

# RJE Technologies, Inc.

EMC TEST REPORT FOR  
**Pool Safety Alarm**  
**Model: Aquatic Incident Alert (Safety Turtle) AIA100**

Tested To The Following Standards:

**FCC Part 15 Subpart C Section(s)**  
**15.207 & 15.249**

Report No.: 97475-4

Date of issue: September 1, 2015



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

## TABLE OF CONTENTS

|                                                                       |    |
|-----------------------------------------------------------------------|----|
| Administrative Information .....                                      | 3  |
| Test Report Information .....                                         | 3  |
| Report Authorization .....                                            | 3  |
| Test Facility Information .....                                       | 4  |
| Software Versions.....                                                | 4  |
| Site Registration & Accreditation Information .....                   | 4  |
| Summary of Results .....                                              | 5  |
| Modifications During Testing.....                                     | 5  |
| Conditions During Testing.....                                        | 5  |
| Equipment Under Test.....                                             | 6  |
| FCC Part 15 Subpart C .....                                           | 7  |
| 15.207 AC Conducted Emissions.....                                    | 7  |
| 15.215(c) 20dB Occupied Bandwidth .....                               | 16 |
| 15.31(e) Voltage Variations .....                                     | 21 |
| 15.249(a) Field Strength of Fundamental.....                          | 25 |
| 15.249(a)(d) Field Strength of Spurious Emissions and Band Edge ..... | 31 |
| Supplemental Information.....                                         | 43 |
| Measurement Uncertainty .....                                         | 43 |
| Emissions Test Details.....                                           | 43 |

## ADMINISTRATIVE INFORMATION

### Test Report Information

**REPORT PREPARED FOR:**

RJE Technologies, Inc.  
15375 Barranca Parkway I-112  
Irvine, CA 92618

Representative: Corinne Zemla  
Customer Reference Number: 11071

**REPORT PREPARED BY:**

Morgan Tramontin  
CKC Laboratories, Inc.  
5046 Sierra Pines Drive  
Mariposa, CA 95338

Project Number: 97475

**DATE OF EQUIPMENT RECEIPT:**  
**DATE(S) OF TESTING:**

August 26, 2015  
August 26 - 27, 2015

### Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.



*Steve Behm*  
Director of Quality Assurance & Engineering Services  
CKC Laboratories, Inc.

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

**TEST LOCATION(S):**  
CKC Laboratories, Inc.  
110 Olinda Place  
Brea, CA 92823

## Software Versions

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.02.00 |
| Immunity                              | 5.00.07 |

## Site Registration & Accreditation Information

| Location | CB #   | TAIWAN         | CANADA  | FCC    | JAPAN  |
|----------|--------|----------------|---------|--------|--------|
| Brea A   | US0060 | SL2-IN-E-1146R | 3082D-1 | 90473  | A-0147 |
| Brea D   | US0060 | SL2-IN-E-1146R | 3082D-2 | 100638 | A-0147 |

## SUMMARY OF RESULTS

### Standard / Specification: FCC Part 15 Subpart C

| Test Procedure | Description                                    | Modifications* | Results |
|----------------|------------------------------------------------|----------------|---------|
| 15.207         | Conducted Emissions                            | Mod. 1         | Pass    |
| 15.215(c)      | 20dB Occupied Bandwidth                        | Mod. 1         | Pass    |
| 15.31(e)       | Voltage Variations                             | Mod. 1         | Pass    |
| 15.249(a)      | Field Strength of Fundamental                  | Mod. 1         | Pass    |
| 15.249(a)(d)   | Field Strength of Spurious Emissions Band Edge | Mod. 1         | Pass    |

### Modifications\* During Testing

This list is a summary of the modifications made to the equipment during testing.

#### Summary of Conditions

Mod. 1: Modification on firmware: rearranging the sequence of setting up the radio as to better gate the coupled noise; the channel/PA isn't enabled until it's ready to transmit, rather than enabling the PA and then setting up the radio, thereby allowing digital noise to couple in and be amplified.

\*Modifications listed above must be incorporated into all production units.

### Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

#### Summary of Conditions

None

## EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

### Configuration 1

#### *Equipment Tested:*

| <b>Device</b>     | <b>Manufacturer</b>                              | <b>Model #</b>                                | <b>S/N</b> |
|-------------------|--------------------------------------------------|-----------------------------------------------|------------|
| Pool Safety Alarm | RJE Technologies, Inc.                           | Aquatic Incident Alert (Safety Turtle) AIA100 | NA         |
| Power Supply      | Shen Zhen Keyu Power Supply Technology Co., LTD. | KA23-0502000DEU                               | NA         |

#### *Support Equipment:*

| <b>Device</b>     | <b>Manufacturer</b>    | <b>Model #</b>         | <b>S/N</b>    |
|-------------------|------------------------|------------------------|---------------|
| Pool Safety Alarm | RJE Technologies, Inc. | Safety Turtle Receiver | NA            |
| Power Supply      | Samsung                | ETAOU61JBE             | RT2DA13FS/A-E |
| Pool Safety Alarm | RJE Technologies, Inc. | Safety Turtle (Watch)  | NA            |

## FCC PART 15 SUBPART C

### 15.207 AC Conducted Emissions

#### Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112  
 Customer: **RJE Technologies, Inc.**  
 Specification: **15.207 AC Mains - Average**  
 Work Order #: **97475** Date: 8/27/2015  
 Test Type: **Conducted Emissions** Time: 08:09:00  
 Tested By: Don Nguyen Sequence#: 3  
 Software: EMITest 5.02.00 120V 60Hz

***Equipment Tested:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

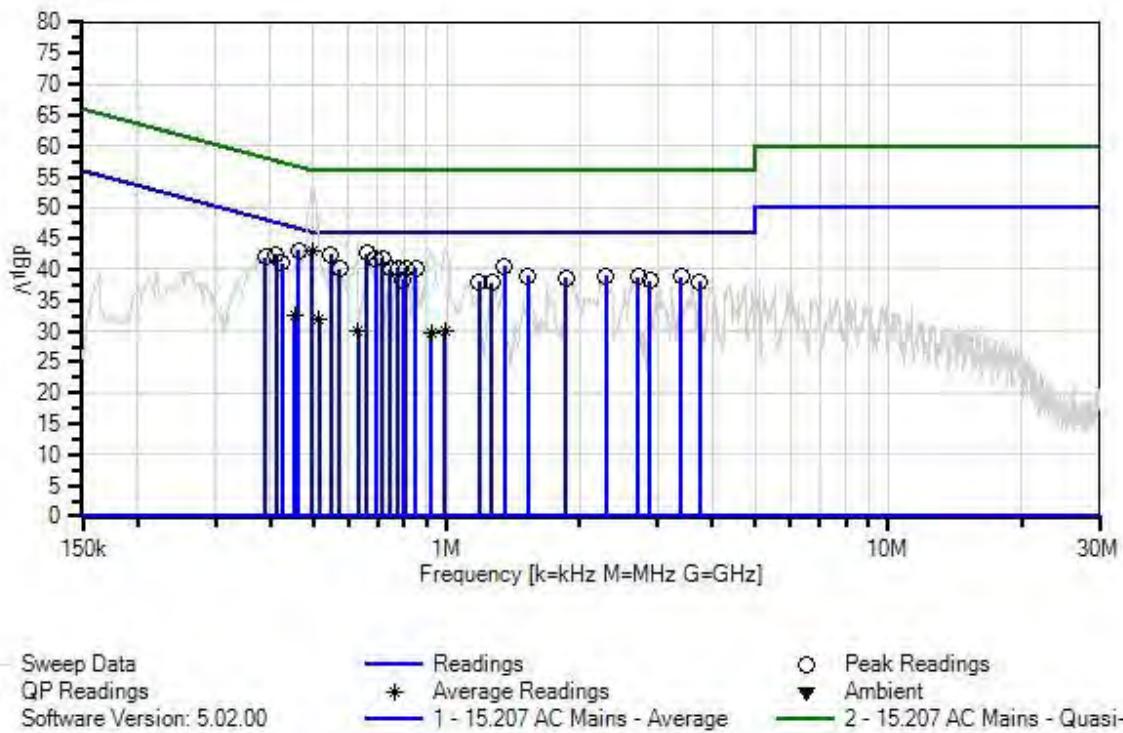
***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

The EUT is stand alone on the table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz.

The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver. All support equipment is located remotely.


Frequency range of data sheet 150kHz-30MHz

RBW=VBW=9kHz. Temperature: 24°C, Relative Humidity: 35%, Atmospheric Pressure: 100kPa.

Test Method: ANSI C63.4 (2009)  
 Site D.

Mod. 1 was in place during testing.

CKC Laboratories, Inc. Date: 8/27/2015 Time: 08:09:00 RJE Technologies, Inc. WO#: 97475  
 15.207 AC Mains - Average Test Lead: L1 120V 60Hz Sequence#: 3 Ext ATTN: 0 dB



**Test Equipment:**

| ID | Asset #/Serial # | Description                   | Model               | Calibration Date | Cal Due Date |
|----|------------------|-------------------------------|---------------------|------------------|--------------|
| T1 | ANP06084         | Attenuator                    | SA18N10W-06         | 12/17/2014       | 12/17/2016   |
| T2 | ANP01910         | Cable                         | RG-142              | 1/8/2014         | 1/8/2016     |
| T3 | AN00969A         | 50uH LISN-Line 1<br>(L1) (dB) | 3816/2NM            | 3/12/2015        | 3/12/2017    |
|    | AN00969A         | 50uH LISN-Line 2<br>(L2) (dB) | 3816/2NM            | 3/12/2015        | 3/12/2017    |
|    | AN02869          | Spectrum Analyzer             | E4440A              | 7/17/2015        | 7/17/2016    |
| T4 | AN02343          | High Pass Filter              | HE9615-150K-50-720B | 1/8/2015         | 1/8/2017     |

**Measurement Data:**

Reading listed by margin.

Test Lead: L1

| #  | Freq<br>MHz     | Rdng<br>dB $\mu$ V | T1<br>dB | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|----|-----------------|--------------------|----------|----------|----------|----------|---------------|--------------------|--------------------|--------------|--------------|
| 1  | 497.931k<br>Ave | 36.9               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 42.9               | 46.0               | -3.1         | L1           |
| ^  | 497.931k        | 47.7               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 53.7               | 46.0               | +7.7         | L1           |
| ^  | 498.331k        | 47.6               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 53.6               | 46.0               | +7.6         | L1           |
| 4  | 659.771k        | 36.6               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 42.6               | 46.0               | -3.4         | L1           |
| 5  | 463.425k        | 37.1               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 43.1               | 46.6               | -3.5         | L1           |
| 6  | 546.327k        | 36.4               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 42.4               | 46.0               | -3.6         | L1           |
| 7  | 691.041k        | 35.8               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.8               | 46.0               | -4.2         | L1           |
| 8  | 717.220k        | 35.9               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 41.8               | 46.0               | -4.2         | L1           |
| 9  | 411.794k        | 36.4               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 42.4               | 47.6               | -5.2         | L1           |
| 10 | 1.354M          | 34.6               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.5               | 46.0               | -5.5         | L1           |
| 11 | 808.121k        | 34.4               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.3               | 46.0               | -5.7         | L1           |
| 12 | 775.397k        | 34.3               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.2               | 46.0               | -5.8         | L1           |
| 13 | 851.026k        | 34.3               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.2               | 46.0               | -5.8         | L1           |
| 14 | 747.036k        | 34.2               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.1               | 46.0               | -5.9         | L1           |
| 15 | 571.779k        | 34.0               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.0               | 46.0               | -6.0         | L1           |
| 16 | 389.250k        | 35.9               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.9               | 48.1               | -6.2         | L1           |
| 17 | 423.429k        | 35.0               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.0               | 47.4               | -6.4         | L1           |

|    |          |      |      |      |      |      |      |      |      |       |    |
|----|----------|------|------|------|------|------|------|------|------|-------|----|
| 18 | 1.528M   | 33.0 | +5.7 | +0.1 | +0.1 | +0.1 | +0.0 | 39.0 | 46.0 | -7.0  | L1 |
| 19 | 2.293M   | 32.9 | +5.7 | +0.1 | +0.1 | +0.1 | +0.0 | 38.9 | 46.0 | -7.1  | L1 |
| 20 | 2.714M   | 32.8 | +5.7 | +0.1 | +0.1 | +0.1 | +0.0 | 38.8 | 46.0 | -7.2  | L1 |
| 21 | 3.395M   | 32.6 | +5.7 | +0.2 | +0.2 | +0.1 | +0.0 | 38.8 | 46.0 | -7.2  | L1 |
| 22 | 1.868M   | 32.7 | +5.7 | +0.1 | +0.1 | +0.1 | +0.0 | 38.7 | 46.0 | -7.3  | L1 |
| 23 | 796.486k | 32.5 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 38.4 | 46.0 | -7.6  | L1 |
| 24 | 2.884M   | 32.1 | +5.7 | +0.1 | +0.2 | +0.1 | +0.0 | 38.2 | 46.0 | -7.8  | L1 |
| 25 | 3.739M   | 31.9 | +5.7 | +0.2 | +0.2 | +0.1 | +0.0 | 38.1 | 46.0 | -7.9  | L1 |
| 26 | 1.183M   | 32.1 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 38.0 | 46.0 | -8.0  | L1 |
| 27 | 1.268M   | 32.0 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 37.9 | 46.0 | -8.1  | L1 |
| 28 | 513.603k | 25.9 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 31.9 | 46.0 | -14.1 | L1 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 513.603k | 42.5 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 48.5 | 46.0 | +2.5  | L1 |
| 30 | 453.972k | 26.6 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 32.6 | 46.8 | -14.2 | L1 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 453.972k | 37.8 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 43.8 | 46.8 | -3.0  | L1 |
| 32 | 629.956k | 24.1 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 30.1 | 46.0 | -15.9 | L1 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 629.955k | 38.4 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 44.4 | 46.0 | -1.6  | L1 |
| 34 | 992.029k | 24.0 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 29.9 | 46.0 | -16.1 | L1 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 992.028k | 37.5 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 43.4 | 46.0 | -2.6  | L1 |
| 36 | 923.985k | 23.7 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 29.6 | 46.0 | -16.4 | L1 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 923.984k | 37.2 | +5.7 | +0.0 | +0.1 | +0.1 | +0.0 | 43.1 | 46.0 | -2.9  | L1 |



Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112  
Customer: **RJE Technologies, Inc.**  
Specification: **15.207 AC Mains - Average**  
Work Order #: **97475** Date: 8/27/2015  
Test Type: **Conducted Emissions** Time: 08:19:04  
Tested By: Don Nguyen Sequence#: 4  
Software: EMITest 5.02.00 120V 60Hz

***Equipment Tested:***

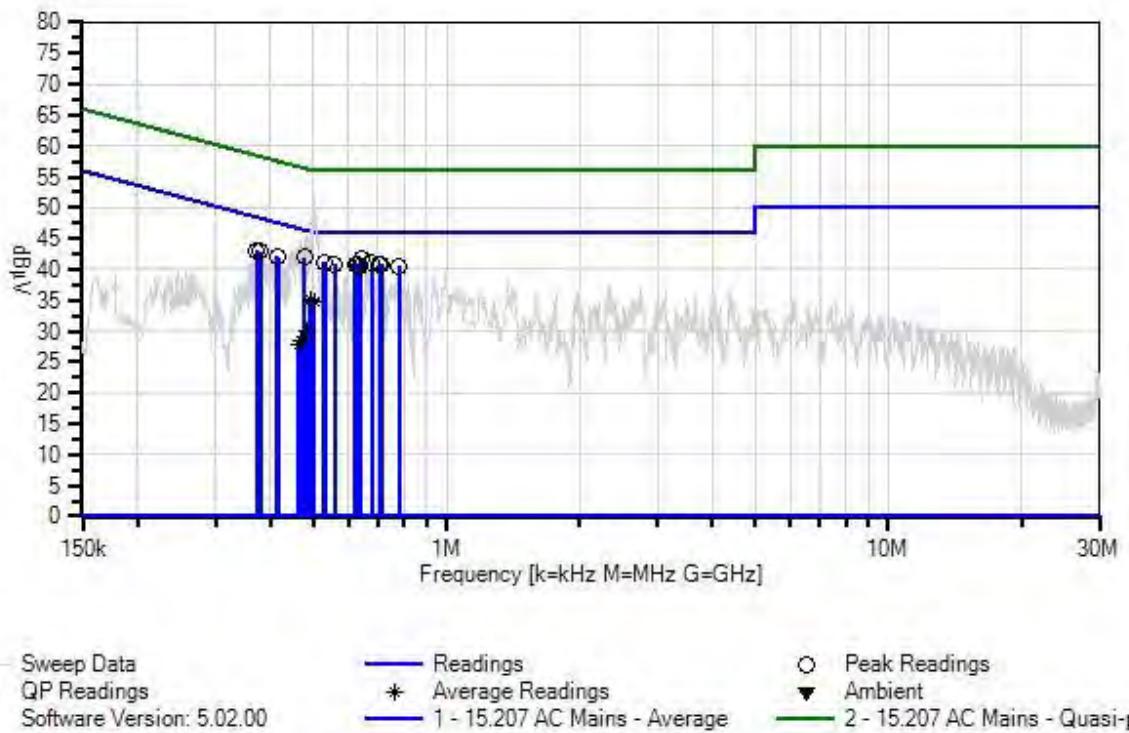
| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

The EUT is stand alone on the table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz.  
The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver.  
All support equipment is located remotely.


Frequency range of data sheet 150kHz-30MHz

RBW=VBW=9kHz. Temperature: 24°C, Relative Humidity: 35%, Atmospheric Pressure: 100kPa.

Test Method: ANSI C63.4 (2009)  
Site D.

Mod. 1 was in place during testing.

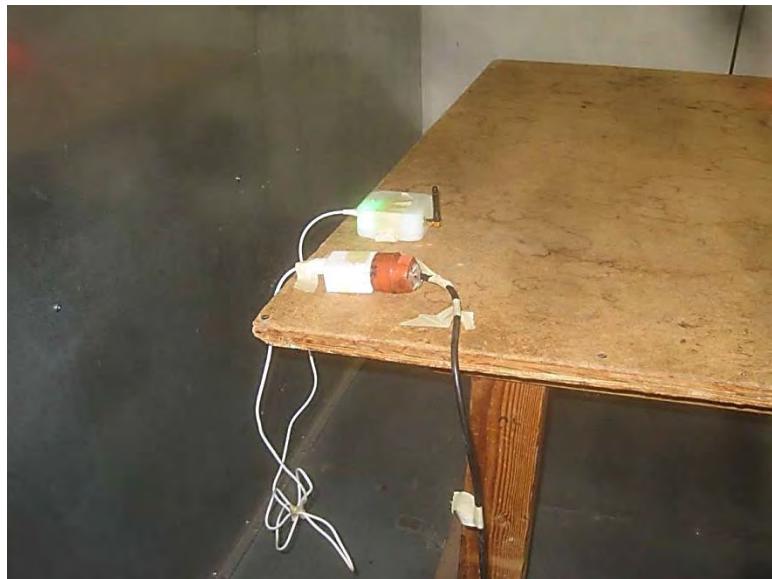
CKC Laboratories, Inc. Date: 8/27/2015 Time: 08:19:04 RJE Technologies, Inc. WO#: 97475  
15.207 AC Mains - Average Test Lead: L2 120V 60Hz Sequence#: 4 Ext ATTN: 0 dB



**Test Equipment:**

| ID | Asset #/Serial # | Description                   | Model               | Calibration Date | Cal Due Date |
|----|------------------|-------------------------------|---------------------|------------------|--------------|
| T1 | ANP06084         | Attenuator                    | SA18N10W-06         | 12/17/2014       | 12/17/2016   |
| T2 | ANP01910         | Cable                         | RG-142              | 1/8/2014         | 1/8/2016     |
|    | AN00969A         | 50uH LISN-Line 1<br>(L1) (dB) | 3816/2NM            | 3/12/2015        | 3/12/2017    |
| T3 | AN00969A         | 50uH LISN-Line 2<br>(L2) (dB) | 3816/2NM            | 3/12/2015        | 3/12/2017    |
|    | AN02869          | Spectrum Analyzer             | E4440A              | 7/17/2015        | 7/17/2016    |
| T4 | AN02343          | High Pass Filter              | HE9615-150K-50-720B | 1/8/2015         | 1/8/2017     |

**Measurement Data:**


Reading listed by margin.

Test Lead: L2

| #  | Freq<br>MHz | Rdng<br>dB $\mu$ V | T1<br>dB | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|----|-------------|--------------------|----------|----------|----------|----------|---------------|--------------------|--------------------|--------------|--------------|
| 1  | 640.136k    | 35.7               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.7               | 46.0               | -4.3         | L2           |
| 2  | 475.788k    | 35.9               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.9               | 46.4               | -4.5         | L2           |
| 3  | 526.692k    | 35.2               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.2               | 46.0               | -4.8         | L2           |
| 4  | 530.328k    | 35.0               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.0               | 46.0               | -5.0         | L2           |
| 5  | 677.224k    | 35.0               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 41.0               | 46.0               | -5.0         | L2           |
| 6  | 711.403k    | 35.0               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.9               | 46.0               | -5.1         | L2           |
| 7  | 557.235k    | 34.9               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.9               | 46.0               | -5.1         | L2           |
| 8  | 627.047k    | 34.9               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.9               | 46.0               | -5.1         | L2           |
| 9  | 620.502k    | 34.8               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.8               | 46.0               | -5.2         | L2           |
| 10 | 630.683k    | 34.8               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.8               | 46.0               | -5.2         | L2           |
| 11 | 705.585k    | 34.8               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.8               | 46.0               | -5.2         | L2           |
| 12 | 372.525k    | 37.1               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 43.1               | 48.4               | -5.3         | L2           |
| 13 | 379.797k    | 37.0               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 43.0               | 48.3               | -5.3         | L2           |
| 14 | 712.857k    | 34.8               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.7               | 46.0               | -5.3         | L2           |
| 15 | 636.500k    | 34.6               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 40.6               | 46.0               | -5.4         | L2           |
| 16 | 779.760k    | 34.7               | +5.7     | +0.0     | +0.1     | +0.1     | +0.0          | 40.6               | 46.0               | -5.4         | L2           |
| 17 | 413.248k    | 36.1               | +5.7     | +0.0     | +0.1     | +0.2     | +0.0          | 42.1               | 47.6               | -5.5         | L2           |

|    |          |      |      |      |      |      |      |      |      |       |    |
|----|----------|------|------|------|------|------|------|------|------|-------|----|
| 18 | 416.157k | 36.0 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 42.0 | 47.5 | -5.5  | L2 |
| 19 | 492.514k | 29.2 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 35.2 | 46.1 | -10.9 | L2 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 492.514k | 41.5 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 47.5 | 46.1 | +1.4  | L2 |
| ^  | 494.695k | 38.8 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 44.8 | 46.1 | -1.3  | L2 |
| ^  | 488.877k | 37.8 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 43.8 | 46.2 | -2.4  | L2 |
| 23 | 501.842k | 28.9 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 34.9 | 46.0 | -11.1 | L2 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 501.240k | 46.1 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 52.1 | 46.0 | +6.1  | L2 |
| ^  | 501.842k | 45.2 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 51.2 | 46.0 | +5.2  | L2 |
| ^  | 496.877k | 41.5 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 47.5 | 46.1 | +1.4  | L2 |
| 27 | 483.060k | 24.0 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 30.0 | 46.3 | -16.3 | L2 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 483.060k | 39.3 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 45.3 | 46.3 | -1.0  | L2 |
| ^  | 487.423k | 38.6 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 44.6 | 46.2 | -1.6  | L2 |
| ^  | 480.151k | 38.6 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 44.6 | 46.3 | -1.7  | L2 |
| ^  | 478.697k | 37.2 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 43.2 | 46.4 | -3.2  | L2 |
| 32 | 467.789k | 22.4 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 28.4 | 46.6 | -18.2 | L2 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 467.789k | 38.6 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 44.6 | 46.6 | -2.0  | L2 |
| ^  | 470.697k | 37.6 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 43.6 | 46.5 | -2.9  | L2 |
| 35 | 461.971k | 21.8 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 27.8 | 46.7 | -18.9 | L2 |
|    | Ave      |      |      |      |      |      |      |      |      |       |    |
| ^  | 461.971k | 38.8 | +5.7 | +0.0 | +0.1 | +0.2 | +0.0 | 44.8 | 46.7 | -1.9  | L2 |

### Test Setup Photo(s)



## 15.215(c) 20dB Occupied Bandwidth

### Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112  
 Customer: RJE Technologies, Inc.  
 Specification: **Occupied Bandwidth**  
 Work Order #: **97475** Date: 8/26/2015  
 Test Type: **Maximized Emissions** Time: 14:28:24  
 Tested By: Don Nguyen Sequence#: 2  
 Software: EMITest 5.02.00

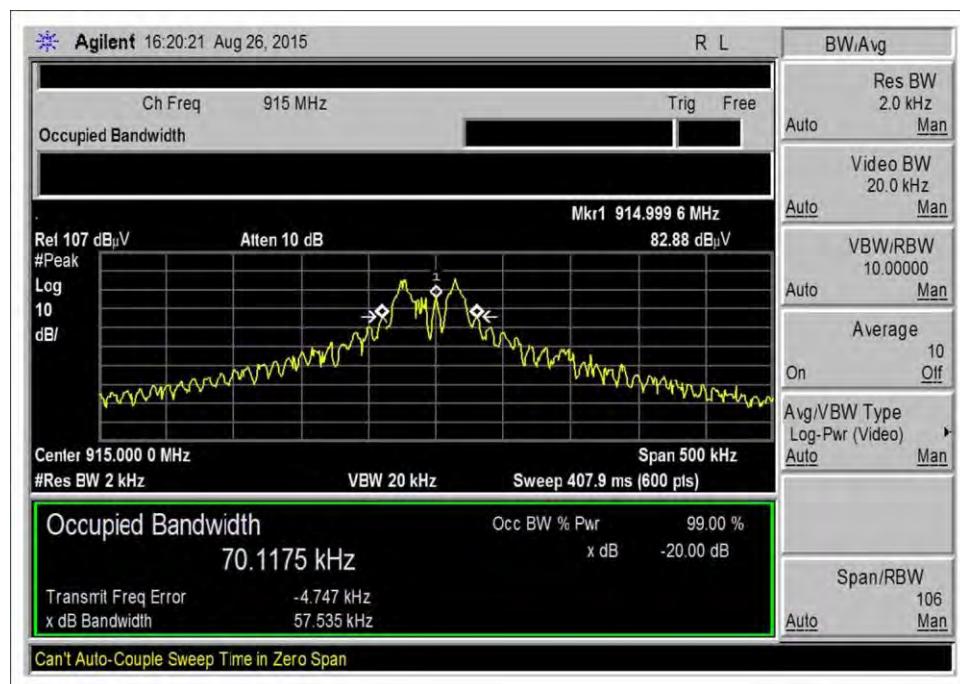
**Equipment Tested:**

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

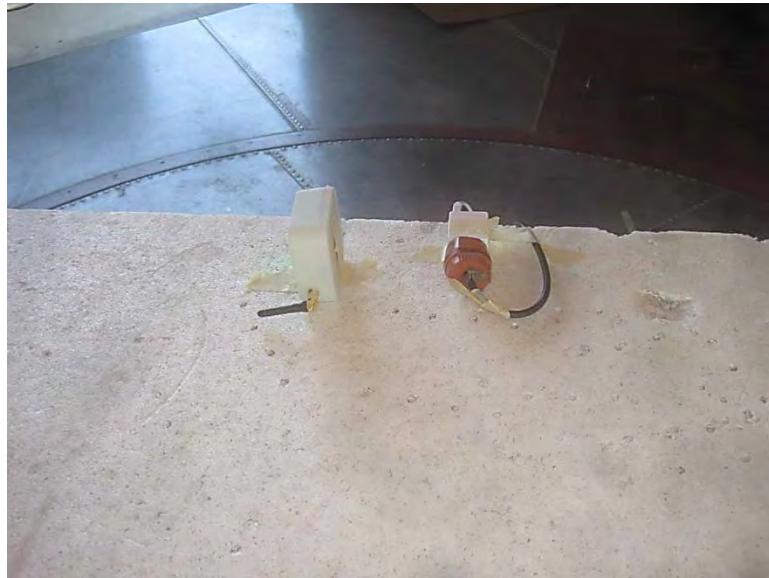
**Support Equipment:**

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

**Test Conditions / Notes:**


The EUT is stand alone on the Styrofoam table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz. • The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver. • All support equipment is located remotely. • The EUT is positioned in three different axis and data is taken in each axis. Frequency range of data sheet 915.0 to 915.05MHz. • RBW=VBW=120kHz.

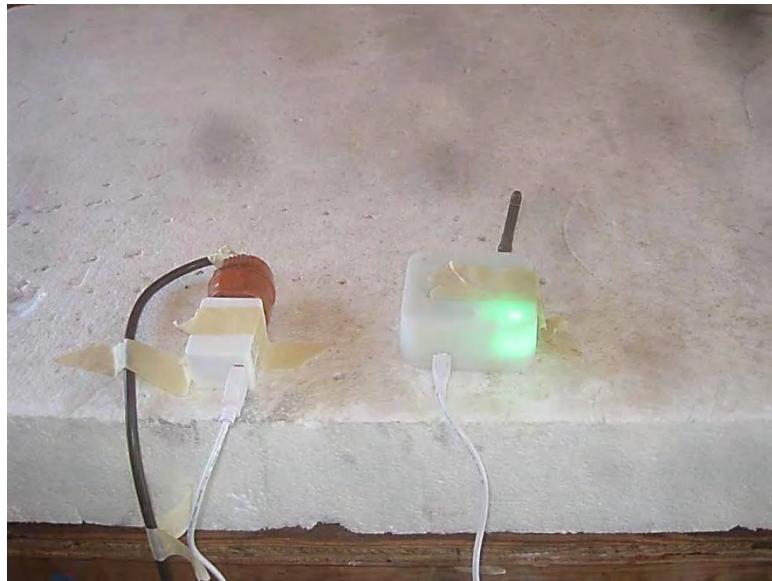
Temperature: 26°C, Relative Humidity: 35%, Atmospheric Pressure: 100kPa. •


Test Method: ANSI C63.4 (2009)• Site D. •

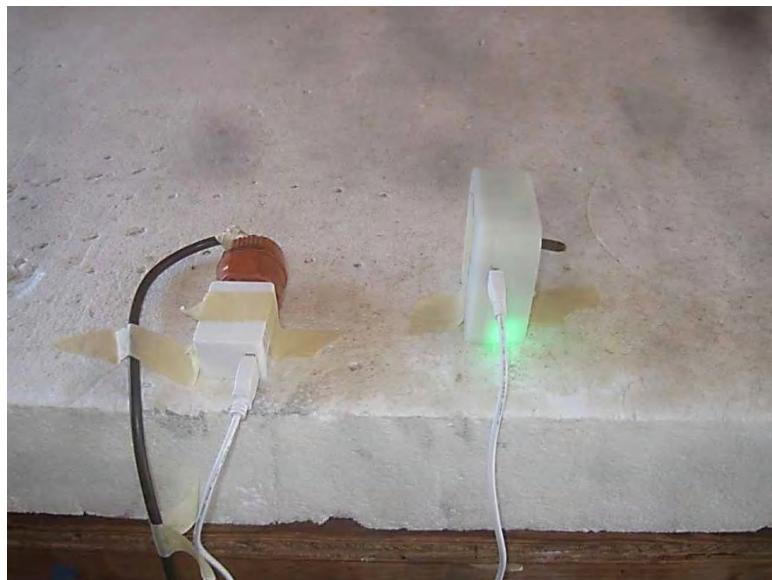
Mod. 1 was in place during testing.

## Test Data




## Test Setup Photo(s)




Front View



Back View



X-Axis



Y-Axis



Z-Axis

## 15.31(e) Voltage Variations

### Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112  
 Customer: RJE Technologies, Inc.  
 Specification: **15.31e**  
 Work Order #: **97475** Date: 8/26/2015  
 Test Type: **Maximized Emissions** Time: 14:28:24  
 Tested By: Don Nguyen Sequence#: 2  
 Software: EMITest 5.02.00

**Equipment Tested:**

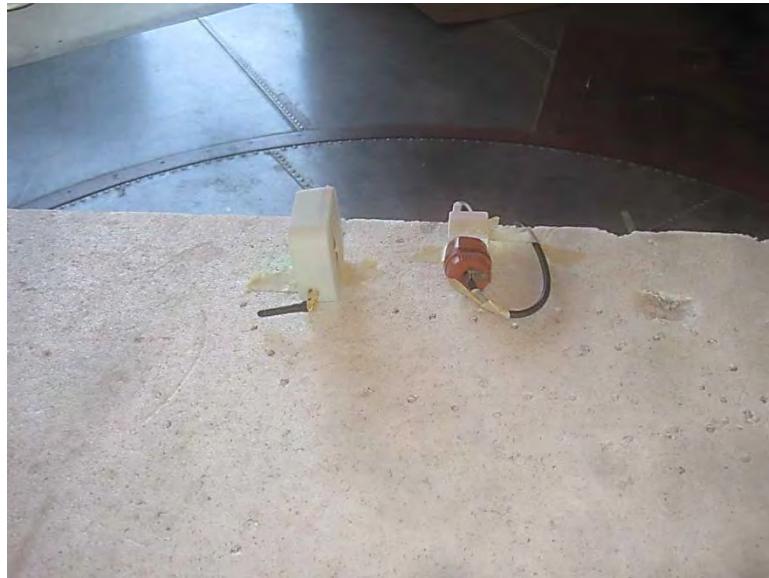
| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

**Support Equipment:**

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

**Test Conditions / Notes:**

The EUT is stand alone on the Styrofoam table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz. • The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver. • All support equipment is located remotely. • The EUT is positioned in three different axis and data is taken in each axis. Frequency range of data sheet 915.0 to 915.05MHz. • RBW=VBW=120kHz.


Temperature: 26°C, Relative Humidity: 35%, Atmospheric Pressure: 100kPa. •

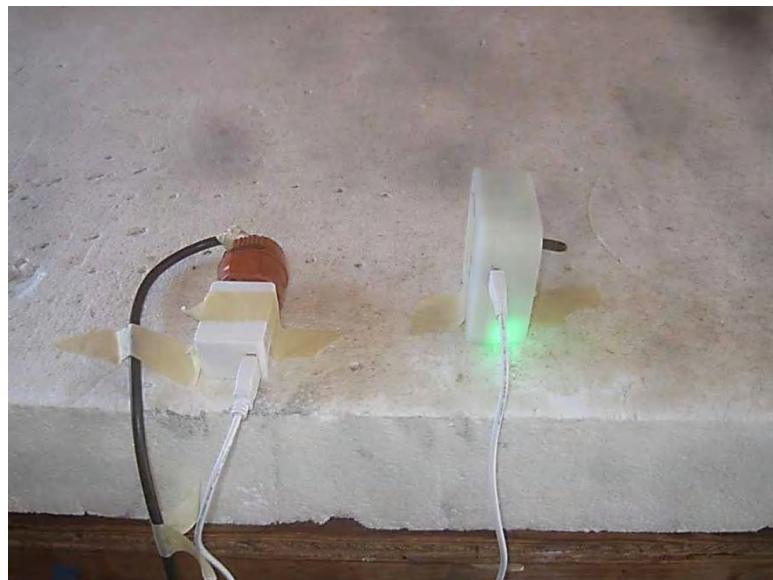
Test Method: ANSI C63.4 (2009)• Site D. •

Mod. 1 was in place during testing.

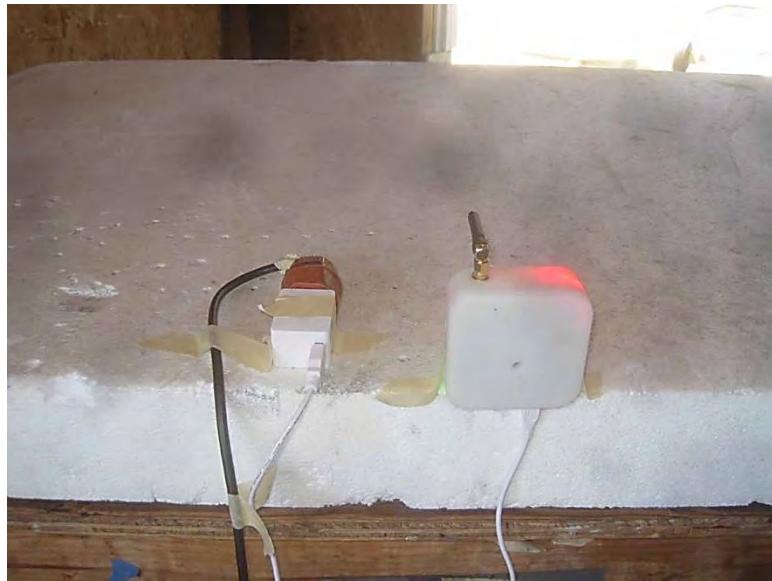
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage, no change in the fundamental signal level was observed.

## Test Setup Photo(s)




Front View




Back View



X-Axis



Y-Axis



Z-Axis

## 15.249(a) Field Strength of Fundamental

### Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112  
 Customer: **RJE Technologies, Inc.**  
 Specification: **15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)**  
 Work Order #: **97475** Date: 8/26/2015  
 Test Type: **Maximized Emissions** Time: 14:28:24  
 Tested By: Don Nguyen Sequence#: 2  
 Software: EMITest 5.02.00

***Equipment Tested:***

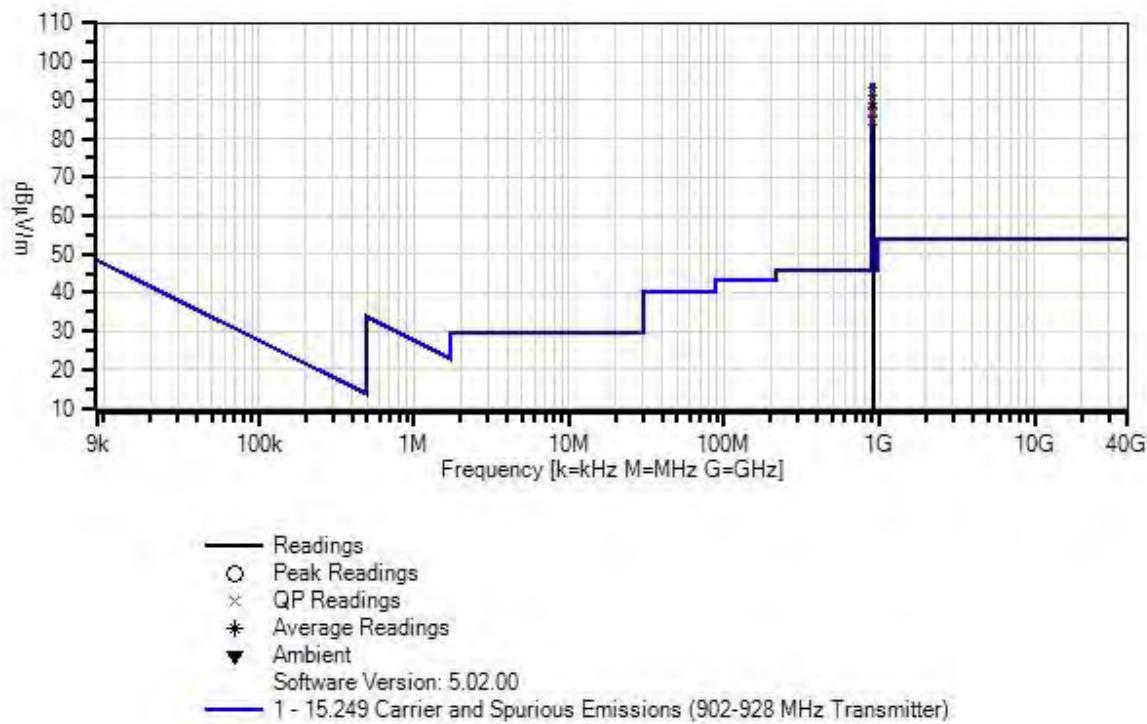
| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

The EUT is stand alone on the Styrofoam table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz.  
 The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver.  
 All support equipment is located remotely.  
 The EUT is positioned in three different axes and data is taken in each axis.


Frequency range of data sheet 915.0 to 915.05MHz.  
 RBW=VBW=120kHz.

Temperature: 26°C, Relative Humidity: 35%, Atmospheric Pressure: 100kPa.

Test Method: ANSI C63.4 (2009)  
 Site D.

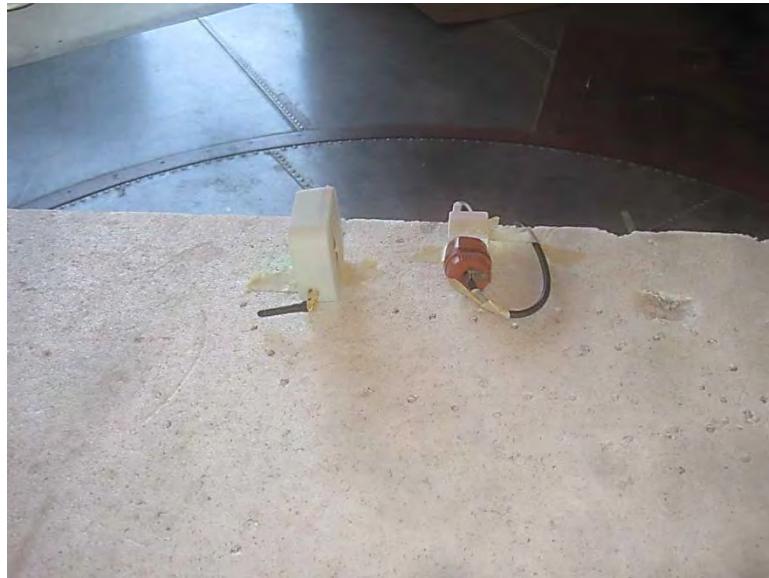
Mod. 1 was in place during testing.

CKC Laboratories, Inc. Date: 8/26/2015 Time: 14:28:24 RJE Technologies, Inc. WO#: 97475  
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence#: 2 Ext ATTN: 0  
dB



**Test Equipment:**

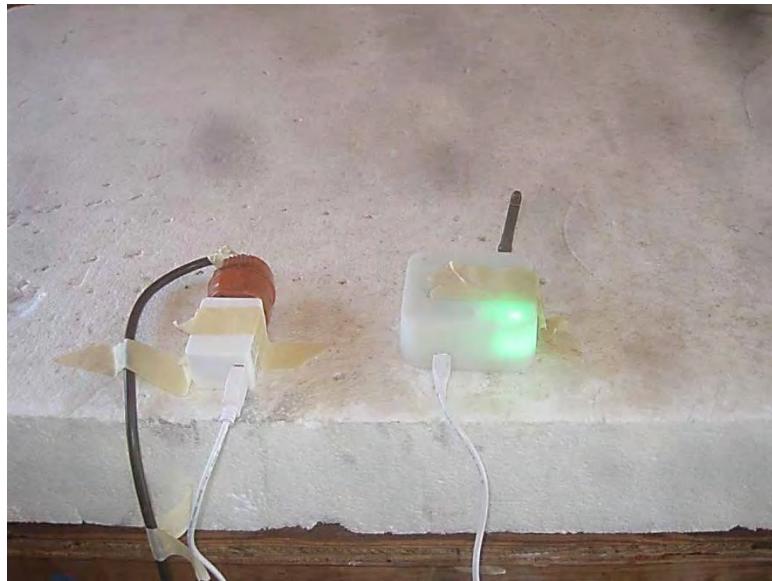
| ID | Asset #/Serial # | Description       | Model    | Calibration Date | Cal Due Date |
|----|------------------|-------------------|----------|------------------|--------------|
| T1 | AN00010          | Preamp            | 8447D    | 3/12/2014        | 3/12/2016    |
| T2 | ANP05555         | Cable             | RG223/U  | 5/7/2014         | 5/7/2016     |
| T3 | ANP05569         | Cable             | RG-214/U | 5/7/2014         | 5/7/2016     |
| T4 | AN01992          | Biconilog Antenna | CBL6111C | 12/4/2014        | 12/4/2016    |
| T5 | AN02869          | Spectrum Analyzer | E4440A   | 7/17/2015        | 7/17/2016    |
| T6 | ANP04382         | Cable             | LDF-50   | 7/30/2014        | 7/30/2016    |


**Measurement Data:**

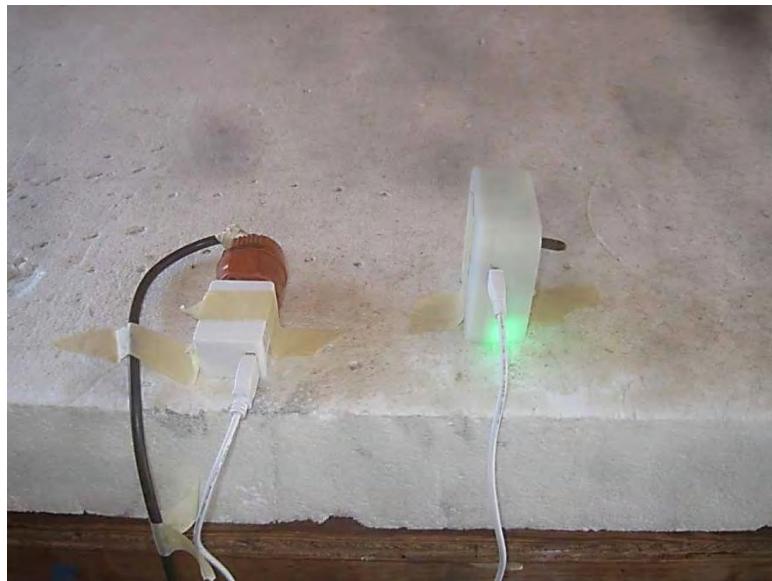
Reading listed by margin.

Test Distance: 3 Meters

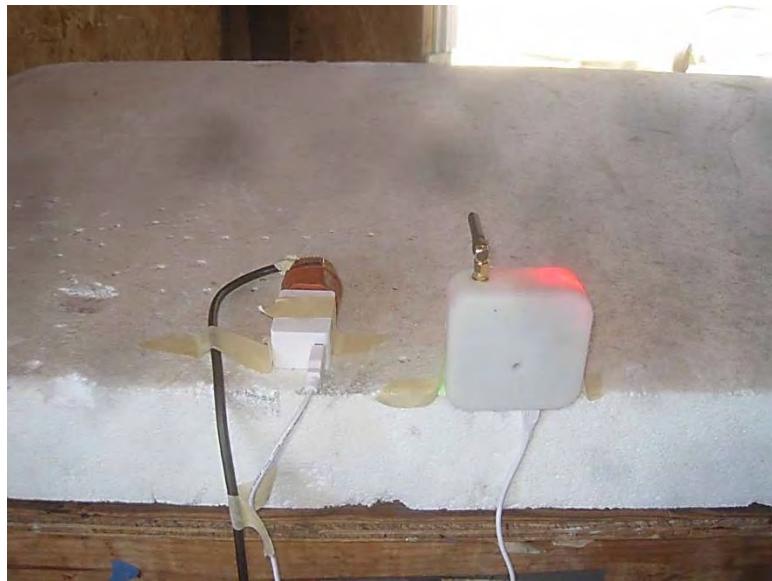
| # | Freq     | Rdng | T1    | T2         | T3   | T4    | Dist  | Corr         | Spec         | Margin | Polar  |
|---|----------|------|-------|------------|------|-------|-------|--------------|--------------|--------|--------|
|   |          |      | T5    | T6         |      |       | Table | dB $\mu$ V/m | dB $\mu$ V/m |        |        |
|   |          |      | MHz   | dB $\mu$ V | dB   | dB    |       |              |              |        | Ant    |
| 1 | 914.993M | 89.7 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 92.3         | 94.0         | -1.7   | Horiz  |
|   | QP       |      | +0.0  | +3.4       |      |       |       |              |              |        | Y axis |
| 2 | 914.995M | 87.5 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 90.1         | 94.0         | -3.9   | Vert   |
|   | QP       |      | +0.0  | +3.4       |      |       |       |              |              |        | X axis |
| 3 | 914.995M | 84.8 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 87.4         | 94.0         | -6.6   | Vert   |
|   | QP       |      | +0.0  | +3.4       |      |       |       |              |              |        | Y axis |
| 4 | 914.995M | 83.8 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 86.4         | 94.0         | -7.6   | Vert   |
|   | QP       |      | +0.0  | +3.4       |      |       |       |              |              |        | Z axis |
| ^ | 914.995M | 90.7 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 93.3         | 94.0         | -0.7   | Vert   |
|   |          |      | +0.0  | +3.4       |      |       |       |              |              |        | X axis |
| ^ | 914.995M | 88.9 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 91.5         | 94.0         | -2.5   | Vert   |
|   |          |      | +0.0  | +3.4       |      |       |       |              |              |        | Y axis |
| ^ | 914.995M | 87.8 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 90.4         | 94.0         | -3.6   | Vert   |
|   |          |      | +0.0  | +3.4       |      |       |       |              |              |        | Z axis |
| 8 | 914.995M | 82.1 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 84.7         | 94.0         | -9.3   | Horiz  |
|   | QP       |      | +0.0  | +3.4       |      |       |       |              |              |        | Z axis |
| ^ | 914.993M | 92.9 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 95.5         | 94.0         | +1.5   | Horiz  |
|   |          |      | +0.0  | +3.4       |      |       |       |              |              |        | Y axis |
| ^ | 914.995M | 86.5 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 89.1         | 94.0         | -4.9   | Horiz  |
|   |          |      | +0.0  | +3.4       |      |       |       |              |              |        | Z axis |
| ^ | 914.995M | 85.2 | -27.5 | +0.5       | +3.4 | +22.8 | +0.0  | 87.8         | 94.0         | -6.2   | Horiz  |
|   |          |      | +0.0  | +3.4       |      |       |       |              |              |        | X axis |


## Test Setup Photo(s)




Front View




Back View



X-Axis



Y-Axis



Z-Axis

## 15.249(a)(d) Field Strength of Spurious Emissions and Band Edge

### Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112  
 Customer: **RJE Technologies, Inc.**  
 Specification: **15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)**  
 Work Order #: **97475** Date: 8/26/2015  
 Test Type: **Maximized Emissions** Time: 15:40:12  
 Tested By: Don Nguyen Sequence#: 2  
 Software: EMITest 5.02.00

#### *Equipment Tested:*

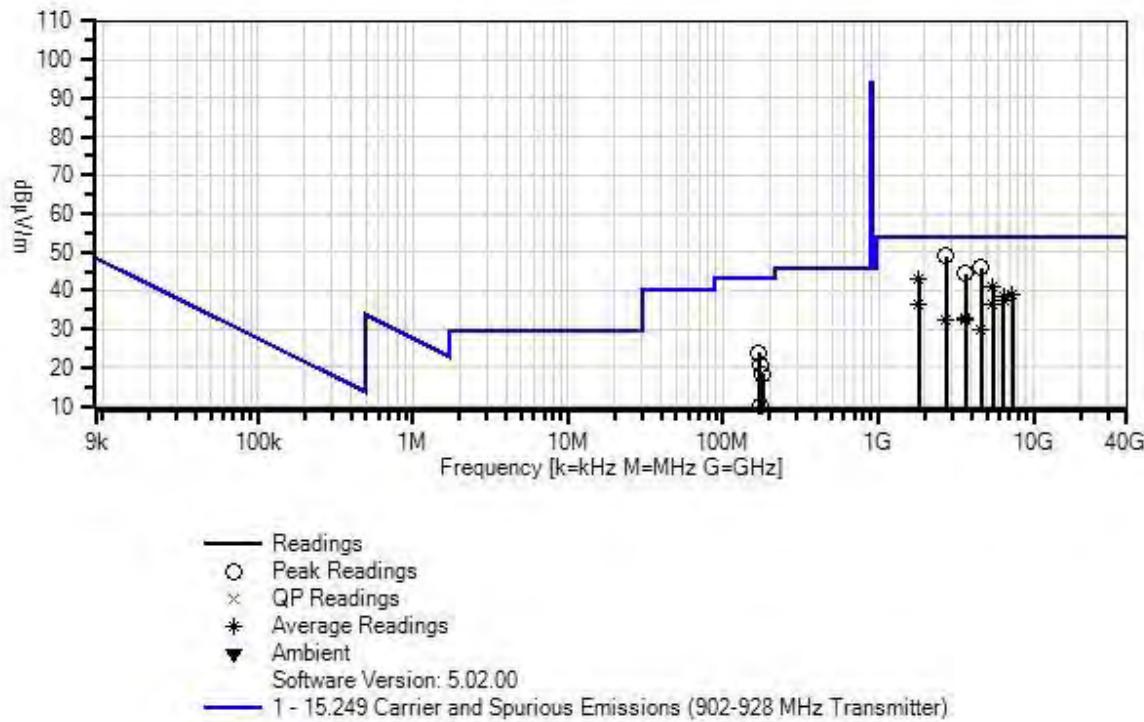
| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

#### *Support Equipment:*

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

#### *Test Conditions / Notes:*

The EUT is stand alone on the Styrofoam table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz.  
 The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver.  
 All support equipment is located remotely.  
 The EUT is positioned in three different axes.


Frequency range of data sheet: 0.009-10000MHz  
 0.009 to 0.15MHz, RBW=VBW=0.2kHz.  
 0.15 to 30MHz, RBW=VBW=9kHz.  
 30 to 1000MHz, RBW=VBW=120kHz.  
 1000 to 10000MHz, RBW=VBW=1MHz

Temperature: 26°C, Relative Humidity: 34%, Atmospheric Pressure: 100kPa.

Test Method: ANSI C63.4 (2009)  
 Site D.

Spurious emissions of this data sheet represent worst case emission levels for each axis and antenna polarity  
 Mod. 1 was in place during testing.

CKC Laboratories, Inc. Date: 8/26/2015 Time: 15:40:12 RJE Technologies, Inc. WO#: 97475  
 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence#: 2 Ext ATTN: 0 dB



**Test Equipment:**

| ID  | Asset #/Serial # | Description       | Model                        | Calibration Date | Cal Due Date |
|-----|------------------|-------------------|------------------------------|------------------|--------------|
|     | AN00314          | Loop Antenna      | 6502                         | 7/2/2014         | 7/2/2016     |
| T1  | AN00010          | Preamp            | 8447D                        | 3/12/2014        | 3/12/2016    |
| T2  | ANP05555         | Cable             | RG223/U                      | 5/7/2014         | 5/7/2016     |
| T3  | ANP05569         | Cable             | RG-214/U                     | 5/7/2014         | 5/7/2016     |
| T4  | AN01992          | Biconilog Antenna | CBL6111C                     | 12/4/2014        | 12/4/2016    |
| T5  | AN02869          | Spectrum Analyzer | E4440A                       | 7/17/2015        | 7/17/2016    |
| T6  | ANP04382         | Cable             | LDF-50                       | 7/30/2014        | 7/30/2016    |
| T7  | AN00787          | Preamp            | 83017A                       | 6/10/2015        | 6/10/2017    |
| T8  | AN01646          | Horn Antenna      | 3115                         | 3/18/2014        | 3/18/2016    |
| T9  | ANP06360         | Cable             | L1-PNMNM-48                  | 7/29/2014        | 7/29/2016    |
| T10 | ANP06554         | Cable             | 32022-29094K-<br>29094K-24TC | 3/19/2014        | 3/19/2016    |
| T11 | AN03169          | High Pass Filter  | HM1155-11SS                  | 6/24/2015        | 6/24/2017    |

| <b>Measurement Data:</b> |           |      | Reading listed by margin. |            |       |       | Test Distance: 3 Meters |              |              |        |       |
|--------------------------|-----------|------|---------------------------|------------|-------|-------|-------------------------|--------------|--------------|--------|-------|
| #                        | Freq      | Rdng | T1                        | T2         | T3    | T4    | Dist                    | Corr         | Spec         | Margin | Polar |
|                          |           |      | T5                        | T6         | T7    | T8    | Table                   | dB $\mu$ V/m | dB $\mu$ V/m | dB     |       |
|                          |           |      | MHz                       | dB $\mu$ V | dB    | dB    | dB                      | dB $\mu$ V/m | dB $\mu$ V/m | dB     | Ant   |
| 1                        | 2745.000M | 51.4 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 49.0         | 54.0         | -5.0   | Horiz |
|                          |           |      | +0.0                      | +6.9       | -40.0 | +26.6 |                         |              |              |        |       |
|                          |           |      | +3.5                      | +0.4       | +0.2  |       |                         |              |              |        |       |
| 2                        | 4574.942M | 42.2 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 45.9         | 54.0         | -8.1   | Horiz |
|                          |           |      | +0.0                      | +9.1       | -40.2 | +29.6 |                         |              |              |        |       |
|                          |           |      | +4.6                      | +0.5       | +0.1  |       |                         |              |              |        |       |
| 3                        | 3658.160M | 44.1 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 44.5         | 54.0         | -9.5   | Vert  |
|                          |           |      | +0.0                      | +7.5       | -40.4 | +28.6 |                         |              |              |        |       |
|                          |           |      | +4.1                      | +0.5       | +0.1  |       |                         |              |              |        |       |
| 4                        | 3658.092M | 43.9 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 44.3         | 54.0         | -9.7   | Horiz |
|                          |           |      | +0.0                      | +7.5       | -40.4 | +28.6 |                         |              |              |        |       |
|                          |           |      | +4.1                      | +0.5       | +0.1  |       |                         |              |              |        |       |
| 5                        | 1830.030M | 49.8 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 43.2         | 54.0         | -10.8  | Vert  |
| Ave                      |           |      | +0.0                      | +5.1       | -39.4 | +24.4 |                         |              |              |        |       |
|                          |           |      | +2.7                      | +0.3       | +0.3  |       |                         |              |              |        |       |
| ^                        | 1830.030M | 75.5 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 68.9         | 54.0         | +14.9  | Vert  |
|                          |           |      | +0.0                      | +5.1       | -39.4 | +24.4 |                         |              |              |        |       |
|                          |           |      | +2.7                      | +0.3       | +0.3  |       |                         |              |              |        |       |
| 7                        | 5489.950M | 34.3 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 40.9         | 54.0         | -13.1  | Horiz |
| Ave                      |           |      | +0.0                      | +9.7       | -40.1 | +30.9 |                         |              |              |        |       |
|                          |           |      | +5.3                      | +0.6       | +0.2  |       |                         |              |              |        |       |
| ^                        | 5489.950M | 59.1 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 65.7         | 54.0         | +11.7  | Horiz |
|                          |           |      | +0.0                      | +9.7       | -40.1 | +30.9 |                         |              |              |        |       |
|                          |           |      | +5.3                      | +0.6       | +0.2  |       |                         |              |              |        |       |
| 9                        | 7319.950M | 27.5 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 38.8         | 54.0         | -15.2  | Horiz |
| Ave                      |           |      | +0.0                      | +11.3      | -40.3 | +33.5 |                         |              |              |        |       |
|                          |           |      | +5.9                      | +0.7       | +0.2  |       |                         |              |              |        |       |
| ^                        | 7319.950M | 45.2 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 56.5         | 54.0         | +2.5   | Horiz |
|                          |           |      | +0.0                      | +11.3      | -40.3 | +33.5 |                         |              |              |        |       |
|                          |           |      | +5.9                      | +0.7       | +0.2  |       |                         |              |              |        |       |
| 11                       | 6404.950M | 29.2 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 38.3         | 54.0         | -15.7  | Horiz |
| Ave                      |           |      | +0.0                      | +10.5      | -39.8 | +32.0 |                         |              |              |        |       |
|                          |           |      | +5.5                      | +0.6       | +0.3  |       |                         |              |              |        |       |
| ^                        | 6404.950M | 51.5 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 60.6         | 54.0         | +6.6   | Horiz |
|                          |           |      | +0.0                      | +10.5      | -39.8 | +32.0 |                         |              |              |        |       |
|                          |           |      | +5.5                      | +0.6       | +0.3  |       |                         |              |              |        |       |
| 13                       | 6404.968M | 28.3 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 37.4         | 54.0         | -16.6  | Vert  |
| Ave                      |           |      | +0.0                      | +10.5      | -39.8 | +32.0 |                         |              |              |        |       |
|                          |           |      | +5.5                      | +0.6       | +0.3  |       |                         |              |              |        |       |
| ^                        | 6404.968M | 49.8 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 58.9         | 54.0         | +4.9   | Vert  |
|                          |           |      | +0.0                      | +10.5      | -39.8 | +32.0 |                         |              |              |        |       |
|                          |           |      | +5.5                      | +0.6       | +0.3  |       |                         |              |              |        |       |
| 15                       | 5489.968M | 30.0 | +0.0                      | +0.0       | +0.0  | +0.0  | +0.0                    | 36.6         | 54.0         | -17.4  | Vert  |
| Ave                      |           |      | +0.0                      | +9.7       | -40.1 | +30.9 |                         |              |              |        |       |
|                          |           |      | +5.3                      | +0.6       | +0.2  |       |                         |              |              |        |       |

|    |           |      |       |      |       |       |      |      |      |       |       |
|----|-----------|------|-------|------|-------|-------|------|------|------|-------|-------|
| ^  | 5489.968M | 53.0 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 59.6 | 54.0 | +5.6  | Vert  |
|    |           |      | +0.0  | +9.7 | -40.1 | +30.9 |      |      |      |       |       |
|    |           |      | +5.3  | +0.6 | +0.2  |       |      |      |      |       |       |
| 17 | 1830.000M | 42.8 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 36.2 | 54.0 | -17.8 | Horiz |
|    | Ave       |      | +0.0  | +5.1 | -39.4 | +24.4 |      |      |      |       |       |
|    |           |      | +2.7  | +0.3 | +0.3  |       |      |      |      |       |       |
| ^  | 1830.000M | 67.6 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 61.0 | 54.0 | +7.0  | Horiz |
|    |           |      | +0.0  | +5.1 | -39.4 | +24.4 |      |      |      |       |       |
|    |           |      | +2.7  | +0.3 | +0.3  |       |      |      |      |       |       |
| 19 | 169.510M  | 37.7 | -26.8 | +0.2 | +1.3  | +10.0 | +0.0 | 23.9 | 43.5 | -19.6 | Vert  |
|    |           |      | +0.0  | +1.5 | +0.0  | +0.0  |      |      |      |       |       |
|    |           |      | +0.0  | +0.0 | +0.0  |       |      |      |      |       |       |
| 20 | 3660.000M | 32.5 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 32.9 | 54.0 | -21.1 | Horiz |
|    | Ave       |      | +0.0  | +7.5 | -40.4 | +28.6 |      |      |      |       |       |
|    |           |      | +4.1  | +0.5 | +0.1  |       |      |      |      |       |       |
| ^  | 3660.000M | 55.4 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 55.8 | 54.0 | +1.8  | Horiz |
|    |           |      | +0.0  | +7.5 | -40.4 | +28.6 |      |      |      |       |       |
|    |           |      | +4.1  | +0.5 | +0.1  |       |      |      |      |       |       |
| 22 | 3659.968M | 32.1 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 32.5 | 54.0 | -21.5 | Vert  |
|    | Ave       |      | +0.0  | +7.5 | -40.4 | +28.6 |      |      |      |       |       |
|    |           |      | +4.1  | +0.5 | +0.1  |       |      |      |      |       |       |
| ^  | 3659.968M | 49.1 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 49.5 | 54.0 | -4.5  | Vert  |
|    |           |      | +0.0  | +7.5 | -40.4 | +28.6 |      |      |      |       |       |
|    |           |      | +4.1  | +0.5 | +0.1  |       |      |      |      |       |       |
| 24 | 2744.968M | 34.8 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 32.4 | 54.0 | -21.6 | Vert  |
|    | Ave       |      | +0.0  | +6.9 | -40.0 | +26.6 |      |      |      |       |       |
|    |           |      | +3.5  | +0.4 | +0.2  |       |      |      |      |       |       |
| ^  | 2744.960M | 53.5 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 51.1 | 54.0 | -2.9  | Vert  |
|    |           |      | +0.0  | +6.9 | -40.0 | +26.6 |      |      |      |       |       |
|    |           |      | +3.5  | +0.4 | +0.2  |       |      |      |      |       |       |
| 26 | 173.310M  | 34.7 | -26.8 | +0.2 | +1.3  | +9.7  | +0.0 | 20.6 | 43.5 | -22.9 | Vert  |
|    |           |      | +0.0  | +1.5 | +0.0  | +0.0  |      |      |      |       |       |
|    |           |      | +0.0  | +0.0 | +0.0  |       |      |      |      |       |       |
| 27 | 4574.968M | 26.3 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 30.0 | 54.0 | -24.0 | Vert  |
|    | Ave       |      | +0.0  | +9.1 | -40.2 | +29.6 |      |      |      |       |       |
|    |           |      | +4.6  | +0.5 | +0.1  |       |      |      |      |       |       |
| ^  | 4574.968M | 47.0 | +0.0  | +0.0 | +0.0  | +0.0  | +0.0 | 50.7 | 54.0 | -3.3  | Vert  |
|    |           |      | +0.0  | +9.1 | -40.2 | +29.6 |      |      |      |       |       |
|    |           |      | +4.6  | +0.5 | +0.1  |       |      |      |      |       |       |
| 29 | 180.310M  | 33.0 | -26.8 | +0.2 | +1.3  | +9.1  | +0.0 | 18.3 | 43.5 | -25.2 | Vert  |
|    |           |      | +0.0  | +1.5 | +0.0  | +0.0  |      |      |      |       |       |
|    |           |      | +0.0  | +0.0 | +0.0  |       |      |      |      |       |       |
| 30 | 172.510M  | 24.0 | -26.8 | +0.2 | +1.3  | +9.8  | +0.0 | 10.0 | 43.5 | -33.5 | Horiz |
|    |           |      | +0.0  | +1.5 | +0.0  | +0.0  |      |      |      |       |       |
|    |           |      | +0.0  | +0.0 | +0.0  |       |      |      |      |       |       |

## Band Edge Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 7149936112  
 Customer: RJE Technologies, Inc.  
 Specification: **Band Edge**  
 Work Order #: **97475** Date: 8/26/2015  
 Test Type: **Maximized Emissions** Time: 14:28:24  
 Tested By: Don Nguyen Sequence#: 2  
 Software: EMITest 5.02.00

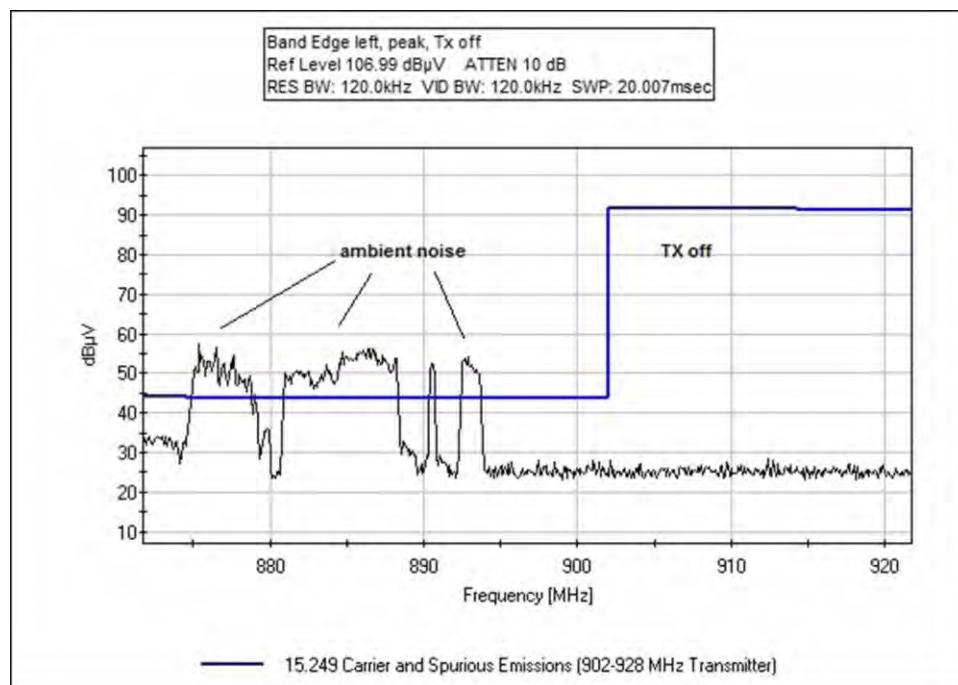
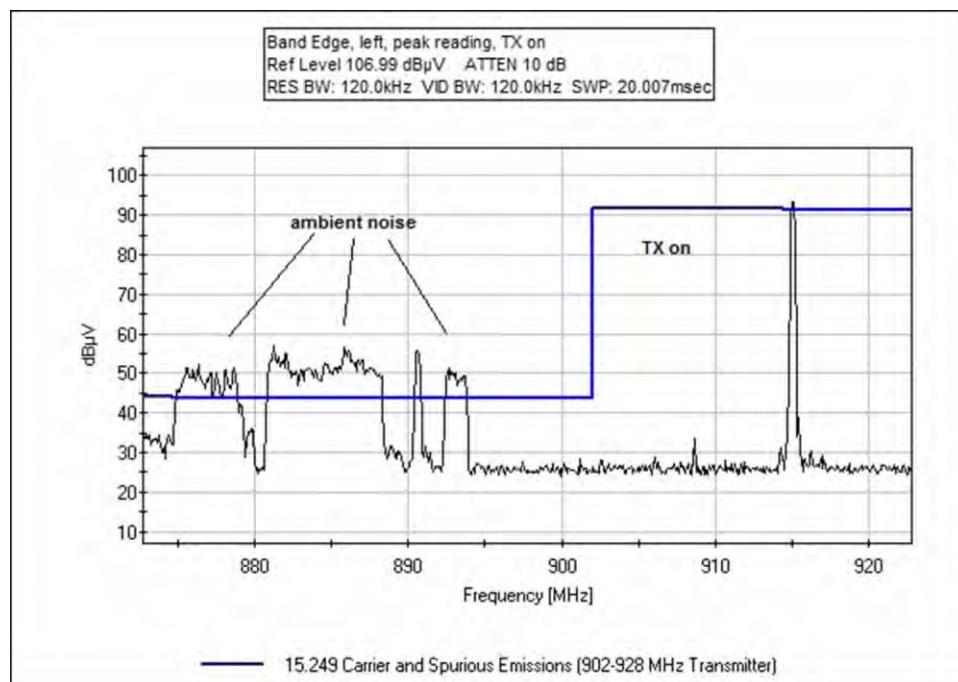
***Equipment Tested:***

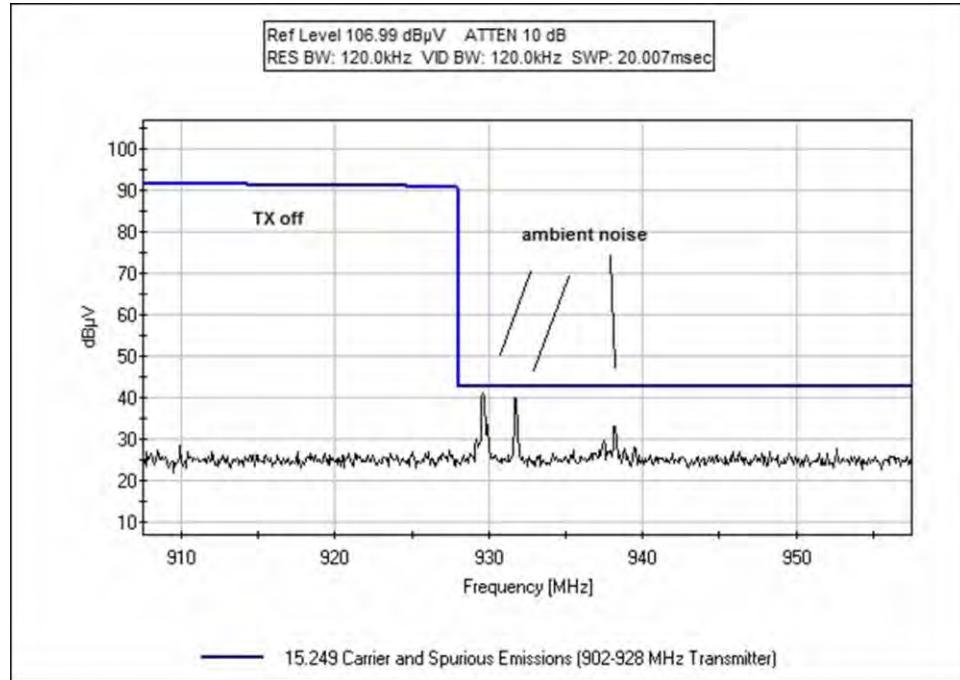
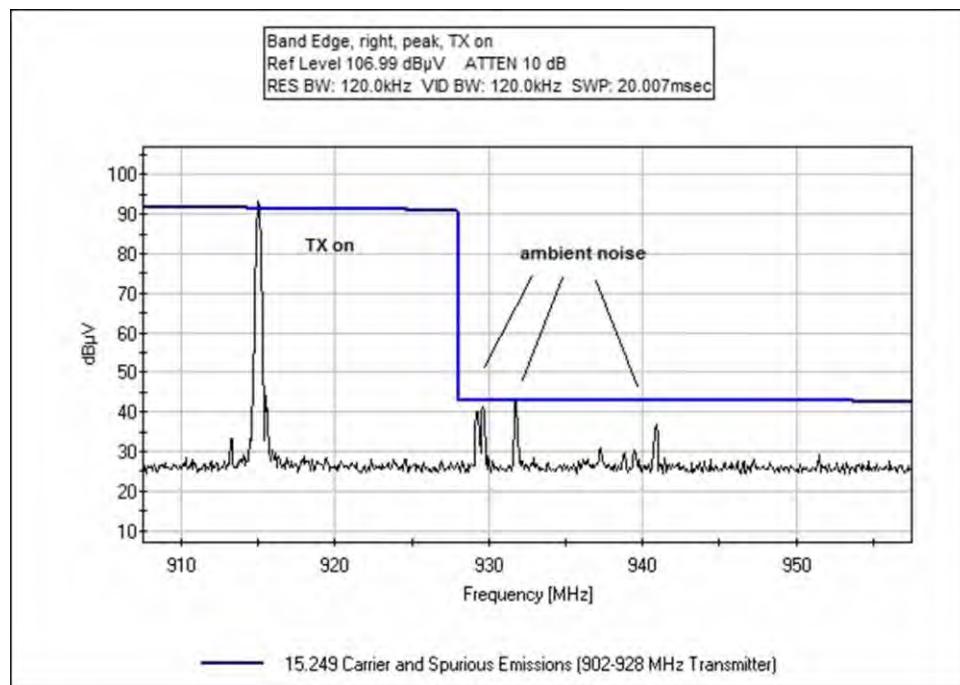
| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

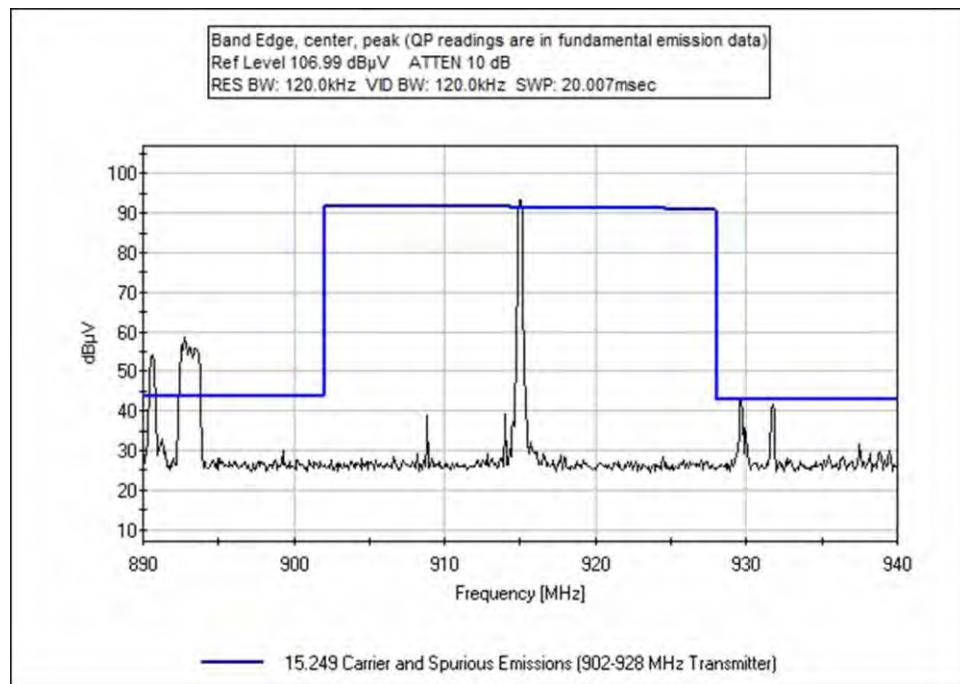
***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

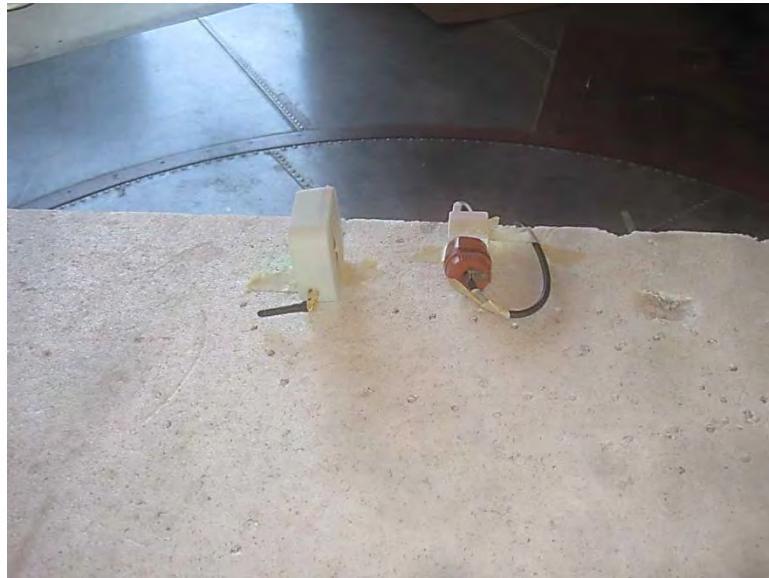
***Test Conditions / Notes:***



The EUT is stand alone on the Styrofoam table top. The EUT is powered from an external DC power supplying output 5VDC. The EUT transmits solely on a single channel 915 MHz. • The transmission triggered by shorting the support Safety Turtle and the signal will be received by support receiver. • All support equipment is located remotely. • The EUT is positioned in three different axis and data is taken in each axis. • Frequency range of data sheet 915.0 to 915.05MHz. • RBW=VBW=120kHz.



Temperature: 26°C, Relative Humidity: 35%, Atmospheric Pressure: 100kPa. •


Test Method: ANSI C63.4 (2009)• Site D. •

Mod. 1 was in place during testing.


## Band Edge Plots





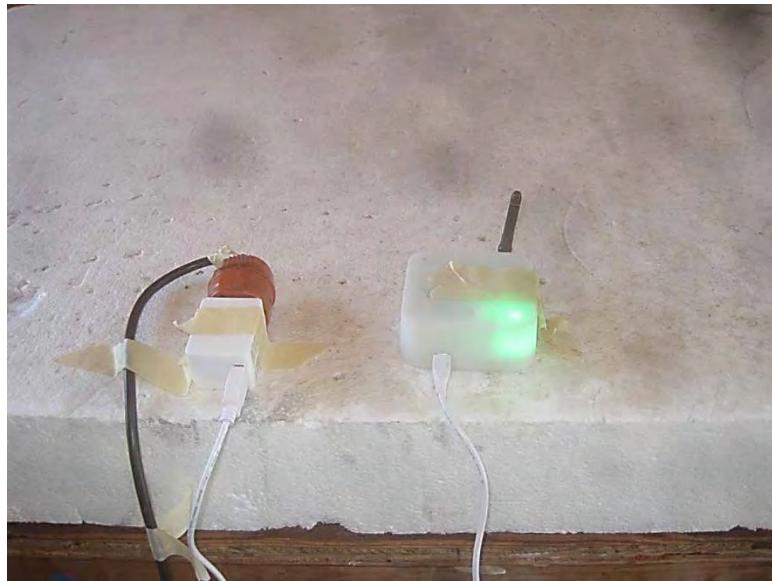


## Test Setup Photo(s)

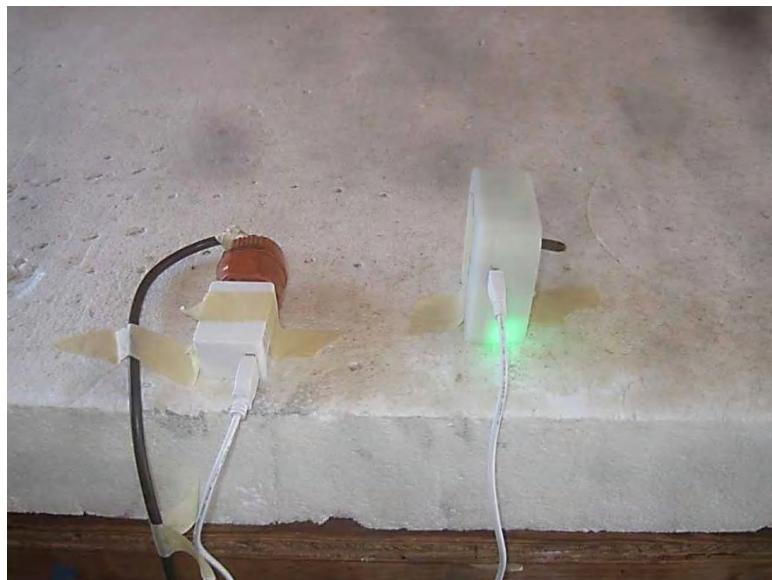


Front View

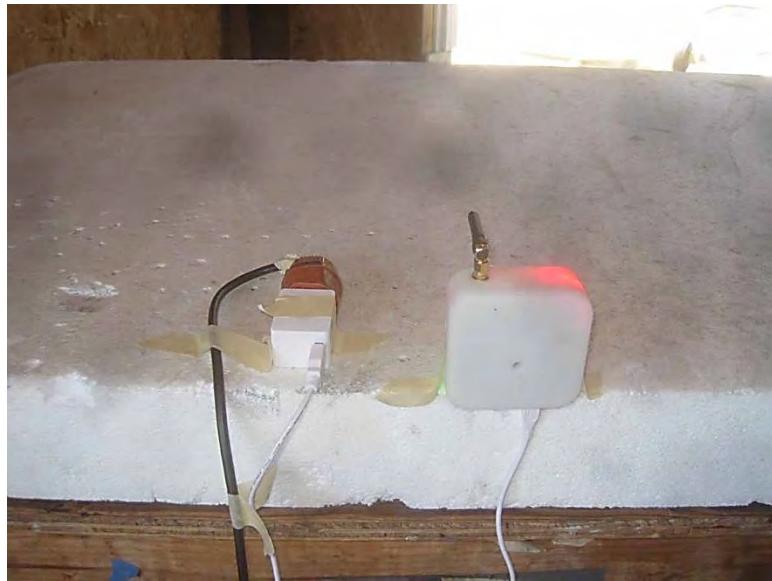



Back View




Cone 1




Cone 2



X-Axis



Y-Axis



Z-Axis

## SUPPLEMENTAL INFORMATION

### Measurement Uncertainty

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

### Emissions Test Details

#### TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB $\mu$ V/m, the spectrum analyzer reading in dB $\mu$ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

| <b>SAMPLE CALCULATIONS</b> |                |
|----------------------------|----------------|
| Meter reading              | (dB $\mu$ V)   |
| + Antenna Factor           | (dB)           |
| + Cable Loss               | (dB)           |
| - Distance Correction      | (dB)           |
| - Preamplifier Gain        | (dB)           |
| = Corrected Reading        | (dB $\mu$ V/m) |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| <b>MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE</b> |                     |                  |                   |
|-------------------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                              | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS                                               | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                                | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS                                                | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                                | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                                | 1000 MHz            | >1 GHz           | 1 MHz             |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

##### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

##### Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

##### Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.