

TEST REPORT NO: RU1269/7191

COPY NO: 2

ISSUE NO: 1

FCC ID:

REPORT ON THE CERTIFICATION TESTING OF A REVOLABS INC. SOLO EXECUTIVE DESKTOP WITH RESPECT TO FCC RULES CFR 47, PART 15D February 2006 INTENTIONAL RADIATOR SPECIFICATION

T5V02DSKSYS

TEST DATE: 1st – 8th September 2006

TESTED BY:		D WINSTANLEY
APPROVED BY:		P GREEN
		EMC PRODUCT MANAGER
DATE:	25 th September 2006	
Distribution:		

Copy Nos: 1.

1. REVOLABS INC.

2. FCC EVALUATION LABORATORIES

3. TRL COMPLIANCE Ltd

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

TRL COMPLIANCE LTDMOSS VIEWNIPE LANEUP HOLLANDWEST LANCASHIREWN8 9PYUNITED KINGDOMTELEPHONE+44(0)1695556666FAX+44(0)1695557077E-MAILtest@trl-emc.co.ukwww.trlcompliance.com

CONTENTS

CERTIFICATE OF CONFORMITY & COMPLIANCE	PAGE 3
APPLICANT'S SUMMARY	4
TESTS REQUIRED	5
EQUIPMENT TEST CONDITIONS	6
SYSTEM DESCRIPTION	6
TEST RESULTS	7-24
PHOTOGRAPHS	ANNEX A
PHOTOGRAPH No. 1: Test Setup	
PHOTOGRAPH No. 2: Transmitter Overview	
PHOTOGRAPH No. 3: Transmitter Connectors Overview	
PHOTOGRAPH No. 4: Top of PCB	
PHOTOGRAPH No. 5: Bottom of PCB	
PHOTOGRAPH No. 6: Bottom of PCB cans Removed	
PHOTOGRAPH No. 7: Antennas Mounted on PCB	
APPLICANT'S SUBMISSION OF DOCUMENTATION LIST	В
AC POWERLINE CONDUCTION	С
EMISSION BANDWIDTH	D
PEAK TRANSMIT POWER	E
POWER SPECTRAL DENSITY	F
ACCESS CRITERIA	G
CONNECTION ACKNOWLEDGEMENT	н
EMISSIONS INSIDE AND OUTSIDE THE SUB-BAND - RADIATED	I
BANDEDGE COMPLIANCE – CONDUCTED	J
FRAME PERIOD	К
EQUIPMENT CALIBRATION	L
MEASUREMENT UNCERTAINTY	Μ
Notes: 1. Component failure during test	YES [] NO [X]
2. If Yes, details of failure:	

2. If Yes, details of failure:

3. The facilities used for the testing of the product contain in this report are FCC Listed.

4. The contents of the attached applicants declarations and other supplied information are not covered by the scope of this laboratory's UKAS or FCC accreditations' and is provided in good faith.

CERTIFICATE OF CONFORMITY & COMPLIANCE

FCC IDENTITY:	T5V02DSKSYS	
PURPOSE OF TEST:	Certification	
TEST SPECIFICATION:	FCC RULES CFR 47, Part 15D February	2006
TEST RESULT:	Compliant to Specification	
EQUIPMENT UNDER TEST:	Solo Executive Desktop	
EQUIPMENT SERIAL No:	Conducted: 501050000523 Radiated: 501050000521	
EQUIPMENT TYPE:	UPCS Transceiver	
PRODUCT USE:	Personal communications	
CARRIER POWER:	12.12 dBm (Conducted)	
ANTENNA TYPE:	Integral	
ALTERNATIVE ANTENNA:	Not Applicable	
BAND OF OPERATION:	1920 MHz – 1930 MHz	
CHANNEL SPACING:	Not Applicable	
NUMBER OF CHANNELS:	5 frequencies, 6 double time slots per freq	uency giving 30 channels
FREQUENCY GENERATION:	SAW Resonator [] Crystal []	Synthesiser [X]
MODULATION METHOD:	Amplitude [] Digital [X]	Angle []
POWER SOURCE(s):	+110Vac	
TEST DATE(s):	1 st – 8 th September 2006	
ORDER No(s):	Pro Forma Invoice	
APPLICANT:	Revolabs Inc.	
ADDRESS:	63 Great Rd Maynard MA 01754 United States	
TESTED BY:		DWINSTANLEY
APPROVED BY:		P GREEN EMC PRODUCT MANAGER

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT):	Solo Executive Desktop		
EQUIPMENT TYPE:	UPCS Transceiver		
SERIAL NUMBER OF EUT:	Conducted: 501050000523 Radiated: 501050000521		
PURPOSE OF TEST:	Certification		
TEST SPECIFICATION(s):	FCC RULES CFR 47, Part 15D February 2006		
TEST RESULT:	COMPLIANT Yes [X] No []		
APPLICANT'S CATEGORY:	MANUFACTURER[X]IMPORTER[DISTRIBUTOR[TEST HOUSE[AGENT[
APPLICANT'S ORDER No(s):	Pro Forma Invoice		
APPLICANT'S CONTACT PERSON(s):	Mr M Bodley		
APPLICANT'S CONTACT PERSON(s): E-mail address:	Mr M Bodley MBodley@maestrolabs.com		
	·		
E-mail address:	MBodley@maestrolabs.com		
E-mail address:	MBodley@maestrolabs.com Revolabs Inc. 63 Great Rd Maynard MA 01754		
E-mail address: APPLICANT: ADDRESS:	MBodley@maestrolabs.com Revolabs Inc. 63 Great Rd Maynard MA 01754 United States		
E-mail address: APPLICANT: ADDRESS: TEL:	MBodley@maestrolabs.com Revolabs Inc. 63 Great Rd Maynard MA 01754 United States +1 (0) 978 897 5655		
E-mail address: APPLICANT: ADDRESS: TEL: FAX:	MBodley@maestrolabs.com Revolabs Inc. 63 Great Rd Maynard MA 01754 United States +1 (0) 978 897 5655 +1 (0) 978 897 5616		
E-mail address: APPLICANT: ADDRESS: TEL: FAX: TEST LABORATORY:	MBodley@maestrolabs.com Revolabs Inc. 63 Great Rd Maynard MA 01754 United States +1 (0) 978 897 5655 +1 (0) 978 897 5616 TRL Compliance Ltd		

TEST/EXAMINATION	RULE PART	APPLICABILITY
Coordination with Fixed Microwave Service	15.307 (b)	No note 1
Cross reference to Subpart B	15.309 (b)	Yes
Labelling Requirements	15.311 15.19 (a)(3)	Yes
Measurement Procedures	15.313	Yes
Antenna Requirement	15.317 15.203	Yes
Modulation Techniques	15.319 (b)	Yes
Conducted AC Powerline	15.315 15.207	Yes
Emission Bandwidth	15.323 (a)	Yes
Peak Transmit Power	15.319 (c)	Yes
Power Spectral Density	15.319 (d)	Yes
Antenna Gain	15.319 (e)	Yes
Automatic Discontinuation of Transmission	15.319 (f)	Yes
Radio Frequency Radiation Exposure	15.319 (i)	Yes
Monitoring Thresholds	15.323 (c)(2) 15.323 (c)(9)	Yes
Monitoring of Intended Transmit Window and Maximum Reaction Time	15.323 (c)(1)	Yes
Monitoring Bandwidth	15.323 (c)(7)	Yes
Access Criteria Functional Test	15.323 (c)(6)	Yes
Duration of Transmission	15.323 (c)(3)	Yes
Connection Acknowledgement	15.323 (c)(4)	Yes
Lower threshold Selected Channel, Power Accuracy, Segment Occupancy	15.323 (c)(5)	Yes
Monitoring Antenna	15.323 (c)(8)	Yes
Duplex Connections	15.323 (c)(10)	Yes
Alternative Monitoring Interval for Co-located Devices	15.323 (c)(11)	No Note 2
Fair Access to Spectrum Related to (c)(10) & (c)(11)	15.323 (c)(12)	Yes
Emission Inside and Outside the Sub-band	15.323 (d)	Yes
Frame Period	15.323 (e)	Yes
Frequency Stability	15.323 (f)	Yes

EQUIPMENT TEST / EXAMINATIONS REQUIRED

1.

2.	Product Use:	Personal Communications	
3.	Duty Cycle:		8.33%
4.	Transmitter bit or pulse rate and level:		2Mbps
5.	Temperatures:	Ambient (Tnom)	26°C
6.	Supply Voltages:	Vnom	+110Vac

Note: Vnom voltages are as stated above unless otherwise shown on the test report page

7.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]
8.	Channel spacing:	Narrowband Wideband	[] [X]

9. System Description:

The system is made up of two parts, a fixed part and a portable part. The portable part is a tie mounted microphone about the body, FCCID T5V01EXEMIC. The fixed part is a desktop unit and constitutes an RFP and microphone charger. The desktop unit has power, audio and USB connections.

The system operates in the 1920MHz -1930MHz band. The system use 5 different frequency channels 1.728MHz apart using MC/TDMA/TDD (Multi Carrier / Time Division Multiple Access / Time Division Duplex) using QPSK modulation.

The system employs a 10ms frame, divided into 24 equal timeslots, numbered 0-23. The system uses doubleslots only, where a double-slot always begins on an even-numbered slot. The Base station always transmits in the first half of the frame, and the Portable always transmits on the duplex mate in the second half. A physical bearer is composed of a transmit double-slot and a receive double-slot. The two halves of a given bearer are always exactly half a frame (5ms, 12 slots) apart.

During the testing the Solo Executive Desktop was frequency administered to allow operation on only certain channels during the test. The frequency administration was performed using software. A temporary antenna connector was supplied to allow conducted measurements where applicable.

CROSS REFERENCE TO SUBPART B - PART 15.309 (b)

The unit contains digital circuitry which is not directly related to the radio transmitter. See emissions inside and outside the sub-bands for results.

LABELLING INFORMATION - PART 15.311 & 15.19 (a)(3)

This information is contained in a separate document. See attached exhibit.

ANTENNA REQUIREMENTS – PART 15.317

The unit employs an integral antenna arrangement.

MODULATION TECHNIQUES - PART 15.319 (b)

The Revolabs Solo Executive Desktop is an isochronous device operating in the 1920 MHz – 1930 MHz frequency band.

The Revolabs Solo Executive Desktops modulation technique is based on DECT technology as described in European standards EN 300 175-2 and EN 300 175-3.

The Revolabs Solo Executive Desktops modulation techniques are MC/TDMA/TDD (Multi Carrier / Time Division Multiple Access / Time Division Duplex) using QPSK modulation.

TRANSMITTER CONDUCTED EMISSIONS – AC POWER LINE PART 15.315

SIGNIFICANT EMISSIONS

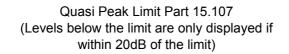
EUT transmitting control and signalling information, Microphone seated in charger

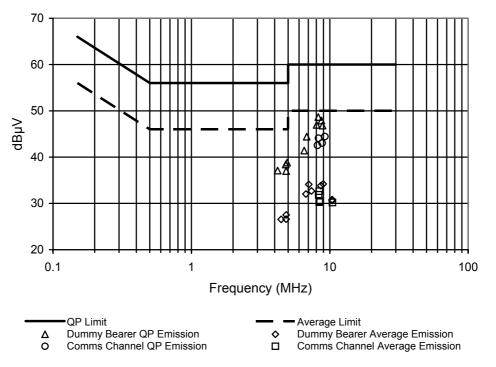
FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBμV)	DETECTOR	CONDUCTOR (L or N)	Limit (dBµV)
4.200	37.10	Quasi Peak	Neutral	56.00
4.385	37.00	Quasi Peak	Live	56.00
4.450	26.55	Average	Live	46.00
4.805	38.40	Quasi Peak	Neutral	56.00
4.835	26.60	Average	Neutral	46.00
4.845	27.51	Average	Live	46.00
4.910	38.80	Quasi Peak	Live	56.00
6.805	44.41	Quasi Peak	Neutral	56.00
6.530	41.41	Quasi Peak	Live	60.00
6.720	32.03	Average	Live	50.00
7.055	34.10	Average	Neutral	50.00
7.365	32.69	Average	Live	50.00
8.035	46.96	Quasi Peak	Neutral	56.00
8.255	48.66	Quasi Peak	Live	60.00
8.605	33.84	Average	Neutral	50.00
8.700	47.90	Quasi Peak	Neutral	56.00
8.865	46.80	Quasi Peak	Live	60.00
8.960	34.20	Average	Live	50.00
10.400	30.82	Average	Neutral	50.00
10.410	30.62	Average	Live	50.00

SIGNIFICANT EMISSIONS

EUT communicating with microphone

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	Limit (dBµV)
8.150	42.54	Quasi Peak	Live	60.00
8.295	44.08	Quasi Peak	Neutral	60.00
8.310	31.86	Average	Neutral	50.00
8.410	30.27	Average	Live	50.00
8.415	32.64	Average	Neutral	50.00
8.510	30.48	Average	Live	50.00
8.810	43.04	Quasi Peak	Live	60.00
9.220	44.46	Quasi Peak	Neutral	60.00
10.455	30.21	Average	Neutral	50.00

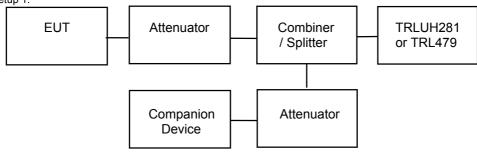

Notes:


- 1 See attached plot in Annex C.
- 2 Emissions that are 20 dB's or more below the limit are not necessarily recorded.
- 3 The EUT was tested while transmitting a dummy bearer and the microphone charging
- 4 The EUT was tested while in communications with the microphone.
 - 5 All cables were terminated appropriately.
 - 6 Closest emissions to the applicable limit are recorded

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003.

The test equipment used for the Transmitter Conducted Emissions – AC Power Line Part 15.207 test was:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	x
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	863906/018	UH05	x



TRANSMITTER EMISSION BANDWIDTH - PART 15.323 (a)

The emission bandwidth is measured in accordance with ANSI C63.17 sub-clause 6.1.3 using the setup below

Test Setup 1:

f _x = 1921.536 MHz				
ΔP (dBc)	fl (MHz)	fh (MHz)	Δf (MHz)	Limit
-26	1920.824462	1922.286000	1.46	50 kHz> Δf > 2.5MHz
-12	1920.992731	1922.079269	1.08	N/A
-6	1921.151385	1921.959077	0.81	N/A

f _x = 1924.992 MHz				
ΔP(dBc)	fl (MHz)	fh (MHz)	Δf (MHz)	Limit
-26	1924.267431	1925.738500	1.47	50 kHz> Δf > 2.5MHz
-12	1924.426085	1925.570315	1.14	N/A
-6	1924.628008	1925.397238	0.77	N/A

f _x = 1928.448 MHz				
ΔP(dBc)	fl (MHz)	fh (MHz)	Δf (MHz)	Limit
-26	1927.731654	1929.202808	1.47	50 kHz> Δf > 2.5MHz
-12	1927.880692	1929.044154	1.16	N/A
-6	1927.996077	1928.890473	0.91	N/A

Notes: 1 See emission bandwidth plot for 1928.448 MHz in Annex D

2 Emission bandwidth rounded up to

PEAK TRANSMIT POWER - PART 15.319 (c)

The peak transmit power is measured in accordance with ANSI C63.17 sub-clause 6.1.2 using test setup 1(page 10).

The limit for Peak Transmit Power (PTP) is calculated using the following formula:

PTP = 100
$$\mu$$
W x \sqrt{EBW}

This limit must be corrected to take into account any gain of the antenna greater than 3dBi. Where: EBW is the transmitter emission bandwidth in Hz as determined in the previous test.

Limit	EBW	=	1.470 MHz		
	PTP	=	100µW	x	$\sqrt{1.470}$ MHz
	PTP	=	20.8 dBm		

Results

Frequency (MHz)	Peak Transmit Power (dBm)	Limit (dBm)
1921.536	12.11	20.8
1924.992	12.11	20.8
1928.448	12.12	20.8

Note:

Permanent antenna was replaced with temporary antenna connector to enable conducted measurement. 1 2. 3. Antenna gain < 3dBi and so correction of the limit is not required.

See Annex E for 1928.448 MHz Peak Transmit Power Plot.

POWER SPECTRAL DENSITY - PART 15.319 (d)

The power spectral density is measured using test setup 1, (page 10). The peak emission level measured in a 3 kHz resolution bandwidth was compared directly to the limit.

Limit

The power spectral density shall not exceed 3mW in any 3 kHz bandwidth as measured with a spectrum analyser having a resolution bandwidth of 3 kHz.

Results

Frequency (MHz)	Power Spectral Density (mW/3kHz)	Limit (mW/3kHz)
1921.536	0.78	3
1924.992	0.77	3
1928.448	0.82	3

Note:

1. See Annex F for 1928.448 MHz Power Spectral Density Plot.

ANTENNA GAIN – PART 15.319 (e)

Any directional gain of the antenna exceeding 3dBi has an effect on the limit applied to the measurements taken for the peak transmit power test. If the directional gain of the antenna is less than 3dBi it is not required to be taken into account.

Maximum Antenna Gain	Exceeds 3dbi by
+2dBi	N/A

Note: Statement by manufacturer declaring maximum antenna gain. See attached exhibit.

AUTOMATIC DISCONTINUATION OF TRANSMISSION – PART 15.319 (f)

Automatic discontinuation of transmission means break off of transmissions that are not control and signalling information.

This test is monitored using the test setup 1(page 10) as per transmitter emission bandwidth and an active channel.

The T5V02DSKSYS is a fixed part and as such does transmit control and signalling information the counter part device is a portable part device and so does not transmit control and signalling information.

Part	Transmits Control and Signaling Information	Equipment Under Test
Fixed Part	Х	Х
Portable Part		

Results

The following tests were performed after a connection had been established with the counter part device

Number	Test	Reaction of EUT	Pass / Fail
1	Power removed from EUT	А	Pass
2	Counter part (Microphone) powered down	В	Pass
3	Counter part (Microphone) seated into charging socket	В	Pass

A - Connection breakdown, Cease of all transmissions.

B – Connection breakdown, EUT transmits control and signalling information.

C – Connection breakdown, Counterpart transmits control and signalling information.

RADIO FREQUENCY RADIATION EXPOSURE – PART 15.319 (i)

This information is contained is a separate document

MONITORING THRESHOLDS - PART 15.323 (c)(2); (c)(9)

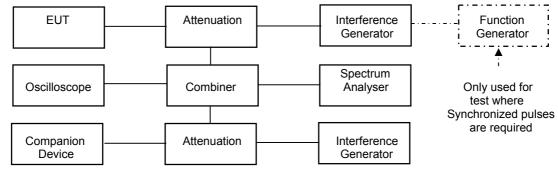
The monitoring threshold calculations are carried out in accordance with ANSI C63.17 sub-clause 7.2.1 using the calculations laid out in ANSI C63.17 sub-clauses 4.3.3 and 4.3.4

Calculation of monitoring threshold limits for isochronous devices:

Lower threshold: T_L = -174 +10Log₁₀B + M_U + P_{MAX} - P_{EUT} (dBm)

Upper threshold: $T_U = -174 + 10Log_{10}B + M_U + P_{MAX} - P_{EUT} (dBm)$

Where:


 $\begin{array}{l} B = Emission \ bandwidth \ (Hz) \\ M_U = dBs \ the \ threshold \ may \ exceed \ thermal \ noise \ (30 \ for \ T_L \ \& \ 50 \ for \ T_U) \\ P_{MAX} = Output \ Power \ Limit \ (dBm) \\ P_{EUT} = Transmitted \ power \ (dBm) \end{array}$

Monitor Threshold	B (MHz)	M∪ (dB)	P _{MAX} (dBm)	Р _{ЕUT} (dBm)	Threshold (dBm)
TL	1.47	30	20.8	12.12	-73.60
Τυ	1.47	50	20.8	12.12	-53.60

Note: 1. The upper threshold (T_U) is only applicable for systems with a minimum of 40 channels

The monitoring threshold tests are carried out in accordance with ANSI C63.17 sub-clause 7.3 using the test setup 2. The lower threshold level was determined following the procedure as laid out in ANSI C63.17 sub-clause 7.3.1 (a) Frequency administration was used to allow operation on the carrier closest to the centre of the band.

Test Setup 2:

Limits

The EUT must not transmit until the interference level is less than or equal to:

Measured Threshold Level $\leq T_L + U_M$

Where: T_L = Calculated Lower threshold level U_M = Margin of uncertainty in threshold measurements (6dB)

Results

Monitor threshold	Measured Threshold Level	Limit	Pass/Fail	
Lower Threshold (dBm)	-74.6 dBm	-67.6 dBm	Pass	
Upper threshold (dBm)	N/A	N/A	Pass	
Notes: 1. The threshold level for the Solo Executive Desktop is set using the 'thr' command as detailed in the document C7490-TM-002.				

2. The value of 'thr' for the purpose of this test was 20 (decimal) it then remained at this level for the rest of the testing

RU1269/7191

Page 13 of 61

MONITORING OF INTENDED TRANSMIT WINDOW AND MAXIMUM REACTION TIME - PART 15.323 (c)(1)

The monitoring of intended transmit window was carried out in accordance with ANSI C63.17 sub-clause 7.5 using test setup 2 (page 13).

The EUT was frequency administered to only one operating frequency channel and only one of the interference generators in the test setup was utilized. The interference generator was fed pulses from the function generator to produce a pulsed carrier of the specified time length and the output of the interference generator was set to the required level. The pulse generator and companion device were synchronized so the position of the pulses corresponded to the time-slot pattern in the frame of the EUT. The test is performed with the unit frequency administered to operate only on bottom, middle or top frequency.

For each of the required tests the pulse width and interference level are as below:

Test c)

With the interference generator output set at the calculated threshold level (lower) and the width of the pulse interference exceeds the largest of 50µs and 50 $\sqrt{1.25/B}$ µs verify that the EUT does not establish a connection.

Test d)

With the interference generator output set at 6dB above the calculated threshold level (lower) and the width of the pulse interference exceeds the largest of 35 μ s and 35 $\sqrt{1.25/B}$ µs verify that the EUT does not establish a connection.

Test e)

With the interference generator output set at 10dB above the calculated threshold level (lower) and the width of the pulse interference exceeds the largest of 75 μ s and 75 $\sqrt{1.25/B}$ µs verify that the EUT does not establish a connection.

Where B = Emission bandwidth of the EUT in MHz

Notes:

Results

Test Equation	Pulse Width	Interferer Level	(Connectio	า	Pass/Fail
(µs)	(µs)	(dBm)	F∟	Fм	F _H	Fass/Fall
$50\sqrt{1.25/B}$	50	T _L + U _m	No	No	No	Pass
$35\sqrt{1.25/B}$	35	T _L + U _m + 6	No	No	No	Pass
$75\sqrt{1.25/B}$	75	T _L + U _m + 10	No	No	No	Pass

1. T_L is the calculated lower threshold.

2. U_M is Margin of uncertainty in threshold measurements (6dB)

ACCESS CRITERIA FUNCTIONAL TEST- PART 15.323 (c)(6)

The access criteria test interval tests were carried out in accordance with ANSI C63.17 sub-clause 8.1.1 and 8.1.2 using test setup 2 (page 13) These tests only apply to an EUT capable of transmitting control and signaling information. ANSI C63.17 sub-clause 8.1.3 is not required as the EUT passes ANSI C63.17 sub-clause 8.1.2

The EUT was frequency administered to only one operating frequency. The interference generator was fed pulses from the function generator to produce a pulsed carrier of the specified time length and the output of the interference generator was set to the required level. The pulse generator and companion device were synchronized so the position of the pulses corresponded to the time-slot pattern in the frame of the EUT. The tests were performed to find the following:

ANSI C63.17 sub-clause 8.1.1

Test b)

The interference generator was setup to introduce interference on all but one time slot (double slot). The free slot was set to coincide with the start of slot 0. The transmissions if any should occur on the free time slot. Verify that the access criteria are checked not less frequently than every 30 seconds

Results

Test	Test Data Required	Test Result	Limit	Pass/Fail
8.1.1 Test b	Any transmissions and on which time slot	Transmissions occurred on time slot 2	Transmit on time slot 2	Pass

Note:

1. The access criteria test is performed 5 times.

2. See Annex G for Access criteria test being performed.

ANSI C63.17 sub-clause 8.1.2

f1 = 1924.992 MHz f2 = 1923.264 MHz

Test b)

With no interference on the EUT must transmit on f1 or f2. The interference is then applied to the channel used by the EUT at the appropriate level. Verify that after the application of interference the EUT transmits on the open channel after the next pause.

Results

Test	Before interference applied EUT transmits on	After interference applied on f1 EUT transmits on	Limit	Pass/Fail
8.1.2 Test b	f1	f2	Change channel after application of interference	Pass

MONITORING BANDWIDTH - PART 15.323 (c)(7)

The monitoring bandwidth test was carried out in accordance with ANSI C63.17 sub-clause 7.4.

ANSI C63.17 sub-clause 7.4 states that if the monitoring is made through the radio receiver used by the EUT for communication the intended monitoring bandwidth requirements met.

As declared by the manufacturer the EUT uses the radio receiver used for communication for monitoring the intended monitoring bandwidth therefore requirements of ANSI C63.17 sub-clause 7.4 are met.

DURATION OF TRANSMISSION - PART 15.323 (c)(3)

The duration of transmission test was carried out in accordance with ANSI C63.17 sub-clause 8.2.2 using test setup 2.(page 13) (No interference generators were active during this test).

The time/spectrum window occupied by the connection was monitored using a spectrum analyzer for the spectrum window and an oscilloscope for the time slot. The connection was watched over a period of over 6 hours during this time the access criteria was repeated several times.

Result

Repetition of Access Criteria	Maximum Transmission Time	Maximum Transmission Time Limit	Pass/Fail
First	2 Hours	<8 Hours	Pass
Second	2 Hours	<8 Hours	Pass

CONNECTION ACKNOWLEDGEMENT - PART 15.323 (c)(4)

The connection acknowledgement test was carried out in accordance with ANSI C63.17 sub-clause 8.2.1 using test setup 2. (Page 13)(No interference generators were active during this test).

The test was carried out in two parts. The first was to verify that with the companion device off the EUT does not transmit on the same time/spectrum window for more than the limit. The second was to verify that after a connection is broken the EUT terminates its transmission on the current communication channel within 30 seconds or less.

Result

Test	Time Taken (seconds)	Limit (seconds)	Pass/Fail	
Change of communication channel (note 1)	<1s (note 2)	1	Pass	
Change of control Channel (note 1)	29.46 seconds (note 3)	30	Pass	
Termination of Communication channel after acknowledgements are blocked	5.54 seconds	30	Pass	
Note: 1. The companion device is off for these tests.				

1. The companion device is off for these tests.

- 2. The EUT will not transmit a communication channel with the companion device off.
- 3. The longest period before the access criteria is repeated over the 5 tests.
- 4. See Annex H for communication channel termination plot.

UPPER THRESHOLD SELECTED CHANNEL, POWER ACCURACY, SEGMENT OCCUPANCY – PART 15.323 (c)(5)

Least interfered Channel

As this system has less than 40 channels the least interfered channel testing is not applicable. As the EUT utilises a leased interfered channel protocol this testing was performed for information only. The least interfered channel testing relating to the lower monitoring threshold shall be assessed. This test was carried out in accordance with ANSI C63.17 sub-clause 7.3.3 using test setup 2 (page 13).

The EUT was frequency administered to operating on two frequencies only, f1 and f2.

f1 = 1924.992 MHz f2 = 1923.264 MHz

Test b)

Interference on f1 was set at $T_L + U_M + 7dB$ and at $T_L + U_M$ on f2. Initiate communication. The EUT should transmit on f2. Repeat 5 times. If the EUT transmits on f1 the test is failed.

Test c)

Interference on f1 was set at $T_L + U_M$ and at $T_L + U_M + 7dB$ on f2. Initiate communication. The EUT should transmit on f1. Repeat 5 times. If the EUT transmits on f2 the test is failed.

Test d)

Interference on f1 was set at $T_L + U_M + 1$ dB and at $T_L + U_M - 6$ dB on f2. Initiate communication. The EUT should transmit on f2. Repeat 5 times. If the EUT transmits on f1 the test is failed.

Test e)

Interference on f1 was set at $T_L + U_M - 6dB$ and at $T_L + U_M + 7dB$ on f2. Initiate communication. The EUT should transmit on f1. Repeat 5 times. If the EUT transmits on f2 the test is failed.

Result

Test	Transmit on f1	Transmit on f2	Wanted Transmit Channel	Pass/Fail
b	No	No (note2)	f2	Pass
С	No	No (note2)	f1	Pass
d	No	Yes	f2	Pass
e	Yes	No	f1	Pass

Note:

1. All tests were repeated 5 times.

2. Tests b and c are deemed to comply as no transmissions occurred.

Selected Channel Confirmation

This test was carried out in accordance with ANSI C63.17 sub-clause 7.3.4 using test setup 2 (page 13). The test is to ensure the EUT monitors the time/spectrum window immediately prior to transmission.

The EUT was frequency administered to operating on two frequencies only, f1 and f2.

f1 = 1924.992 MHz f2 = 1923.264 MHz

Test a)

Interference is applied on f1 at a level of T_L + U_M. Verify a connection is established on f2.

Any connection is terminated.

Test b)

```
Interference is applied on f2 at a level of T_L + U_M and immediately removed from f1 and the EUT is immediately caused to attempt transmission. In this case the EUT should transmit on f1
```

Result

Test	Transmit on f1	Transmit on f2	Wanted Transmit Channel	Pass/Fail
а	No	Yes	f2	Pass
b	Yes	No	f1	Pass

Power Accuracy

The power measurement resolution for the previous comparison must be accurate to within 6dB. The monitoring threshold test covered in Part 15.323 (c)(2) automatically proves that this requirement is met.

Segment Occupancy

This section is not applicable as no units will be located within 1 metre of each other.

MONITORING ANTENNA - PART 15.323 (c)(8)

The antenna of the EUT used for transmitting is the same antenna that is used for monitoring.

DUPLEX CONNECTIONS - PART 15.323 (c)(10)

The tests laid out in this section verify that the access criteria are met by two devices communicating over a duplex connection. For the purposes of this testing the EUT is the initiating device and the companion is the responding device. These tests are carried out in accordance with ANSI C63.17 sub-clause 8.3.1 using test setup 2 (page 13) Before all tests are carried out any connection is terminated.

Test b)

The system is restricted to operation on one frequency (1924.992 MHz) using administration. Verify that a connection between the EUT and its companion device can be made.

Test c) & d)

Apply interference at a level T_L + U_M to all transmit time slots and to all but one receive time slots. The EUT should not establish a connection.

Test e) & f)

Apply interference at a level $T_L + U_M$ to all receive time slots and to all but one transmit time slots. The EUT should not establish a connection.

Result

Test	Connection Made	Correct Time Slot	Required Slot	Pass/Fail
b	Yes	N/A	Any	Pass
c & d	No	N/A	N/A	Pass
e & f	No	N/A	N/A	Pass

ALTERNATIVE MONITORING INTERVAL FOR CO-LOCATED DEVICES - PART 15.323 (c)(11)

This test is carried out in accordance with ANSI C63.17 sub-clause 8.4.

The manufacturer declares that this provision is not utilized by the EUT.

FAIR ACCESS TO SPECTRUM RELATED TO (c)(10) & (c)(11) – PART 15.323 (c)(12)

The provisions of (c)(10) & (c)(11) shall not be used to extend the range of spectrum occupied over space or time for the purposes of denying fair access to the spectrum to other devices.

The manufacturer declares that this device does not work in a mode which denies fair access to the spectrum to others.

EMISSIONS INSIDE AND OUTSIDE THE SUB-BAND - RADIATED - PART 15.323 (d)

EUT set to channel nearest lower bandedge	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	PRE AMP (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	FIELD STRENGTH (µV/m)	LIMIT (µV/m)
1.705MHz - 30MHz								
30MHz - 88MHz	47.95(d) 87.10(d)	15.90 17.15	0.80 1.05	-	8.50 7.90	25.2 26.1	18.19 20.18	100 100
88MHz - 216MHz	143.95(d) 168.00(d) 240.00(d) 480.00(d) 528.05(d)	12.21 13.28 16.40 15.70 11.80	1.39 1.52 1.80 2.60 2.80		10.40 9.00 10.80 17.00 17.80	24.0 23.8 29.0 35.3 32.4	15.85 15.48 28.18 58.21 41.68	150 150 150 150 150
216MHz - 960MHz								
960MHz - 1GHz								
1GHz - 20GHz	3843.728(r) 5764.704	49.82 36.64	3.75 5.94	-37.90 -36.00	32.20 34.80	47.87 41.38	247.46 117.22	500 500
	1.705	MHz to 30N	ЛНz		30µ	iV/m @ 30	m	
	30M	Hz to 88MI	Ηz		100µV/m @ 3m			
Limits	88MF	Iz to 216M	Hz	150µV/m @ 3m				
LITIUS	216M	Hz to 960N	1Hz		200µ	iV/m @ 3	m	
	9601	/Hz to 1GH	Ηz		500µ	ıV/m @ 3	m	
	1GF	Iz to 20GH	z		500µ	IV/m @ 3	m	

These measurements are carried out in accordance with ANSI C63.17 sub-clause 6.1.6.

Notes:

1 Results quoted are extrapolated as indicated.

- 2 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a.
- 3 (d) Indicates emission due to digital circuitry not directly associated with the radio transmitter.
- 4 Measurements >1GHz @ 3m as per Part 15.31f(1).
- 5 Receiver detector <1GHz = CISPR, Quasi-Peak, 120kHz bandwidth.
- 6 Receiver detector >1GHz = Peak Hold, 1MHz resolution bandwidth.
- 7 New batteries used for battery powered products.
- 8 See Annex I for scan plot 30MHz 1GHz.
- 9 See Annex J for conducted lower band edge compliance plot.
- 10 (r) Indicates restricted band.
- 11 Highest emission recorded for EUT transmitting dummy bearer or in communications with microphone.

Test Method:

- 1 As per Radio Noise Emissions, ANSI C63.4: 2003.
 - 2 Measuring distances as Notes 1 to 4 above.
 - 3 EUT 0.8 metre above ground plane.
 - 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes. Maximum results recorded.

EMISSIONS INSIDE AND OUTSIDE THE SUB-BAND - RADIATED - PART 15.323 (d)

EUT set to channel nearest upper bandedge	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	PRE AMP (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	FIELD STRENGTH (µV/m)	LIMIT (µV/m)
1.705MHz - 30MHz								
30MHz - 88MHz	47.95(d) 87.10(d)	15.90 17.15	0.80 1.05	-	8.50 7.90	25.2 26.1	18.19 20.18	100 100
88MHz - 216MHz	143.95(d) 168.00(d) 240.00(d) 480.00(d) 528.05(d)	12.21 13.28 16.40 15.70 11.80	1.39 1.52 1.80 2.60 2.80		10.40 9.00 10.80 17.00 17.80	24.0 23.8 29.0 35.3 32.4	15.85 15.48 28.18 58.21 41.68	150 150 150 150 150
216MHz - 960MHz								
960MHz - 1GHz								
1GHz - 20GHz	3857.540(r) 5785.334	46.38 43.30	3.75 5.94	-37.90 -36.00	32.20 34.80	44.43 48.04	166.53 252.35	500 500
	1.705	MHz to 30N	ЛНz		30µ	V/m @ 30	m	
	30M	Hz to 88MI	Ηz	100µV/m @ 3m				
Limite	88MF	Iz to 216M	Hz	150µV/m @ 3m				
Limits	216M	Hz to 960M	1Hz		200µ 210µ		m 0m	
	9601	/Hz to 1GF	Ηz		500µ	V/m @ 3	m	
	1GF	Iz to 20GH	lz		500µ	V/m @ 3	m	

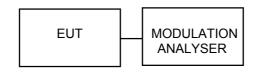
These measurements are carried out in accordance with ANSI C63.17 sub-clause 6.1.6

Notes:

1 Results quoted are extrapolated as indicated.

- 2 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a.
- 3 (d) Indicates emission due to digital circuitry not directly associated with the radio transmitter.
- 4 Measurements >1GHz @ 3m as per Part 15.31f(1).
- 5 Receiver detector <1GHz = CISPR, Quasi-Peak, 120kHz bandwidth.
- 6 Receiver detector >1GHz = Peak Hold, 1MHz resolution bandwidth.
- 7 New batteries used for battery powered products.
- 8 See Annex I for scan plot 30MHz 1GHz.
- 9 See Annex J for conducted lower band edge compliance plot.
- 10 (r) Indicates restricted band.
- 11 Highest emission recorded for EUT transmitting dummy bearer or in communications with microphone.

Test Method:


- 1 As per Radio Noise Emissions, ANSI C63.4: 2003.
 - 2 Measuring distances as Notes 1 to 4 above.
 - 3 EUT 0.8 metre above ground plane.
 - 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes. Maximum results recorded.

The test equipment used for the Transmitter Spurious Emissions - Radiated - Part 15.209 tests is shown overleaf:

TYPE OF	MAKER/				ACTUAL
EQUIPMENT	SUPPLIER	MODEL No	SERIAL No	TRL No	EQUIPMENT USED
TEMPERATURE CHAMBER	SHARTREE	TCC 125-815P	CS 203	11	
HORN ANTENNA	EMCO	3115	9010-3580	138	x
RESISTIVE COUPLER	ELCOM	RC-3-50	N/A	119	
RESISTIVE COUPLER	ELCOM	RC-4-50	N/A	170	
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	
SIGNAL GENERATOR	MARCONI	2042	119562/021	254	
TEMPERATURE INDICATOR	FLUKE	52 Series II	74700044	426	
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SIGNAL GENERATOR	HP	8341B	2819A02239	552	
PRE AMP	AGILENT	8449B	3008A016	572	x
RANGE 1	TRL	3 METRE	N/A	UH06	x
MULTIMETER	AVOMeter	M3004	M3270006	UH41	
BILOG ANTENNA	CHASE	CBL6112	2129	UH93	x
OSCILLOSCOPE	TEKTRONIX	TDS520B	B020491	UH122	
POWER SUPPLY	MANSON	N/A	N/A	UH177	
RECEIVER	ROHDE & SCHWARZ	ESVS 10	841431/014	UH186	x
FUNCTION GENERATOR	WAVETEK	271	C6841078	UH221	
SPECTRUM ANALYSER	ROHDE & SCHWARZ	FSP 40	N/A	N/A	
MODULATION ANALYSER	ROHDE & SCHWARZ	CMD 60	N/A	N/A	

FRAME PERIOD 15.323 (e)

Frame repetition stability is tested according with ANSI C63.17 sub-clause 6.2.2. Frame period and jitter are tested in accordance with ANSI C63.17 sub-clause 6.2.3. The test setup below is used for the above measurements.

Frame Repetition Stability

This is the mean value of the frame repetition rate recorded over 1000 samples. For devices that divide access in time the repetition rate shall not exceed 10ppm.

Result

Frame Repetition Stability (ppm)	Limit (ppm)	Pass/Fail
0.06 ppm	10ppm	Pass

Frame Period and Jitter

Jitter is the difference in time between the rising edges of consecutive pulses.

Result

Maximum Jitter	3xSD Jitter	Frame period	Lir (µ	Pass/Fail	
(µs)	(µs)	(ms)	Frame Period (ms)	Jitter (µs)	Pass/Fall
0.00	0.00	10.00	2 or 10/X	25	Pass

FREQUENCY STABILITY - PART 15.323 (e)

The frequency stability is tests are carried out according with ANSI C63.17 sub-clause 6.2.1 using test setup number 3(page 23). This testing is carried out with the following conditions over 5000 samples.

Results

Temperature (°C)	Voltage (Vdc)	Fc (MHz)	offset (kHz)	offset (ppm)	Limit (ppm)
20	Vnom	1924.997	+5.0	2.59	±10ppm
20	85% Vnom	1924.997	+5.0	2.59	±10ppm
20	110% Vnom	1924.997	+5.0	2.59	±10ppm
-20	Vnom	1924.988	-4.0	-2.07	±10ppm
+55	Vnom	1924.986	-6.0	-3.11	±10ppm

ANNEX A

PHOTOGRAPHS

PHOTOGRAPH No. 1

TEST SETUP

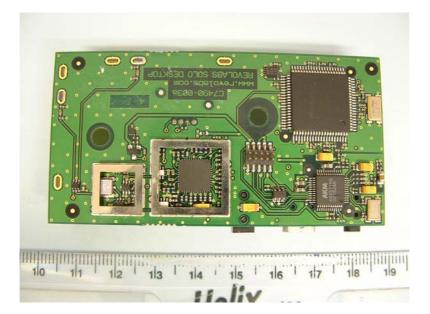
RU1269/7191

PHOTOGRAPH No. 2 TRANSMITTER OVERVIEW

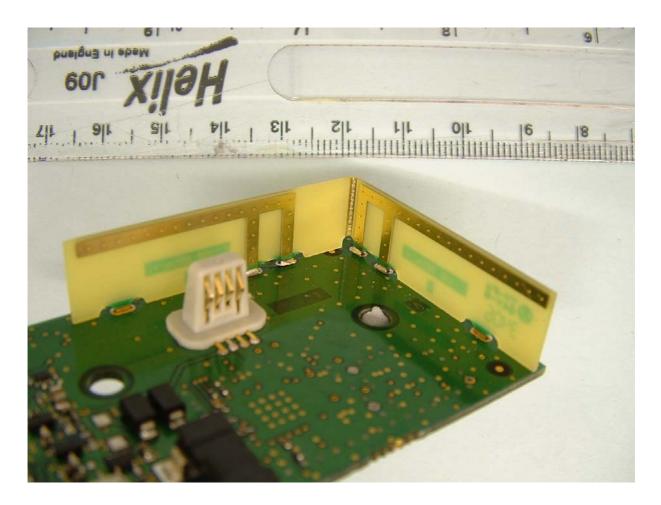
PHOTOGRAPH No. 3 TRANSMITTER CONNECTORS OVERVIEW

PHOTOGRAPH No. 4

TOP OF PCB



PHOTOGRAPH No. 5

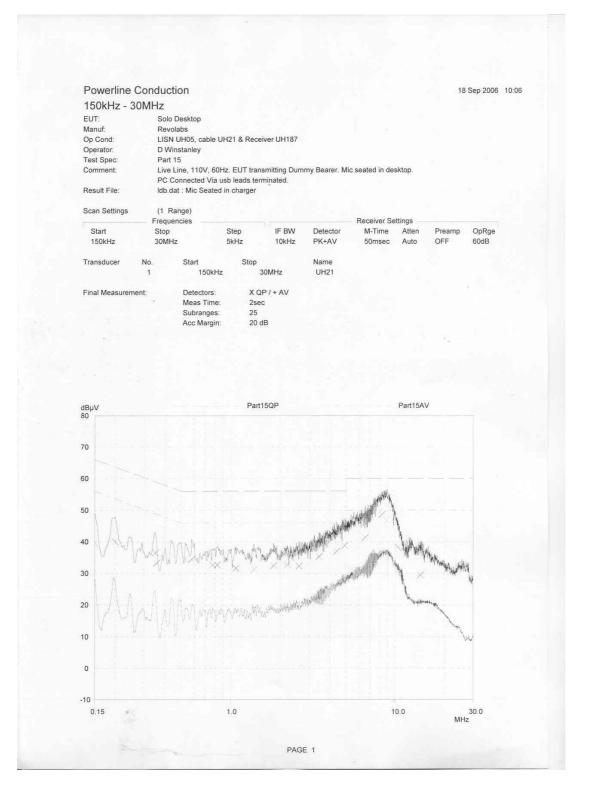

BOTTOM OF PCB

PHOTOGRAPH No. 6 BOTTOM OF PCB CANS REMOVED

PHOTOGRAPH No. 7 ANTENNAS MOUNTED ON PCB

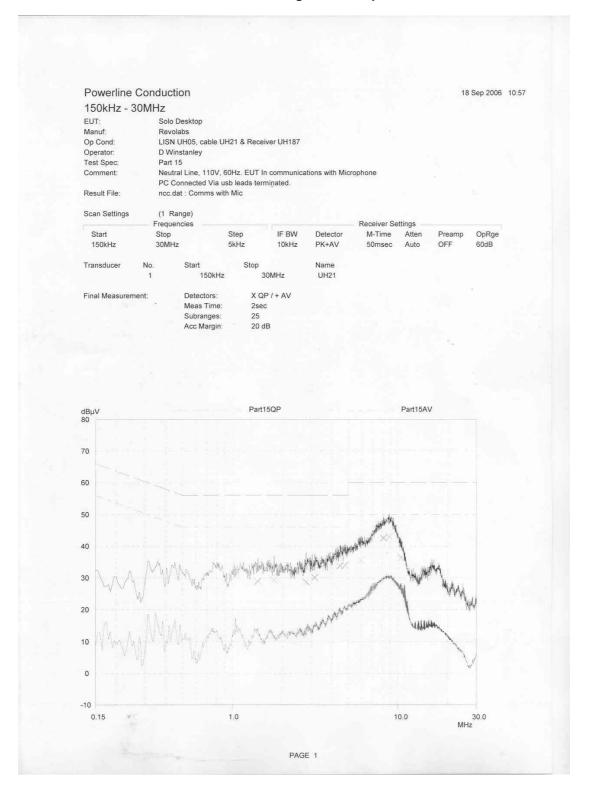
ANNEX B

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST


APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

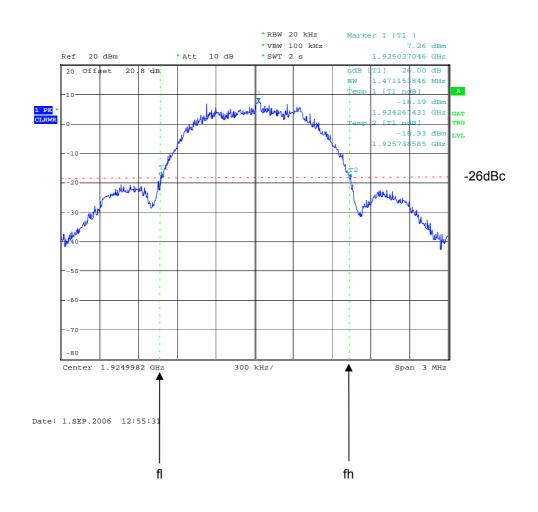
a.	ТСВ	-	APPLICATION FEE	[X] [X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- - -	PHOTOGRAPHS DECLARATION DRAWINGS	[] [] [X]
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] [] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[X] [] [] []
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[X] [] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[X] [] [] []
I.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

ANNEX C


AC POWERLINE CONDUCTION

EUT transmitting control and signalling information, Microphone seated in charger

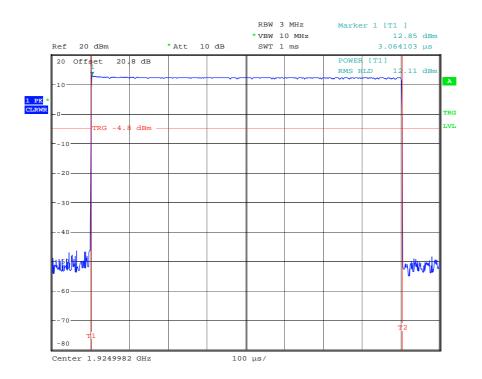
RU1269/7191


EUT communicating with microphone

RU1269/7191

ANNEX D

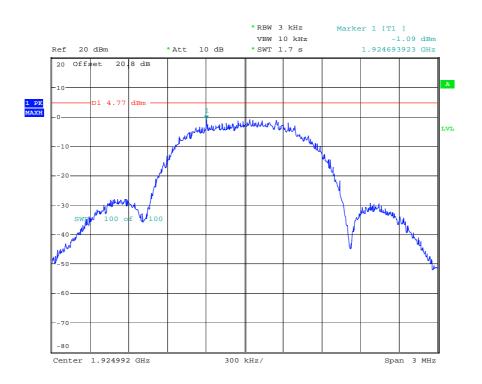
EMISSION BANDWIDTH


EMISSION BANDWIDTH

fl	= 1924.268 MHz
fh	= 1925.738 MHz
Occupied bandwidth	= 1.47 MHz

ANNEX E

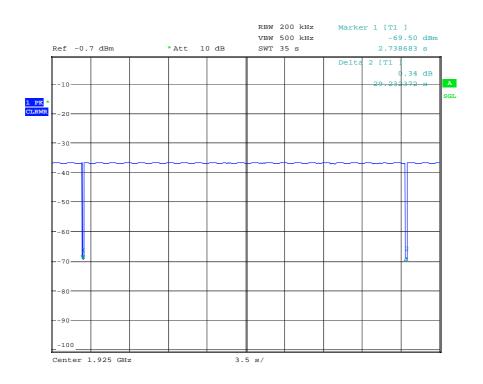
PEAK TRANSMIT POWER


PEAK TRANSMIT POWER

Date: 1.SEP.2006 12:53:22

ANNEX F

POWER SPECTRAL DENSITY



POWER SPECTRAL DENSITY

Date: 1.SEP.2006 15:19:28

ANNEX G

ACCESS CRITERIA

ACCESS CRITERIA REPETITION TIME

Date: 4.SEP.2006 14:06:14

ANNEX H

CONNECTION ACKNOWLEDGEMENT

CONNECTION ACKNOWLEDGEMENT

ANNEX I

EMISSIONS INSIDE AND OUTSIDE THE SUB-BAND - RADIATED

07 Sep 2006 16:02

OpRge

60dB

Receiver Settings

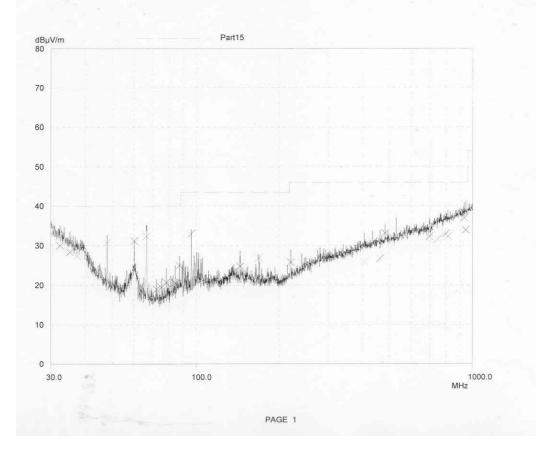
Atten

Auto

Preamp

ON

M-Time


1msec

TRL Compliance Ltd E-Field Radiation (30MHz-1GHz)

EUT:	Solo Desktop
Manuf:	Revolabs
Op Cond:	Pre Scan
Operator:	D Winstanley
Test Spec:	Part 15
Comment:	EUT on Comms with Mic on BOTTOM channel. Mic outside chamber
	Rx Antenna Horizontal
Result File:	dbv.dat : New Measurement

Scan Settings (1 Range) Frequencies Start Stop Step IF BW Detector 30MHz 1000MHz 50kHz 120kHz PK Stop 1000MHz No. 21 22 Transducer Start Name UH72 30MHz 1 30MHz 1000MHz UH93

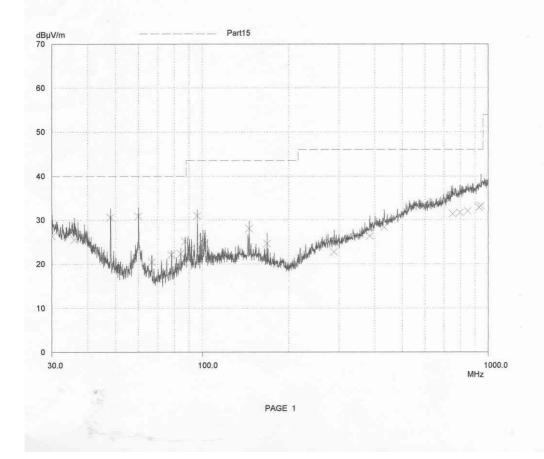
	22	50141112	100011112	
Final M	easurement:	Detector:	X QP	
		Meas Time:	2sec	
		Subranges:	50	
		Acc Margin:	10 dB	

EUT SET TO CHANNEL NEAREST LOWER EDGE OF BAND

RU1269/7191

07 Sep 2006 12:21

TRL Compliance Ltd

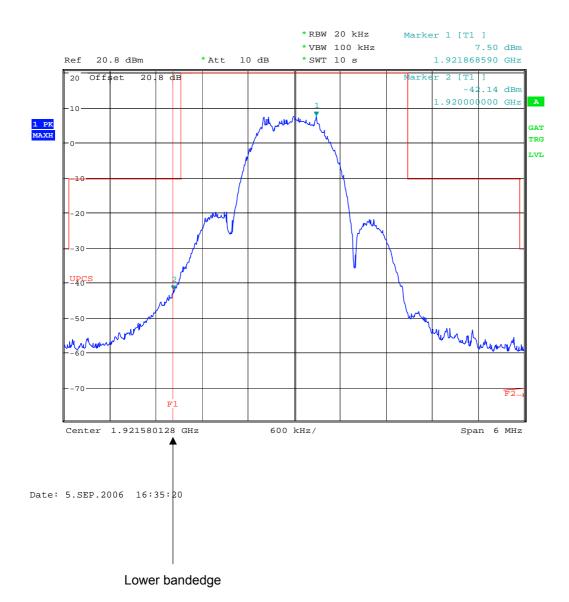

Radiation	

EUT:	Solo Desktop
Manuf:	Revolabs
Op Cond:	Prescan 30MHz - 1000MHz
Operator:	D Winstanley
Test Spec:	Part15
Comment:	EUTon Comms Channel on TOP Channel. Mic outside chamber.
	Leads Terminated. RX Antenna Vertical

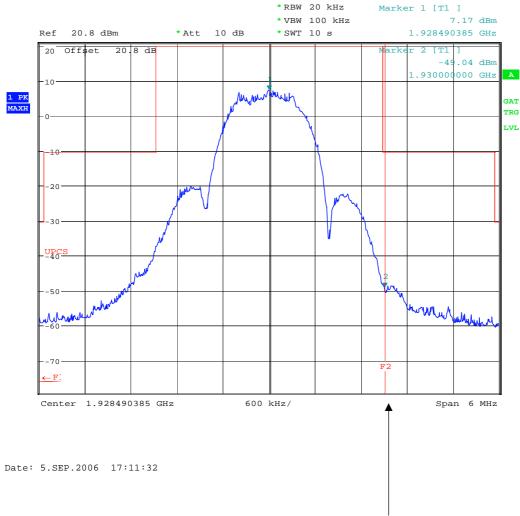
Acc Margin:

Scan Settings		Range) juencies	11 A.			Receiver Se	ttings		
Start	Stop	2	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
30MHz	1000	OMHz	50kHz	120kHz	PK	1msec	Auto	ON	60dB
Transducer	No.	Start	Stop		Name				
1	21	30N	1Hz 10	00MHz	UH72				
	22	30N	1Hz 10	00MHz	UH191				*
Final Measurem	nent: .	Detector:	X QI	Р					
		Meas Tim	ie: 2sec						
		Subrange	s: 50						

10 dB



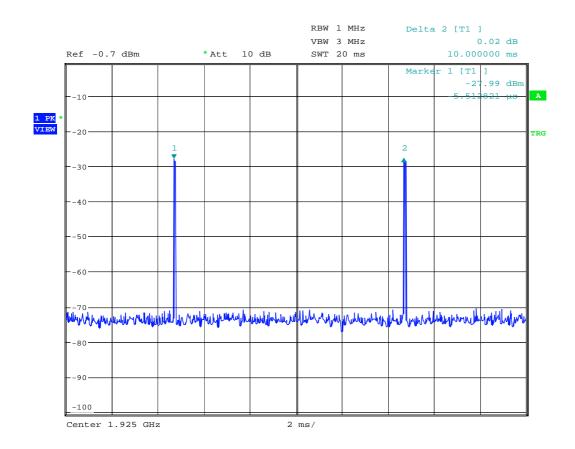
EUT SET TO CHANNEL NEAREST UPPER EDGE OF BAND


RU1269/7191

ANNEX J

BANDEDGE COMPLIANCE

LOWER BANDEDGE COMPLIANCE


UPPER BANDEDGE COMPLIANCE

Upper bandedge

ANNEX K

FRAME PERIOD

FRAME PERIOD

Date: 4.SEP.2006 16:41:02

Control and Signalling Information

Date: 4.SEP.2006 16:41:31

Communications Channel Active

ANNEX L

EQUIPMENT CALIBRATION

TRL	Equipment		Last Cal	Calibration	Due For	
Number	Туре	Manufacturer	Calibration	Period	Calibration	
UH005	LISN/AMN	AMN R&S		12	11/04/2007	
UH006	3m Range ERP CAL	TRL	06/01/2006	12	06/01/2007	
UH028	Log Periodic Ant	Schwarbeck	28/04/2005	24	28/04/2007	
UH029	Bicone Antenna	Schwarbeck	27/04/2005	24	27/04/2007	
UH041	Multimeter	AVOmeter	20/12/2005	12	20/12/2006	
UH122	Oscilloscope	Tektronix	07/06/2005	24	07/06/2007	
UH132	Power meter	Marconi	03/01/2006	12	03/01/2007	
UH162	ERP Cable Cal	TRL	06/01/2006	12	06/01/2007	
UH177	Power supply	Manson	Use C	Calibrated Multin	meter	
UH186	Receiver	R&S	01/02/2006	12	01/02/2007	
UH191	Bilog Antenna	Schaffner	11/08/2006	24	11/08/2008	
UH221	Function Generator	Wavetek	Use Ca	alibrated oscillo	scope	
UH228	Power Sensor	Marconi	03/01/2006	12	03/01/2007	
UH253	1m Cable N type	TRL	23/02/2006	12	23/02/2007	
UH254	1m Cable N type	TRL	05/01/2006	12	05/01/2007	
UH271	1m Cable N type	TRL	23/02/2006	12	23/02/2007	
UH273	1m Cable N type	TRL	23/02/2006	12	23/02/2007	
UH281	Spectrum Analyser	R&S	24/07/2006	12	24/07/2007	
UH293	1m Cable SMA Type	Megaphase	(Calibrate in use		
L005	CMTA	R&S	05/12/2005	12	05/12/2006	
L007	Loop Antenna	R&S	29/03/2005	24	29/03/2007	
L011	Temperature chamber	Shartree	Use Calibrated Temperature Indicator			
L119	Combiner	Elcom	n Calibrate in use			
L107	Attenuator	Bird	(Calibrate in use		
L138	1-18GHz Horn	EMCO	15/04/2005	24	15/04/2007	
L139	1-18GHz Horn	EMCO	03/05/2005	24	03/05/2007	
L170	Combiner	Elcom	Calibrate in use			
L176	Signal Generator	Marconi	15/02/2006	12	15/02/2007	
L193	Bicone Antenna	Chase	12/10/2003	24	12/10/2005	
L203	Log Periodic Ant	Chase	21/10/2003	24	21/10/2005	
L221	Attenuator	Bird	(Calibrate in use		
L254	Signal Generator	Marconi	04/01/2006	12	04/01/2007	
L280	18GHz Cable	Rosenberger	05/01/2006	12	05/01/2007	
L343	CCIR Noise Filter	TRL	07/06/2005	12	07/06/2006	
L426	Temperature Indicator	Fluke	04/01/2006	12	04/01/2007	
L479	Analyser	Anritsu	18/11/2005	12	18/11/2006	
L552	Signal Generator	Agilent	25/04/2005	12	25/04/2006	
L572	Pre Amp	Agilent	03/02/2006	12	03/02/2007	
N/A	High Pass Filter	AFL	23/02/2006	12	23/02/2007	
N/A	CMD60	R&S				
N/A	Signal Generator HP		29/06/2006	12	29/06/2007	
N/A	RF Diode		Fo	r information or	nly	

ANNEX M

MEASUREMENT UNCERTAINTY

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

Uncertainty in test result (Equipment - TRLUH120) = **2.18dB** Uncertainty in test result (Equipment – TRL05) = **1.08dB** Uncertainty in test result (Equipment – TRL479) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = **4.71dB**

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

Uncertainty in test result (Equipment - TRLUH120) = **119ppm** Uncertainty in test result (Equipment – TRL05) = **0.113ppm** Uncertainty in test result (Equipment – TRL479) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz – 30MHz) = 4.8dB, Uncertainty in test result (30MHz – 1GHz) = 4.6dB, Uncertainty in test result (1GHz-18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = **3.31dB** Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = **4.43dB** Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = **5.34dB** Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = **3.14dB**

[10] Channel Bandwidth

Uncertainty in test result = 15.5%

[11] Amplitude and Time Measurement – Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

[11] Power Line Conduction

Uncertainty in test result = **3.4dB**

[12] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency) Uncertainty in test result = 1.32dB (amplitude)

[13] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

[14] Receiver Blocking – Listen Mode, Radiated

Uncertainty in test result = 3.42dB

[15] Receiver Blocking – Talk Mode, Radiated

Uncertainty in test result = **3.36dB**

[16] Receiver Blocking – Talk Mode, Conducted

Uncertainty in test result = **1.24dB**

[17] Receiver Threshold

Uncertainty in test result = 3.23dB

[18] Transmission Time Measurement

Uncertainty in test result = 7.98%