For Unlicensed PCS radio

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\quad S=$ power density
$\mathrm{P}=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

> Maximum peak output power at the antenna terminal:
> 12.30 (dBm)
> Maximum peak output power at the antenna terminal: $16.98243652(\mathrm{~mW})$
> Antenna gain(typical): $\quad 2.15$ (dBi)
> Maximum antenna gain: 1.640589773 (numeric)
> Prediction distance: $\quad 20$ (cm)
> Prediction frequency: $1922(\mathrm{MHz})$
> MPE limit for uncontrolled exposure at prediction frequency: $\quad 1\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
> Power density at prediction frequency: $0.005543\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $S=$ power density
$P=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna
Measured Field Strength (3m): $\quad 93.5$ (dBuV)
Maximum peak output power at the antenna terminal:
$-1.73(\mathrm{dBm})$

Maximum peak output power at the antenna terminal: $0.671803883(\mathrm{~mW})$
Antenna gain(typical): $\quad 0$ (dBi)
Maximum antenna gain: $\quad 1$ (numeric)
Prediction distance: $\quad 20(\mathrm{~cm})$
Prediction frequency: $\quad 2450(\mathrm{MHz})$
MPE limit for uncontrolled exposure at prediction frequency: $\quad 1\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
Power density at prediction frequency: $\quad 0.000134\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$

Collocated RF Exposure MPE Calculation for simultaneous operation:
There are 4 antennas for unlicensed PCS transmitter and 1 antenna for 2.4 GHz
All 5 antennas are at least 20 cm away from the user, but individual antennas can not be separated by 20 cm from each other.

$0.022306<1$
Therefore, the device complies with FCC's RF radiation exposure limit for general population for a mobile device.

