-40 -41			-9.5 -9.5		-31.0 -31.9
1313.136						14.0	J	1.	.0							17-1	IUITI		ΓĽ	7.	∠∪Ľ-U8	'	- 4 l	.4		-უ.ე		-31.9