Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at the antenna terminal:	<u>12.30</u> (dBm)
Maximum peak output power at the antenna terminal:	16.98243652 (mW)
Antenna gain(typical):	2.15 (dBi)
Maximum antenna gain:	1.640589773 (numeric)
Prediction distance:	<u> </u>
Prediction frequency:	<u>1922</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	<u> </u>

Power density at prediction frequency: 0.005543 (mW/cm^2)

Collocated RF Exposure MPE Calculation for simultaneous operation of 2 RFP's (worst case):

All 2 antennas are at least 20cm away from the user, but individual antennas <u>can</u> <u>not</u> be separated by 20cm from each other.

$$\frac{.005543 \frac{mW}{cm^2}}{1\frac{mW}{cm^2}} \times 2 = .01109$$

0.01109 < 1

Therefore, the device complies with FCC's RF radiation exposure limit for general population for a mobile device.