

March 25, 2009

Shenzhen Zowee Technology Co., Ltd. Block 5, Science & Technology Industrial Park of Privately Owned Enterprises, Pingshan, Xili, Nanshan District, Shenzhen, China.

Dear Xinmin Chen:

Enclosed you will find your file copy of a Part 15 report (FCC ID: T5Q010902).

For your reference, TCB will normally take another 15-20 days for reviewing the report. Approval will then be granted when no query is sorted.

Please contact me if you have any questions regarding the enclosed material.

Sincerely,

Shawn Xing

Assistant Manager

Enclosure

Shenzhen Zowee Technology Co.,Ltd.

Application For Certification (FCC ID: T5Q010902)

315MHz Transmitter

Lawson Lu

SZ09030027-2 Louisa Lu March 25, 2009

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample
 may be said to have been obtained.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
- For Terms And Conditions of the services, it can be provided upon request.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Miscellaneous Information

MEASUREMENT/TECHNICAL REPORT

Shenzhen Zowee Technology Co.,Ltd. – MODEL: NS-CLW01-T ADDITIONAL MODEL: P109-T / P109A-T / P109B-T / P109C-T / P109D-T

FCC ID: T5Q010902

March 25, 2009

This report concerns (check one:) Equipment Type: DSC-Part 15 Security/	-	-	_
Deferred grant requested per 47 CFR 0.		Yes No _X until:date	
Company Name agrees to notify the Corof the intended date of announcement odate.		date	– that
Transition Rules Request per 15.37? If no, assumed Part 15, Subpart C for Edition] provision.		Yes No <u>X</u> – the new 47 CFR [09-20	_
Report prepared by:	Kejiyuan Branch 6F, Block D, Huaha	ervices Shenzhen Ltd. an Building, Langshan Road Shenzhen, P. R. China 3601 6288	d,

Table of Contents

1.0 General Description	
1.1 Product Description	2
1.2 Related Submittal(s) Grants	
1.3 Test Methodology	
1.4 Test Facility	
•	
2.0 System Test Configuration	5
2.1 Justification	
2.2 EUT Exercising Software	5
2.3 Special Accessories	5
2.4 Equipment Modification	
2.5 Measurement Uncertainty	6
2.6 Support Equipment List and Description	
3.0 Emission Results	8
3.1 Field Strength Calculation	
3.2 Radiated Emission Configuration Photograph	10
3.3 Radiated Emission Data	11
4.0 Equipment Photographs	14
5.0 Product Labelling	16
6.0 <u>Technical Specifications</u>	18
701 4 4 1	
7.0 Instruction Manual	20
O O Microllana and Information	20
8.0 Miscellaneous Information	22
8.1 Measured Bandwidth	
8.2 Discussion of Pulse Desensitizatio	
8.3 Emissions Test Procedures	

List of attached file

Exhibit type	File Description	Filename	
Test Report	Test Report	report.pdf	
Test Setup Photo	Radiated Emission	radiated photos.pdf	
Test Report	Timing Plot	timing.pdf	
Test Report	20dB BW Plot	bw.pdf	
External Photo	External Photo	external photos.pdf	
Internal Photo	Internal Photo	internal photos.pdf	
Block Diagram	Block Diagram	block.pdf	
Schematics	Circuit Diagram	circuit.pdf	
Operation Description	Technical Description	descri.pdf	
ID Label/Location	Label Artwork and Location	label.pdf	
User Manual	User Manual	manual.pdf	
Cover Letter	Letter of Agency	agency.pdf	

EXHIBIT 1 GENERAL DESCRIPTION

1.0 **General Description**

1.1 Product Description

The Equipment Under Test (EUT) is a Transmitter operating at 315MHz. The EUT is powered by 3Vdc ($2 \times 1.5Vdc$ "AA" batteries).

The EUT will sense the outdoor temperature and then send the signal of temperature to the main unit. The main unit will display the relative temperature reading as OUTDOOR TEMP.

During the normal operation, EUT will transmit periodically in every 60.3s. The duration of each transmission is 530ms.

The Model: P109-T / P109A-T / P109B-T / P109C-T / P109D-T are the same as the tested Model: NS-CLW01-T in hardware and software aspect. The only differences are the packing accessories and model no. for trading purpose.

Antenna Type: Integral

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

This is an application for Certification of a transmitter. The receiver, associated with this transmitter, has FCC ID: T5Q010901 and has been filled at the same time.

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). Radiated emission measurement was performed in semi-anechoic chamber. Preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The Semi-Anechoic chamber used to collect the radiated data is **Interterk Testing Services Shenzhen Ltd. Kejiyuan Branch** and located at 6F, Block D, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China. This test facility and site measurement data have been fully placed on file with the FCC.

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The EUT was powered by 3Vdc (2x1.5Vdc "AA" batteries) during test.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emission at and above 30 MHz, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data report in Exhibit 3.0.

The unit was operated standalone and placed in the centre of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

For simplicity of testing, the unit was wired to transmit continuously

2.2 EUT Exercising Software

There was no special software to exercise the device.

2.3 Special Accessories

No special accessories used.

2.4 Equipment Modification

Any modifications installed previous to testing by Shenzhen Zowee Technology Co.,Ltd. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services.

TRF no.: FCC 15C_TXa FCC ID: T5Q010902

5

2.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

2.6 Support Equipment List and Description

This product was tested in a standalone configuration.

All the items listed under section 2.0 of this report are

Confirmed by:

Shawn Xing Assistant Manager

Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch Agent for Shenzhen Zowee Technology Co.,Ltd.

Signature

March 25, 2009

Date

EXHIBIT 3 EMISSION RESULTS

3.0 **Emission Results**

Data is included worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 62.0 dB\mu V$

AF = 7.4 dB

CF = 1.6 dB

 $AG = 29.0 \, dB$

PD = 0 dB

AV = -10 dB

 $FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 945.000 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 4.4 dB

TFST	PER	SOL	VNF	1 -

Signature

Louisa Lu, Engineer
Typed/Printed Name

March 25, 2009
Date

Company: Shenzhen Zowee Technology Co.,Ltd.

Date of Test: March 9, 2009

Model: NS-CLW01-T

Worst Case Operating Mode: Transmit

Table 1

Radiated Emissions

Polarization	Frequency	Reading	Pre-	Antenna	Average	Net	Limit	Margin
	(MHz)	(dBµV)	Amp	Factor	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(-dB)	(dBµV/m)	(dBµV/m)	
			(dB)					
Vertical	315.000	69.9	20.0	14.6	5.3	59.2	67.7	-8.5
Vertical	630.000	46.8	20.0	20.4	5.3	41.9	47.7	-5.8
Vertical	945.000	44.9	20.0	23.7	5.3	43.3	47.7	-4.4
Vertical	1260.000	44.5	36.9	26.0	5.3	28.3	47.7	-19.4
Horizontal	315.000	67.3	20.0	14.6	5.3	56.6	67.7	-11.1
Horizontal	630.000	39.3	20.0	20.4	5.3	34.4	47.7	-13.3
Horizontal	945.000	35.1	20.0	23.7	5.3	33.5	47.7	-14.2
Horizontal	*1575.000	46.5	36.4	28.0	5.3	32.8	47.7	-14.9

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

*Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and peak detector data with average factor for frequencies over 1000 MHz.

Test Engineer: Louisa Lu

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

EXHIBIT 5 PRODUCT LABELLING

5.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

EXHIBIT 6 TECHNICAL SPECIFICATIONS

6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

8.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the measured bandwidth, the test procedure and calculation of factors such as pulse desensitization and averaging factor.

8.1 Measured Bandwidth

For electronic filing, the plot shows the fundamental emission when modulated is saved with filename: bw.pdf. From the plot, the bandwidth is observed to be 504kHz, at 20dBc where the bandwidth limit is 787.5kHz.

Therefore, the unit meets the requirement of section 15.231 (c).

Figure 8.1 Bandwidth

8.2 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis ... Pulsed RF.*

The effective period (T_{eff}) was approximately 620 µs for a digital "1" bit, as shown in the plots of Exhibit 8.3. With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB.

8.3 Calculation of Average Factor

Averaging factor in dB = 20 log (duty cycle)

The specification for output field strengths in accordance with the FCC rules specifies measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

The duty cycle is simply the on-time divided by the period:

```
The duration of one cycle = 100ms

Effective period of the cycle = 20ms+4.4ms+48×620µs

= 54.16ms
```

DC = 54.16ms / 100ms = 0.5416

Therefore, the averaging factor is found by 20 log_{10} 0.5416 = -5.3 dB

For electronic filing, the plot shows the transmission timing is saved with filename: timing.pdf.

8.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

8.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.