FCC 47 CFR PART 15 SUBPART E AND ANSI C63.10:2013 TEST REPORT

For

AC600 Wireless Dual Band High Power Outdoor AP Router

Model: WF2375

Trade Name: netis

Issued for

NETIS SYSTEMS CO., LTD

4F & 5F, R&D Building, Oriental Cyberport, High-Tech Industrial Park, Nanshan, Shenzhen, China

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail: service@ccsrf.com Issued Date: June 30, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

75R Report No.: T150602D12-RP1-1

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	06/30/2015	Initial Issue	All Page 145	Michelle Chiu

Report No.: T150602D12-RP1-1

TABLE OF CONTENTS

TITLE PAGE NO. 1. TEST REPORT CERTIFICATION4 3. DESCRIPTION OF TEST MODES7 4. TEST METHODOLOGY10 5. FACILITIES AND ACCREDITATION......10 5.3 MEASUREMENT UNCERTAINTY11 6. SETUP OF EQUIPMENT UNDER TEST......12 7. FCC PART 15.407 REQUIREMENTS......14 7.3 PEAK POWER SPECTRAL DENSITY......28 7.4 RADIATED EMISSION.......45 7.5 CONDUCTED EMISSION131 APPENDIX SETUP PHOTOS142

1. TEST REPORT CERTIFICATION

Applicant: NETIS SYSTEMS CO., LTD

Address: 4F & 5F, R&D Building, Oriental Cyberport, High-Tech

Industrial Park, Nanshan, Shenzhen, China

Equipment Under Test: AC600 Wireless Dual Band High Power Outdoor AP

Router

Model : WF2375

Trade Name : netis

Tested Date : June 02 ~ July 01, 2015

x Lias

APPLICABLE STANDARD		
Standard	Test Result	
FCC Part 15 Subpart E AND ANSI C63.10:2013	PASS	

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Rex Liao

Deputy Manager

Reviewed by:

Jacky Chen

Section Manager

2. EUT DESCRIPTION

Product Name AC600 Wireless Dual Band High Power Outdoor AP Roo	
Model Number	WF2375
Identify Number T150602D12	
Received Date	June 02, 2015
	UNII Band 1:
	IEEE 802.11a, 802.11ac VHT20 : 5180MHz ~ 5240MHz
	IEEE 802.11ac VHT40 : 5190MHz ~ 5230MH
Fraguency Bongo	IEEE 802.11ac VHT80 : 5210MHz
Frequency Range	UNII Band 3:
	IEEE 802.11a, 802.11ac VHT20 : 5745MHz ~ 5825MHz
	IEEE 802.11ac VHT40 : 5755MHz ~ 5795MHz
	IEEE 802.11ac VHT80 : 5775MHz
	UNII Band 1:
	IEEE 802.11a : 18.72 dBm (0.0745W)
	IEEE 802.11ac VHT20 : 17.46 dBm (0.0557W)
	IEEE 802.11ac VHT40 : 17.79 dBm (0.0601W)
Transmit Power	IEEE 802.11ac VHT80 : 13.82 dBm (0.0241W)
Transmit Fower	UNII Band 3:
	IEEE 802.11a : 18.22 dBm (0.0664W)
	IEEE 802.11ac VHT20 : 16.58 dBm (0.0455W)
	IEEE 802.11ac VHT40 : 16.66 dBm (0.0463W)
	IEEE 802.11ac VHT80 : 15.22 dBm (0.0333W)
	IEEE 802.11a, 802.11ac VHT20 : 20MHz
Channel Spacing	IEEE 802.11ac VHT40 : 40MHz
	IEEE 802.11ac VHT80 : 80MHz

	IEEE 802.11a, 802.11ac VHT20 :	
	5150MHz ~ 5250MHz : 4 Channels	
	5725MHz ~ 5850MHz : 5 Channels	
Channel Number	IEEE 802.11ac VHT40 : 5150MHz ~ 5250MHz : 2 Channels	
	5725MHz ~ 5850MHz : 2 Channels	
	IEEE 802.11ac VHT80 : 5150MHz ~ 5250MHz : 1 Channels	
	5725MHz ~ 5850MHz : 1 Channels	
	IEEE 802.11a : up to 54 Mbps	
	IEEE 802.11ac (HT20,800ns GI) : up to 78 Mbps	
	IEEE 802.11ac (HT20,400ns GI) : up to 86.7 Mbps	
Transmit Data Rate	IEEE 802.11ac (HT40,800ns GI) : up to 180 Mbps	
	IEEE 802.11ac (HT40,400ns GI) : up to 200 Mbps	
	IEEE 802.11ac (HT80,800ns GI) : up to 390 Mbps	
	IEEE 802.11ac (HT80,400ns GI) : up to 433.3 Mbps	
	IEEE 802.11a : OFDM (64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11ac VHT20/40 : OFDM (256QAM, 64QAM,	
Type of Modulation	16QAM, QPSK, BPSK)	
	IEEE 802.11ac VHT80 : OFDM (256QAM, 64QAM, 16QAM,	
	QPSK, BPSK)	
Antenna Type	PIFA Antenna , Antenna Gain: 12.2 dBi	
Power Rating	24Vdc	
Test Voltage	120Vac, 60Hz	
DC Power Cable Type	er Cable Type Non-shielded cable,1.5m × 1 (Non-detachable)	
	EUT: RJ-45 Port × 2	
I/O Port	PoE: RJ-45(LAN/WAN) Port × 1, PoE Port × 1, Power Port × 1	

Power Adapter:

No.	Manufacturer	Model No.	Power Input	Power Output
1	Shenzhen Juke Electronic Co., Ltd.	JK240050-S04USA	100-240Vac, 50/60Hz, 0.5A	24Vdc, 500mA

Remark ·

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: T58WF2375R filing to comply with Section 15.207, 15.209 and 15.407 of the FCC Part 15, Subpart E Rules.

3. DESCRIPTION OF TEST MODES

The EUT is an 802.11n transceiver in AC600 Wireless Dual Band High Power Outdoor AP Router form factor.

For IEEE 802.11a, 802.11ac VHT20/VHT40/VHT80 mode: 1TX / 1RX.

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	TX Mode

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test I	Mode	
Emission	Radiated Emission	TX Mode
	Conducted Emission	TX Mode

Remark: Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Conducted / Radiated Emission Test (Above 1 GHz)

IEEE 802.11a, 802.11ac VHT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

UNII Band 1:

Channel	Frequency (MHz)
Low	5180
Middle	5200
High	5240

UNII Band 3:

Channel	Frequency (MHz)
Low	5745
Middle	5785
High	5825

IEEE 802.11a mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11ac VHT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11ac VHT40 mode

The EUT had been tested under operating condition.

There are two channels have been tested as following:

UNII Band 1:

Channel	Frequency (MHz)	
Low	5190	
High	5230	

UNII Band 3:

Channel	Frequency (MHz)	
Low	5755	
High	5795	

IEEE 802.11ac VHT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11ac VHT80 mode

The EUT had been tested under operating condition.

There are one channels have been tested as following:

UNII Band 1:

Channel	Frequency (MHz)	
Low	5210	

UNII Band 3:

Channel	Frequency (MHz)	
Low	5775	

IEEE 802.11ac VHT80 mode: 29.3Mbps data rate (worst case) were chosen for full testing. Remark: The field strength of spurious emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X, Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded. Report No.: T150602D12-RP1-1

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47, 15.207, 15.209 and 15. 407.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.10:2013 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

> **Taiwan TAF**

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

> Canada **INDUSTRY CANADA VCCI** Japan **BSMI Taiwan USA FCC MRA**

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Report No.: T150602D12-RP1-1

.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.
1	Notebook PC	DELL	INSPIRON 640m PP19L	CN-0MG532-70166-71G-0 3EC

No.	Signal Cable Description
1	Non-shielded RJ-45 cable, 12m × 1

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. TX Mode:
 - ⇒ **Tx Data Rate:** 6Mbps Bandwidth 20 (IEEE 802.11a mode)

6.5Mbps Bandwidth 20 (IEEE 802.11ac VHT20 mode)

13.5Mbps Bandwidth 40 (IEEE 802.11ac VHT40 mode)

29.3Mbps Bandwidth 80 (IEEE 802.11ac VHT80 mode)

⇒ Power control :

UNII Band 1

IEEE 802.11a Channel Low (5180MHz) Chain0 Power set 53

IEEE 802.11a Channel Mid (5200MHz) Chain0 Power set 52

IEEE 802.11a Channel High (5240MHz) Chain0 Power set 50

IEEE 802.11ac VHT20 Channel Low (5180MHz) Chain0 Power set 51

IEEE 802.11ac VHT20 Channel Mid (5200MHz) Chain0 Power set 50

IEEE 802.11ac VHT20 Channel High (5240MHz) Chain0 Power set 48

IEEE 802.11ac VHT40 Channel Low (5190MHz) Chain0 Power set 46

IEEE 802.11ac VHT40 Channel High (5230MHz) Chain0 Power set 48

IEEE 802.11ac VHT80 Channel High (5210MHz) Chain0 Power set 43

UNII Band 3

IEEE 802.11a Channel Low (5745MHz) Chain0 Power set 42

IEEE 802.11a Channel Mid (5785MHz) Chain0 Power set 43

IEEE 802.11a Channel High (5825MHz) Chain0 Power set 37

IEEE 802.11ac VHT20 Channel Low (5745MHz) Chain0 Power set 37

IEEE 802.11ac VHT20 Channel Mid (5785MHz) Chain0 Power set 37

IEEE 802.11ac VHT20 Channel High (5825MHz) Chain0 Power set 37

IEEE 802.11ac VHT40 Channel Low (5755MHz) Chain0 Power set 37

IEEE 802.11ac VHT40 Channel High (5795MHz) Chain0 Power set 37

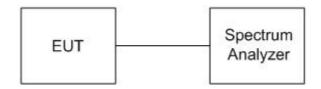
IEEE 802.11ac VHT80 Channel High (5775MHz) Chain0 Power set 35

- 3. All of the functions are under run.
- 4. Start test.

7. FCC PART 15.407 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS


According to § 15.407 (e), within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer Agilent		N9010A	MY52220817	03/19/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto.
- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

TEST RESULTS

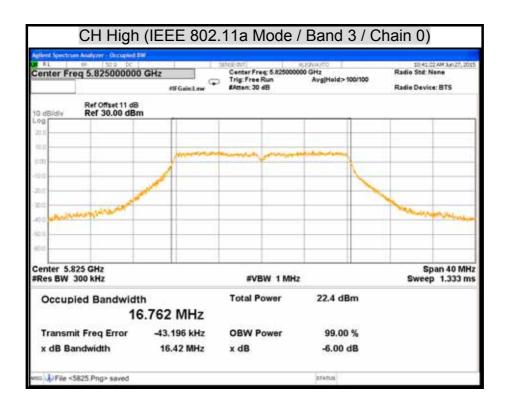
IEEE 802.11a Mode

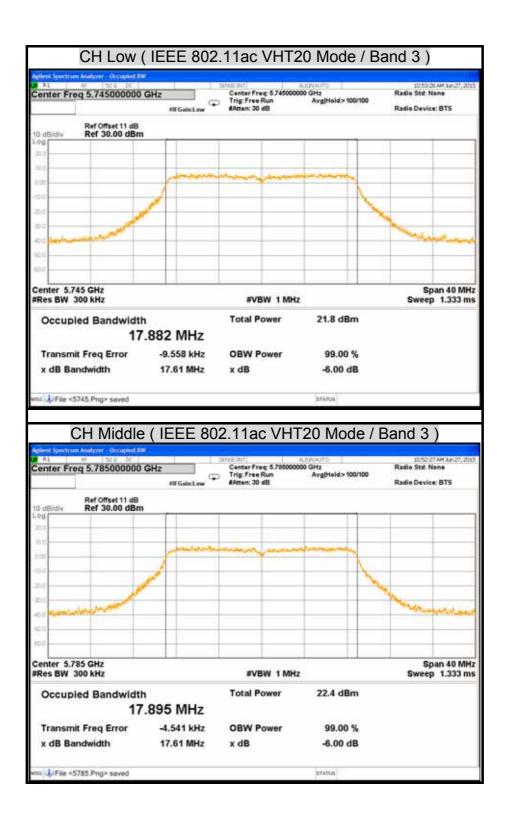
U-NII	Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)
Band 3	Low	5745	16.41
	Middle	5785	16.42
	High	5825	16.42

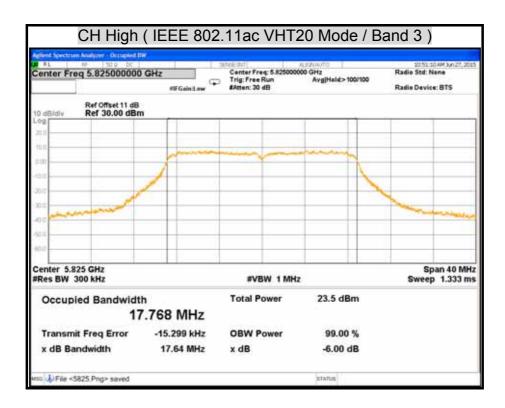
IEEE 802.11ac VHT20 Mode

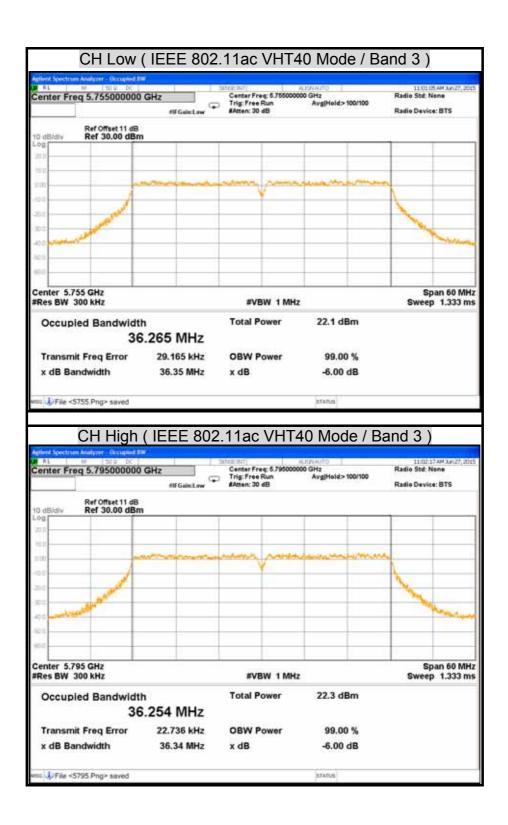
U-NII	Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)
	Low	5475	17.61
Band 3	Middle	5785	17.61
	High	5825	17.64

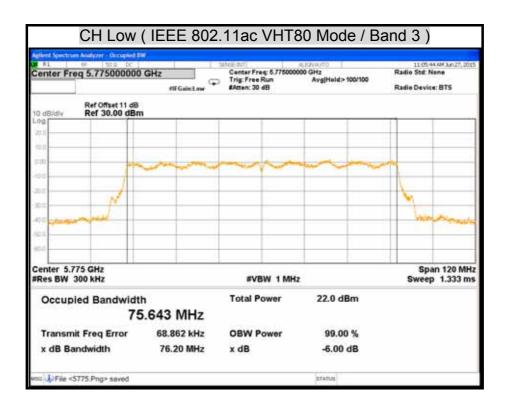
IEEE 802.11ac VHT40 Mode


U-NII	Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)
Band 3	Low	5755	36.35
	High	5795	36.34


IEEE 802.11ac VHT80 Mode


U-NII	Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)
Band 3	Low	5775	76.20


6dB BANDWIDTH



Report No.: T150602D12-RP1-1

7.2 MAXIMUM CONDUCTED OUTPUT POWER

LIMITS

§ 15.407(a)

- (1) For the band 5.15-5.25 GHz,
 - (I) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (II)For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
 - (III) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Compliance Certification Services Inc.

FCC ID : T58WF2375R Report No. : T150602D12-RP1-1

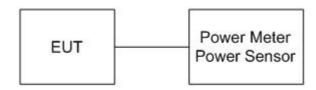
(IV) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

§ KDB 662911 : For power measurements on IEEE 802.11 devices

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};


Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

TEST EQUIPMENT

Name of Equipment	ame of Equipment Manufacturer		Serial Number	Calibration Due
Power Meter ANRITSU		ML2495A	1149001	12/11/2015
Power Sensor	ANRITSU	MA2411B	1126148	12/11/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the power detection.

<u>TEST RESULTS</u>

IEEE 802.11a Mode / UNII Band 1

Channel Frequency (MHz)		Power		Power	Pass / Fail	
		(dBm)	(W)	(dBm)	(W)	1 433 / 1 411
Low	5180	18.26	0.0670	23.8	0.2399	PASS
Middle	5200	18.72	0.0745	23.8	0.2399	PASS
High	5240	17.61	0.0577	23.8	0.2399	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6 Mbps.
- 2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11ac VHT20 Mode / UNII Band 1

Channel Frequency (MHz)		Pov	wer	Power	r Limit	Pass / Fail
		(dBm)	(W)	(dBm)	(W)	1 455 / 1 411
Low	5180	17.13	0.0516	23.8	0.2399	PASS
Middle	5200	17.46	0.0557	23.8	0.2399	PASS
High	5240	17.33	0.0541	23.8	0.2399	PASS

Remark:

- At finial test to get the worst-case emission at 6.5 Mbps.
 The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
 The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11ac VHT40 Mode / UNII Band 1

	00						
Channel	Channel		Power		Power Limit		
Onamor	Channel Frequency (MHz)	(dBm)	(W)	(dBm)	(W)	Pass / Fail	
Low	5190	15.44	0.0350	23.8	0.2399	PASS	
High	5230	17.79	0.0601	23.8	0.2399	PASS	

- 1. At finial test to get the worst-case emission at 13.5 Mbps.
- The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
 The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

Report No.: T150602D12-RP1-1

IEEE 802.11ac VHT80 Mode / UNII Band 1

Channel Channel			Power		Power Limit		
	(MHz)	(dBm)	(W)	(dBm)	(W)	Pass / Fail	
Low	5210	13.82	0.0241	23.8	0.2399	PASS	

Remark:

- At finial test to get the worst-case emission at 29.3 Mbps.
 The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
 The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11a Mode / UNII Band 3

Channel	Channel Frequency	Power		Power	Pass / Fail	
Onamici	(MHz)	(dBm)	(W)	(dBm)	(W)	1 433 / 1 411
Low	5745	18.03	0.0635	23.8	0.2399	PASS
Middle	5785	18.22	0.0664	23.8	0.2399	PASS
High	5825	16.48	0.0445	23.8	0.2399	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6 Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11ac VHT20 Mode / UNII Band 3

Channel Channel		Power		Power	Pass / Fail	
Onamie	(MHz)	(dBm)	(W)	(dBm)	(W)	1 433 / 1 411
Low	5745	16.39	0.0436	23.8	0.2399	PASS
Middle	5785	16.57	0.0454	23.8	0.2399	PASS
High	5825	16.58	0.0455	23.8	0.2399	PASS

- 1. At finial test to get the worst-case emission at 6.5 Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11ac VHT40 Mode / UNII Band 3

Channel	Channel	Channel Power Frequency		Power	Pass / Fail	
Onamici	(MHz)	(dBm)	(W)	(dBm)	(W)	1 433 / 1 411
Low	5755	16.66	0.0463	23.8	0.2399	PASS
High	5795	16.23	0.0420	23.8	0.2399	PASS

Remark:

- 1. At finial test to get the worst-case emission at 13.5 Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11ac VHT80 Mode / UNII Band 3

Channel	Channel Frequency		Power		Power Limit		
(MHz)	(dBm)	(W)	(dBm)	(W)	Pass / Fail		
Low	5775	15.22	0.0333	23.8	0.2399	PASS	

- 1. At finial test to get the worst-case emission at 29.3 Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

Report No.: T150602D12-RP1-1

7.3 PEAK POWER SPECTRAL DENSITY

LIMITS

§ 15.407 (a)

- (1) For the band 5.15-5.25 GHz
 - (I) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (II) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
 - (IV) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- Place the EUT on the table and set it in transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 1MHz, VBW = 3MHz, Span = Sweep= AUTO
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

IEEE 802.11a Mode

U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/MHz)	Pass / Fail
	Low	5180	7.150	10.8	PASS
Band 1	Middle	5200	7.071	10.8	PASS
	High	5240	5.815	10.8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 10.8dBm.

IEEE 802.11ac VHT20 Mode

U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/MHz)	Pass / Fail
	Low	5180	4.565	10.8	PASS
Band 1	Middle	5200	4.763	10.8	PASS
	High	5240	4.803	10.8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 10.8dBm.

IEEE 802.11ac VHT40 Mode

U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/MHz)	Pass / Fail
5 14	Low	5190	0.316	10.8	PASS
Band 1	High	5230	1.241	10.8	PASS

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 10.8dBm.

IEEE 802.11ac VHT80 Mode

U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/MHz)	Pass / Fail
Band 1	Low	5210	-3.833	10.8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 29.3Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 10.8dBm.

IEEE 802.11a Mode

U-NII	Channel	Channel Frequency	PPSD (dBm)	Minimum Limit (dBm/500kHz)	Pass / Fail
		(MHz)	, ,	,	
	Low	5745	3.080	23.8	PASS
Band 3	Middle	5785	3.130	23.8	PASS
	High	5825	1.585	23.8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

IEEE 802.11ac VHT20 Mode

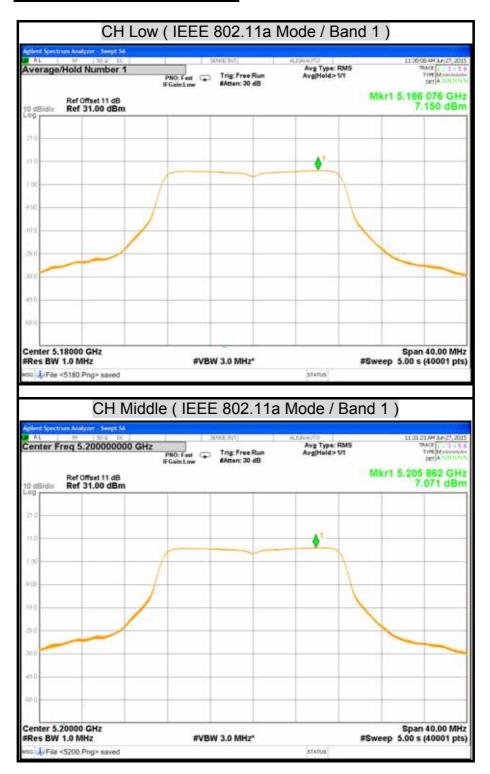
U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/500kHz)	Pass / Fail
Band 3	Low	5745	0.693	23.8	PASS
	Middle	5785	1.270	23.8	PASS
	High	5825	1.339	23.8	PASS

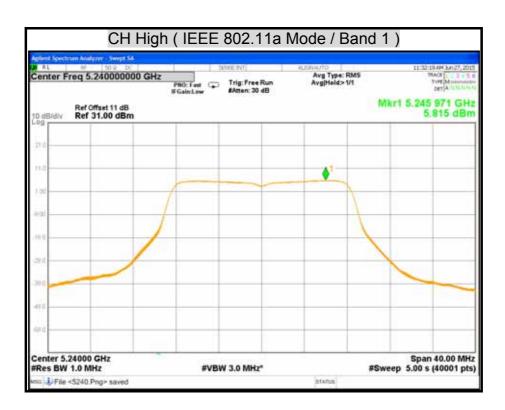
- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

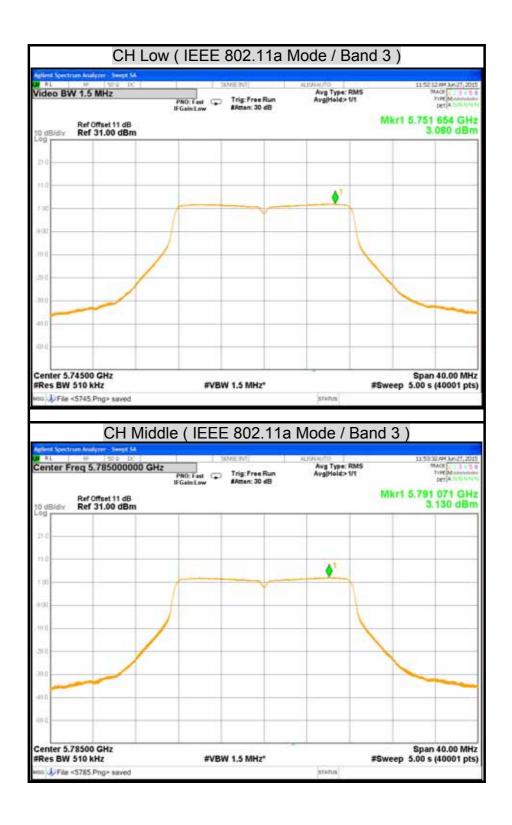
IEEE 802.11ac VHT40 Mode

U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/500kHz)	Pass / Fail
Band 3	Low	5755	-2.358	23.8	PASS
	High	5795	-2.067	23.8	PASS

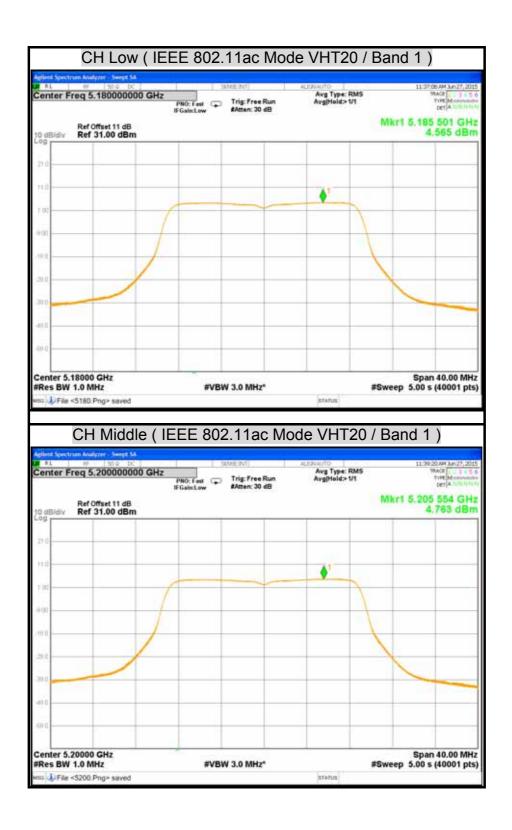
Remark:

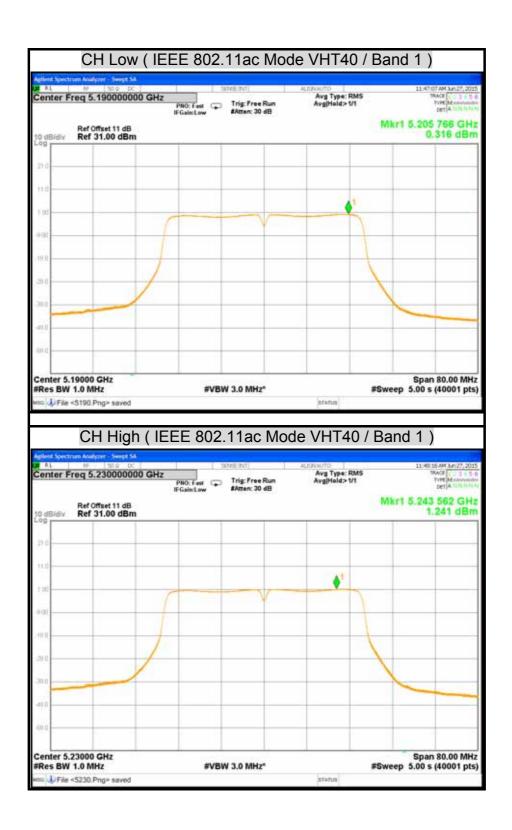

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.

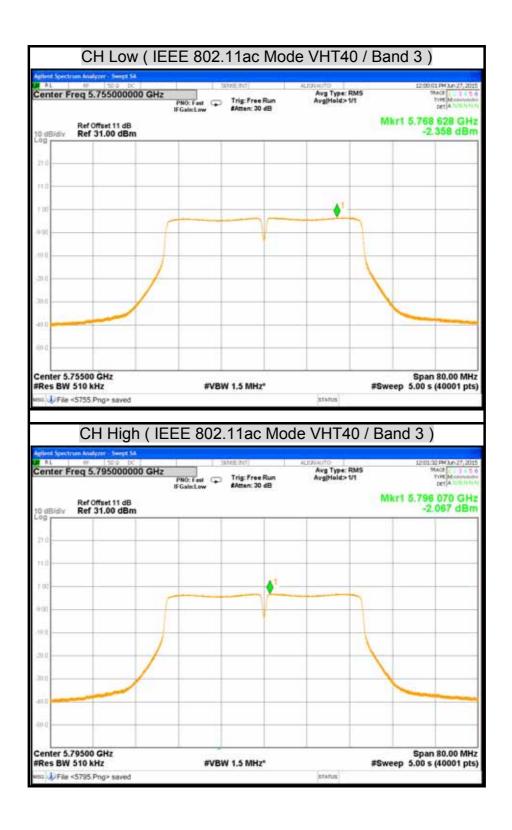

IEEE 802.11ac VHT80 Mode

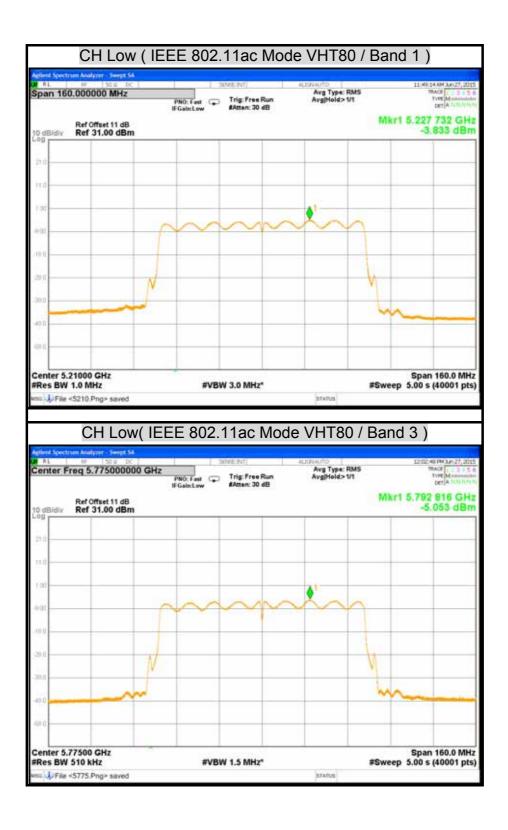

U-NII	Channel	Channel Frequency (MHz)	PPSD (dBm)	Minimum Limit (dBm/500kHz)	Pass / Fail
Band 3	Low	5775	-5.053	23.8	PASS

- 1. At finial test to get the worst-case emission at 29.3Mbps.
- 2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.
- 3. The maximum antenna gain is 12.2dBi which is more than 6dBi, the limit should be 23.8dBm.


POWER SPECTRAL DENSITY







7.4 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. &}lt;sup>2</sup> Above 38.6

FCC ID: T58WF2375R

Report No.: T150602D12-RP1-1

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 — 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

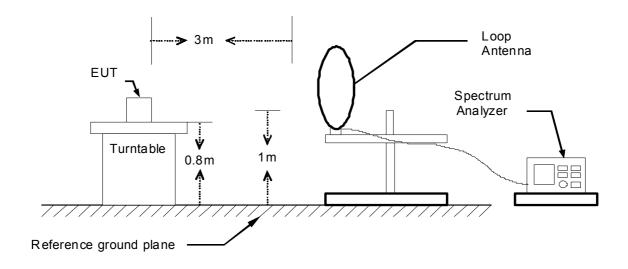
Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

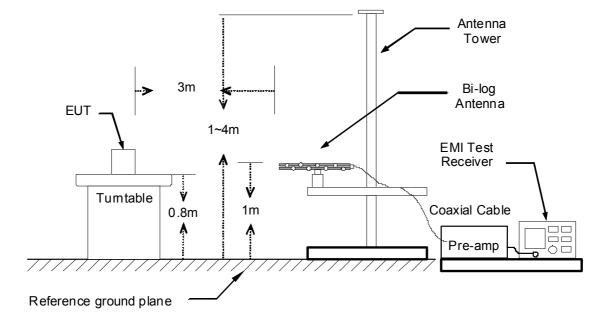
TEST EQUIPMENT

Radiated Emission / 966Chamber C

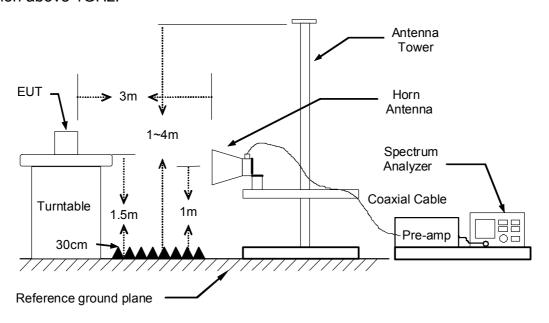
Name of Equipment	Manufacture	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY45280064	03/26/2016	
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101387	10/05/2015	
Bi-log Antenna	TESEQ	CBL 6112D	35404	02/24/2016	
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078732	07/23/2015	
Horn Antenna	COM-POWER	AH-840	03077	12/17/2015	
Pre-Amplifier	EMCI	EMC001625	980243	04/12/2016	
Pre-Amplifier	COM-POWER	PAM-118A	551043	04/12/2016	
Notch Filters Band Reject	Micro-Tronics	BRM50702-01	009	N.C.R	
LOOP Antenna	EMCO	6502	8905-2356	09/23/2015	
Band Reject Filter	Micro-Tronics	BRC50703-01	004	N.C.R.	
Band Reject Filter	Micro-Tronics	BRC50705-01	007	N.C.R.	


Remark: 1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.


9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

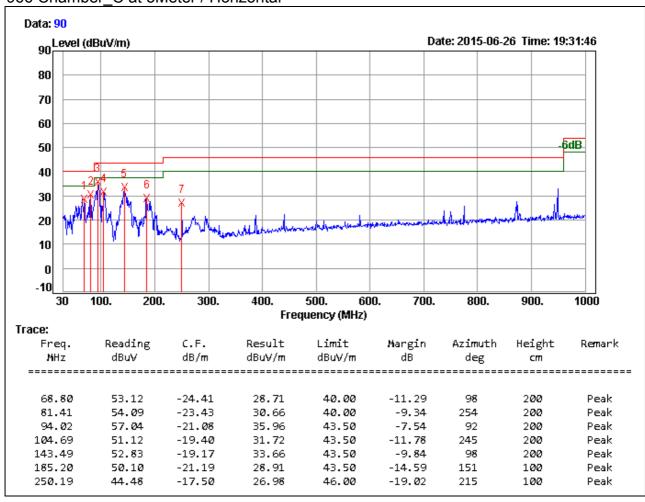
TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 and 1.5 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

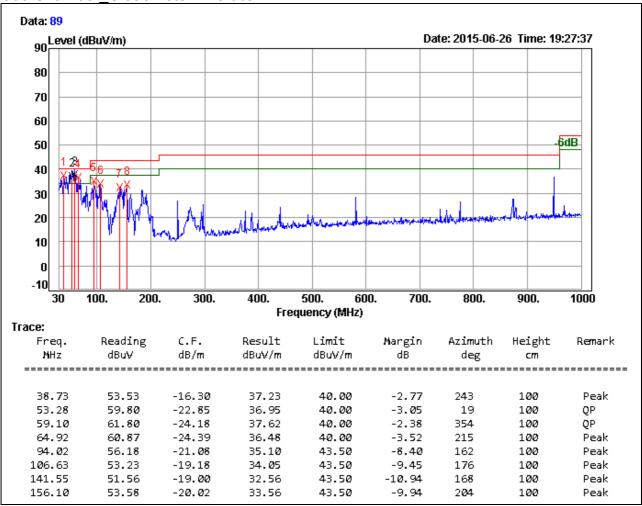

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	TX Mode	Temp. & Humidity	25°C, 50%

966 Chamber_C at 3Meter / Horizontal

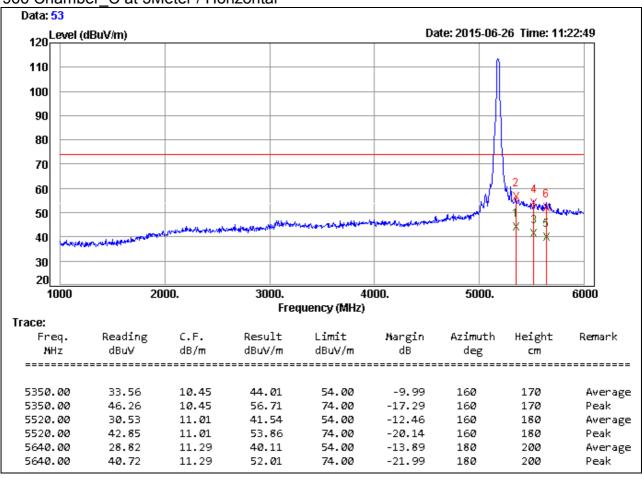


Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 3. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 4. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	TX Mode	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical


Remark:

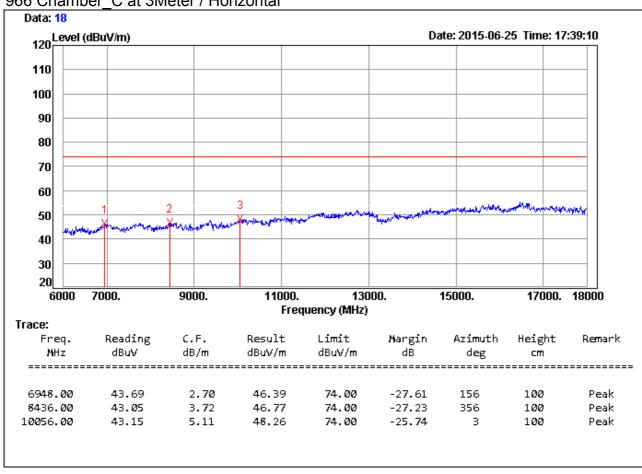
- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 3. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 4. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Above 1 GHz

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

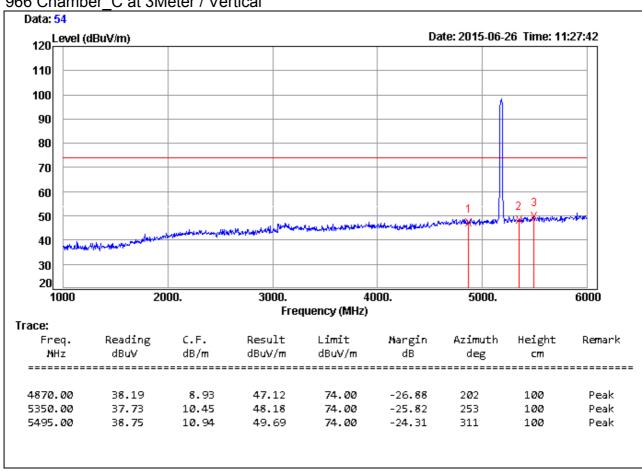
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

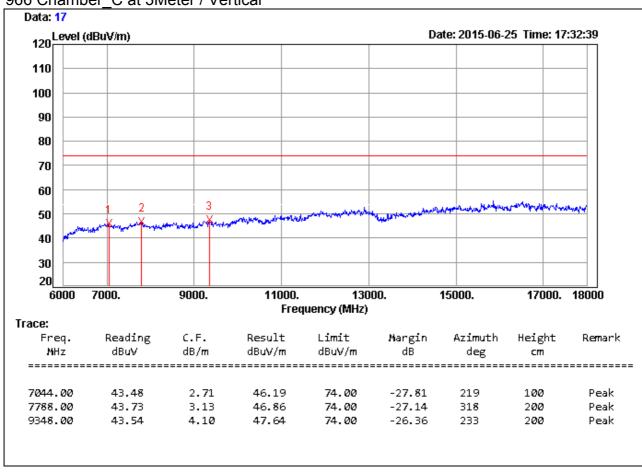
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

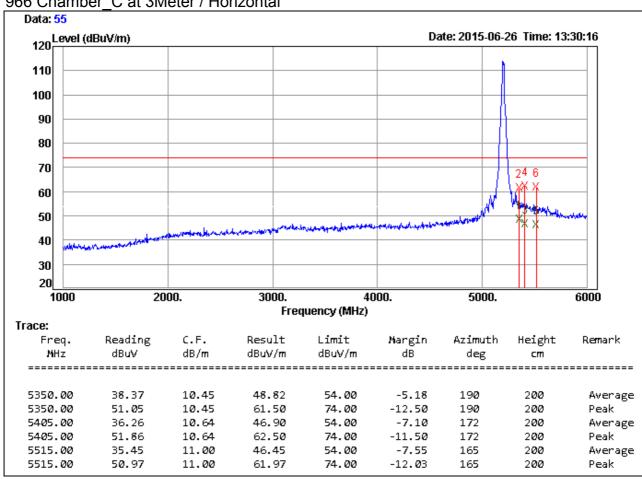
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit

Remark Peak = Result(PK) - Limit(PK)

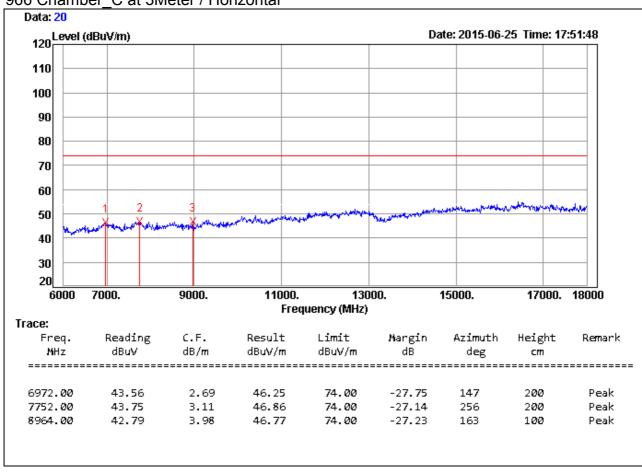
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

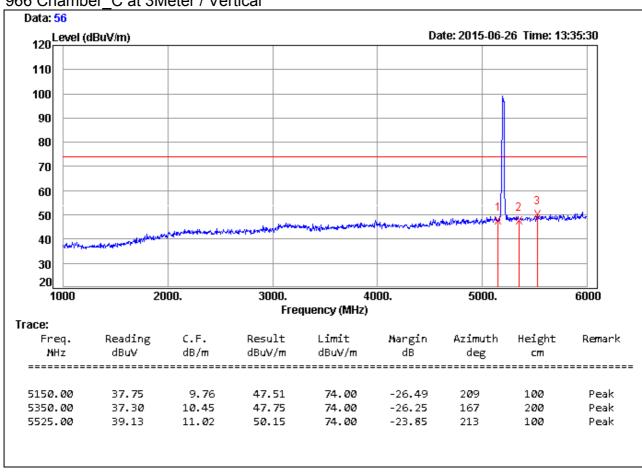
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

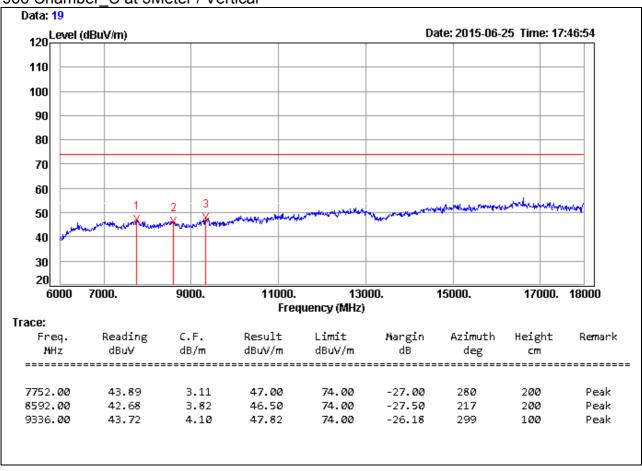
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

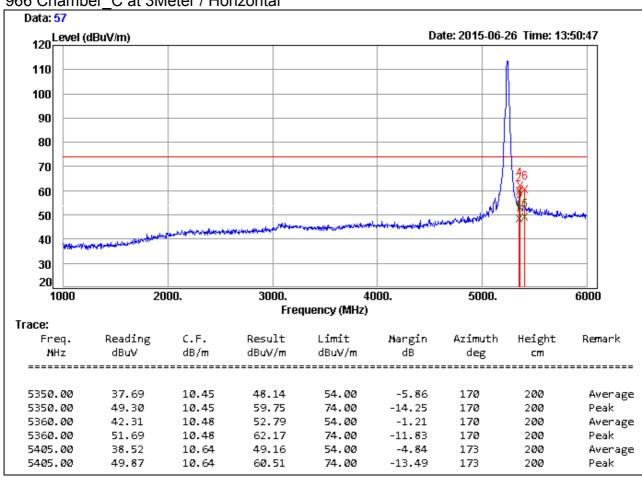
Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

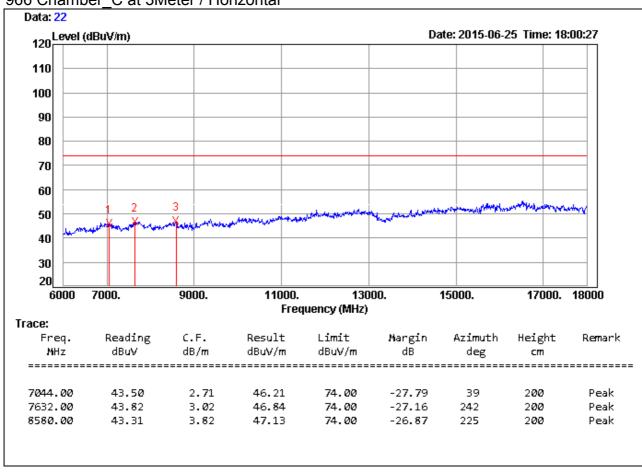
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result – Limit

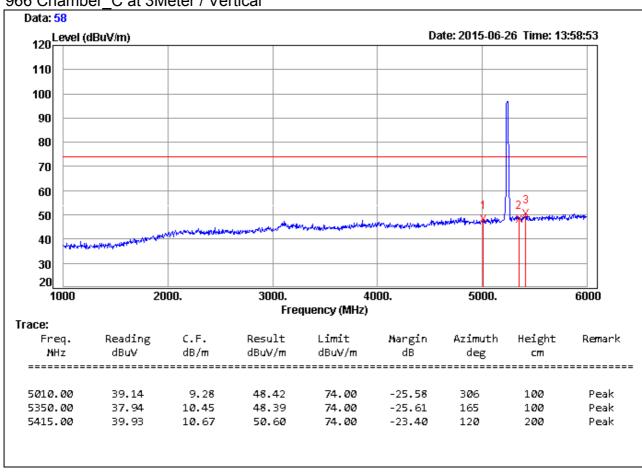
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit

Remark Peak = Result(PK) - Limit(PK)

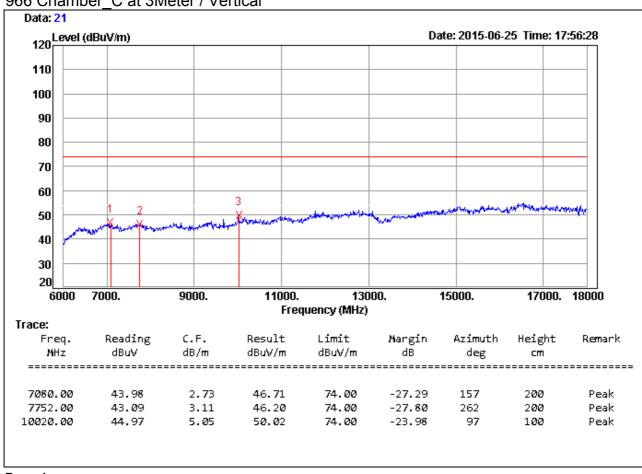
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

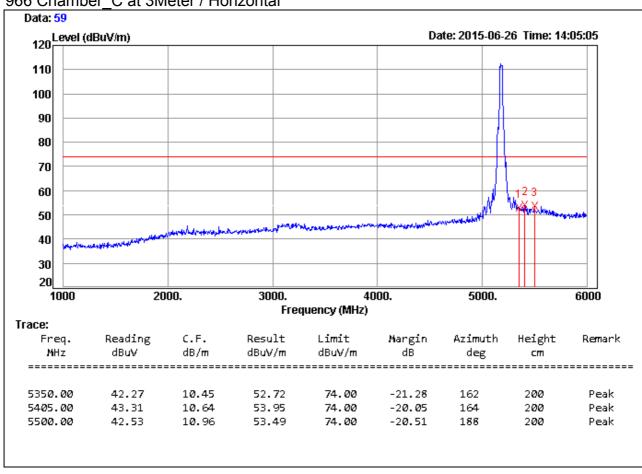
Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(PK)$

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

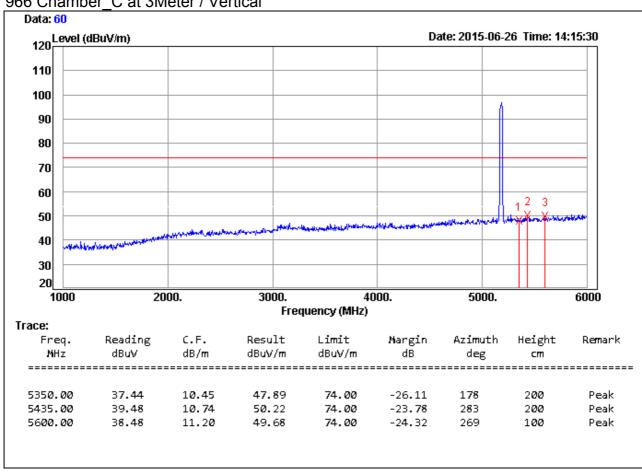
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

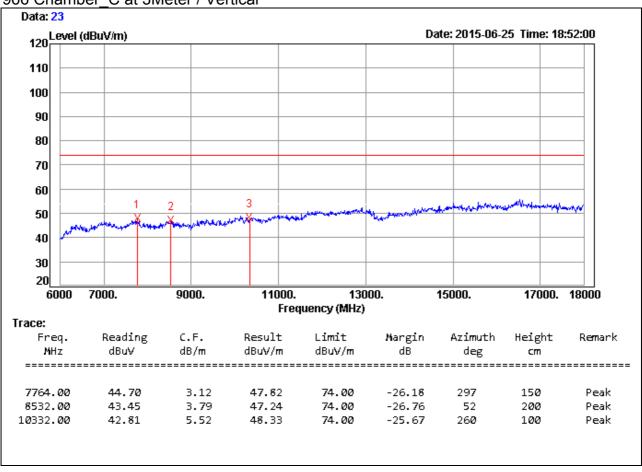
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

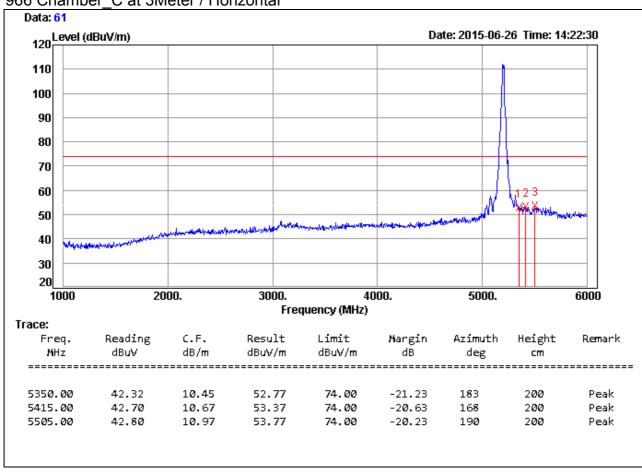

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical


Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit Remark Peak = Result(PK) - Limit(PK)

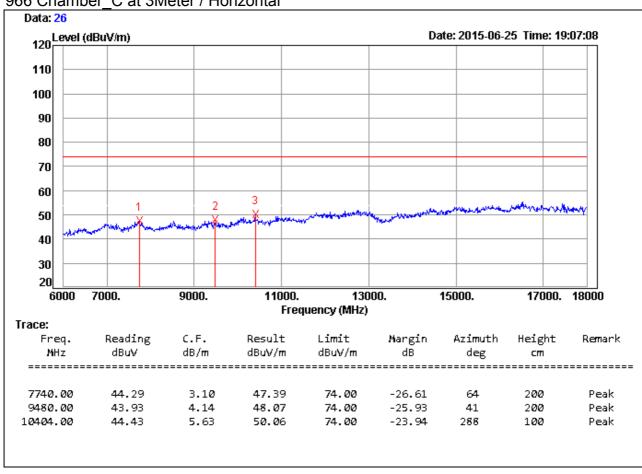
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

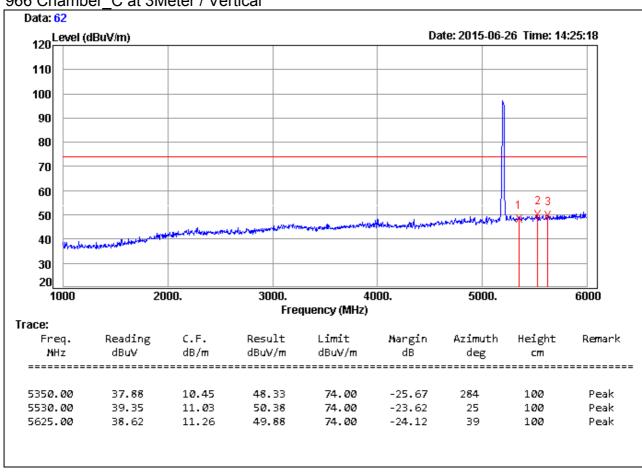
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit

Remark Peak = Result(PK) - Limit(PK)

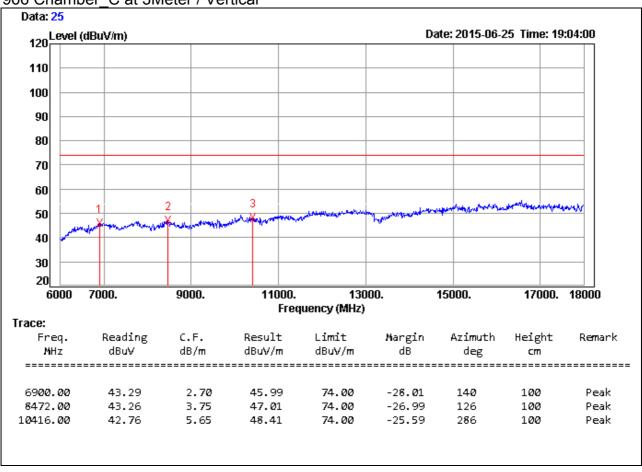
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

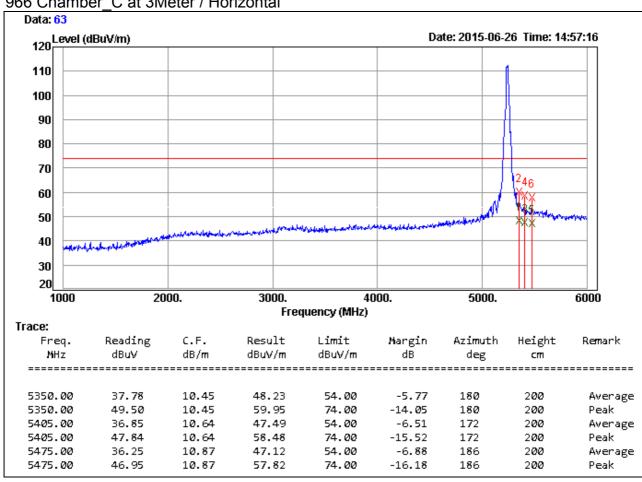

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical


Remark:

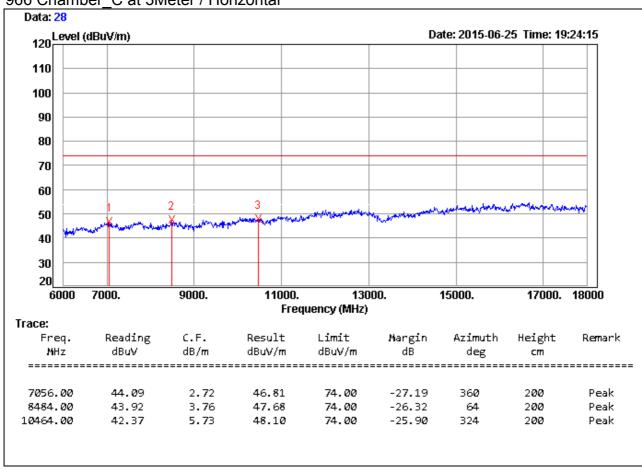
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

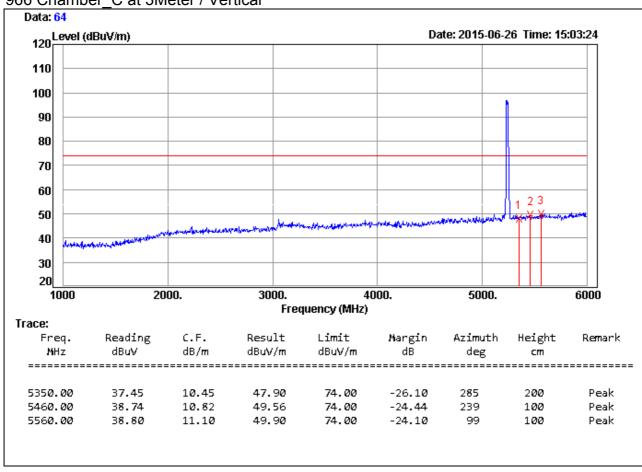
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

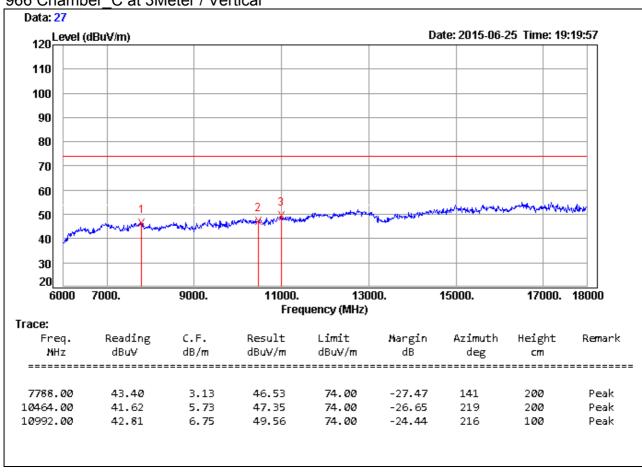
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

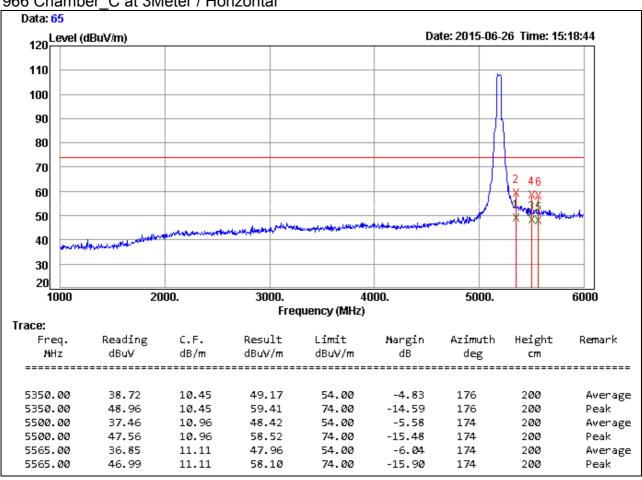

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical


Remark:

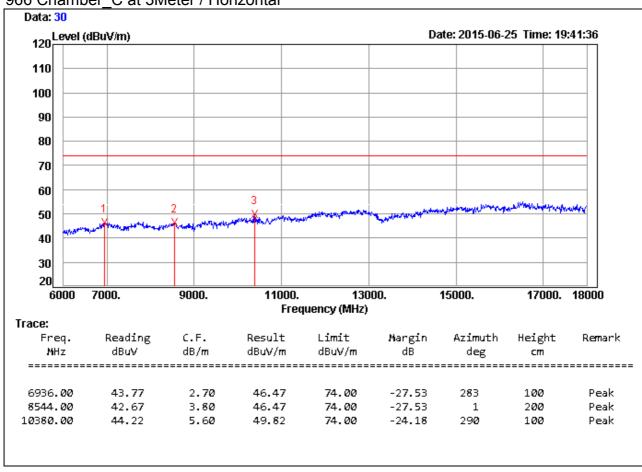
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

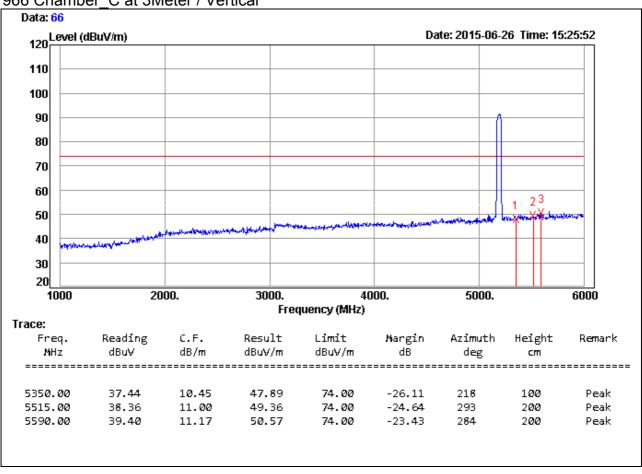
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

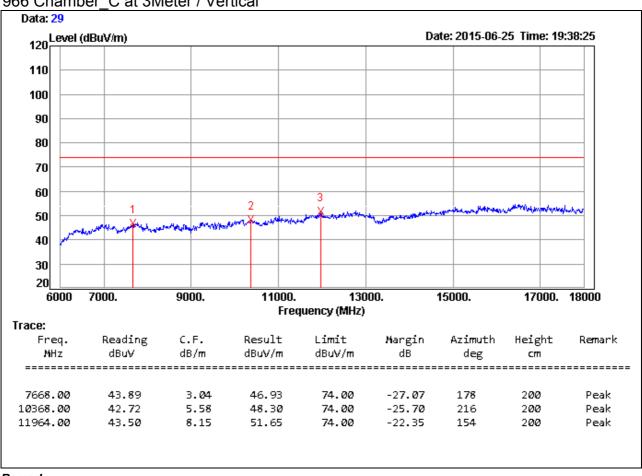

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit

Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2014/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

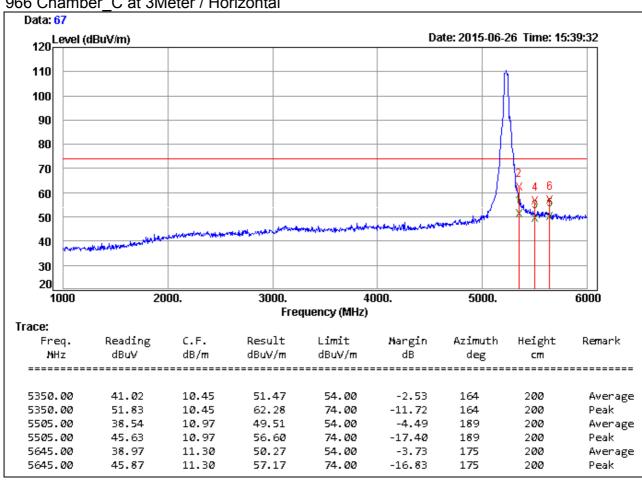
Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

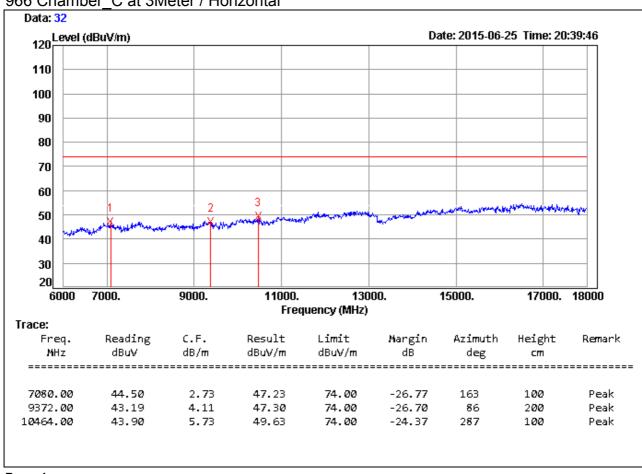
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

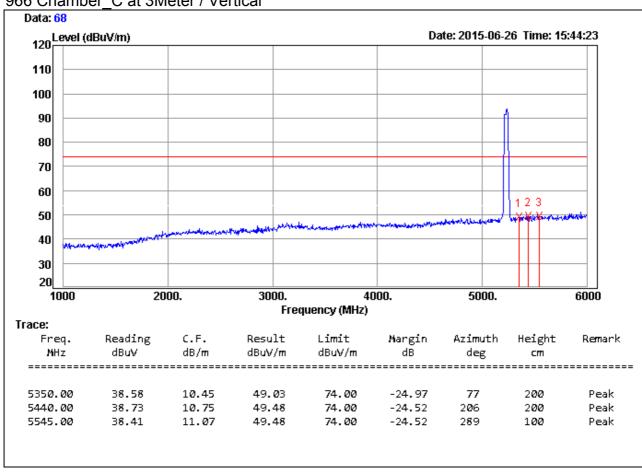
Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

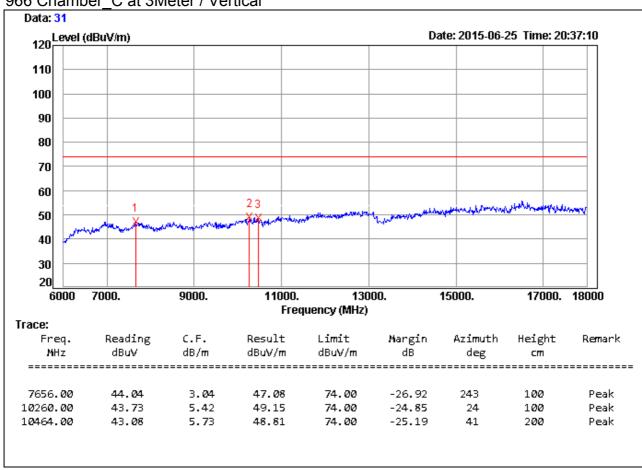
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

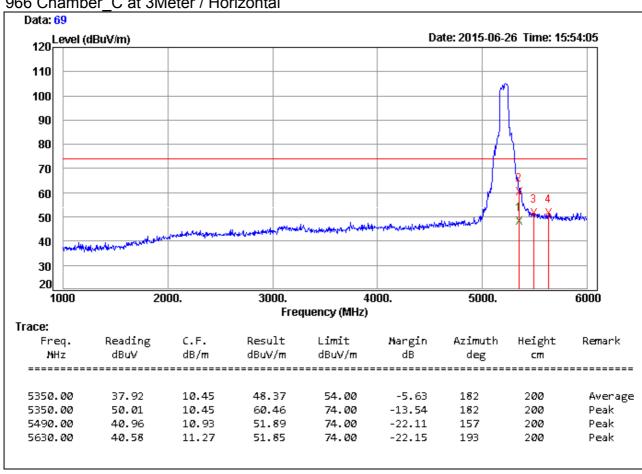
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit

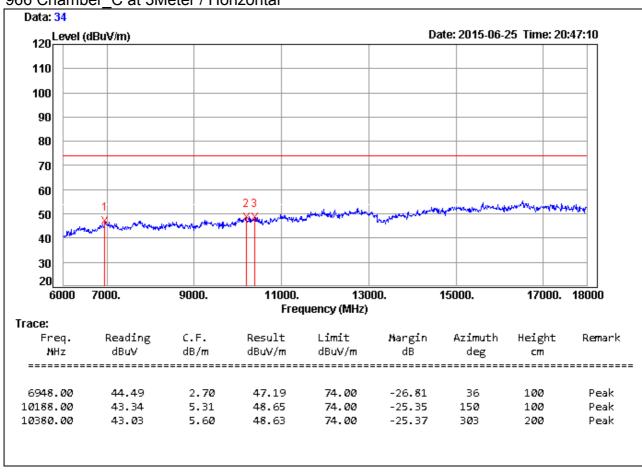
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

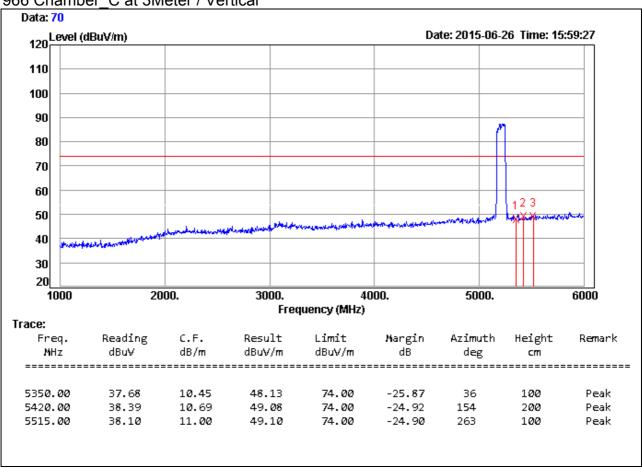
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

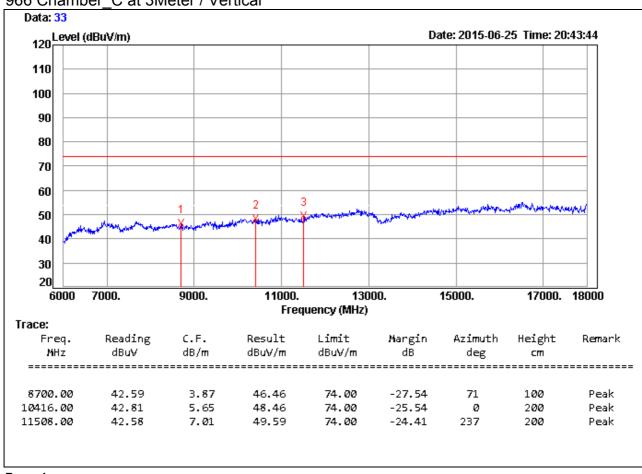

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 1/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

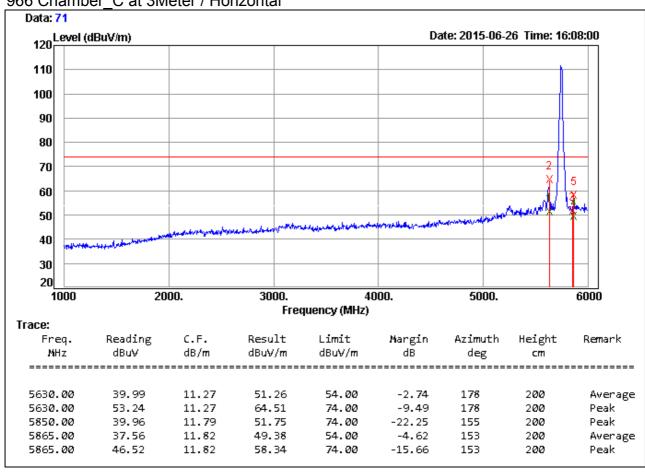
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 1/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit

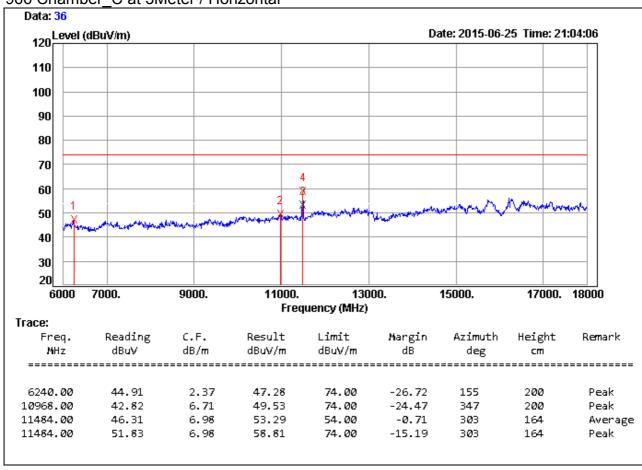
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

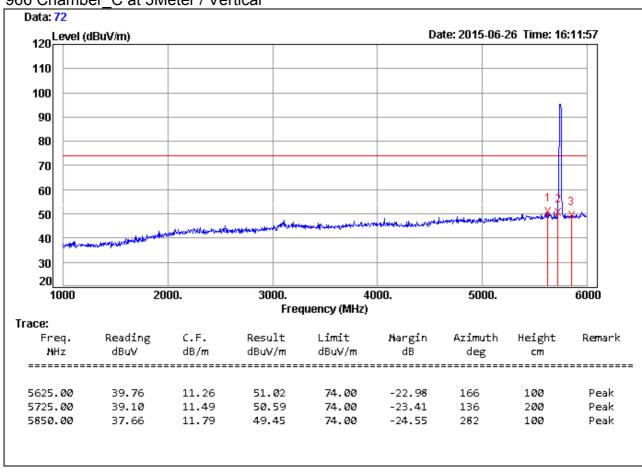
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit

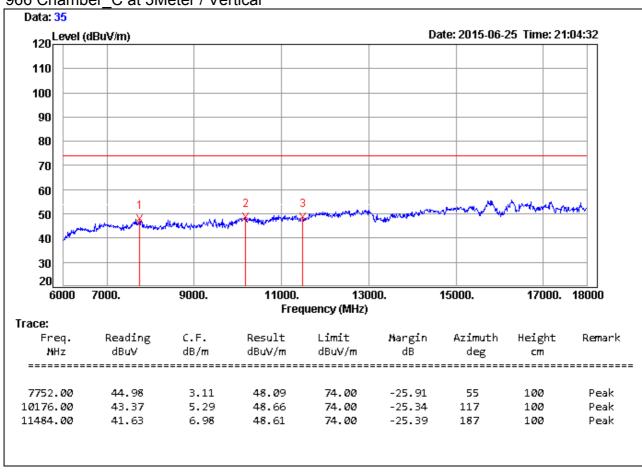
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

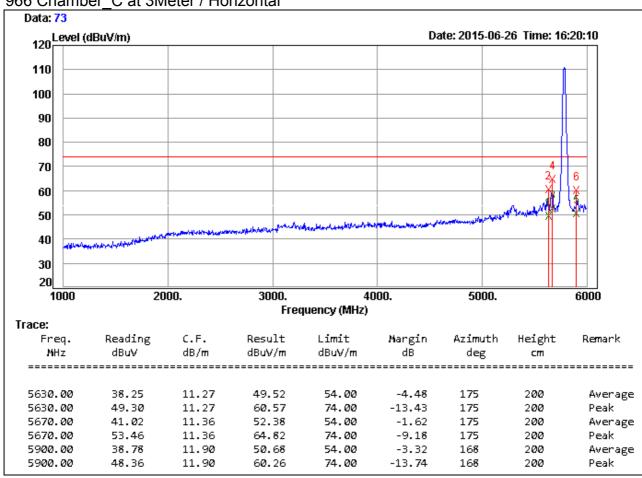
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit

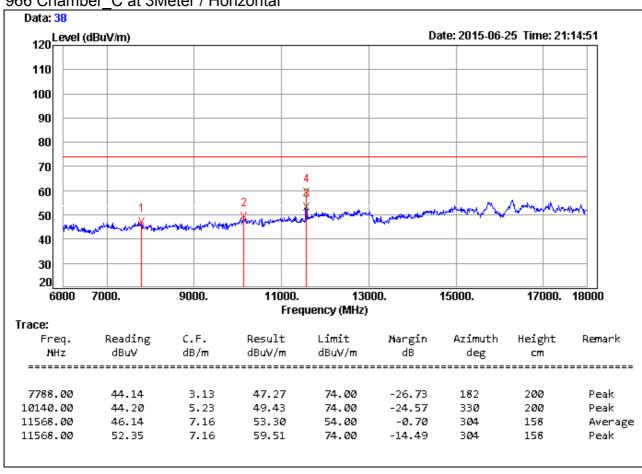
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

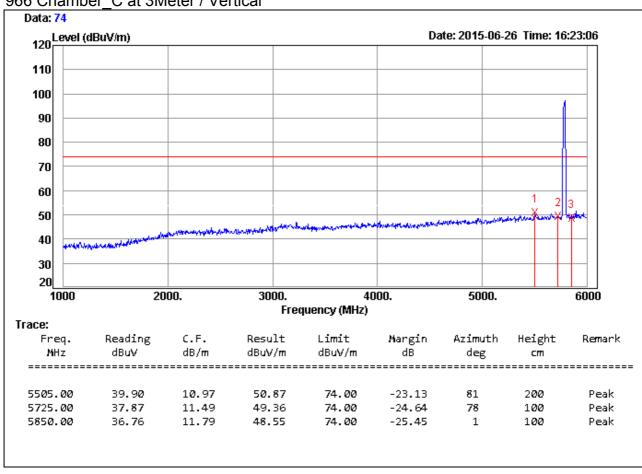
Margin = Result – Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit

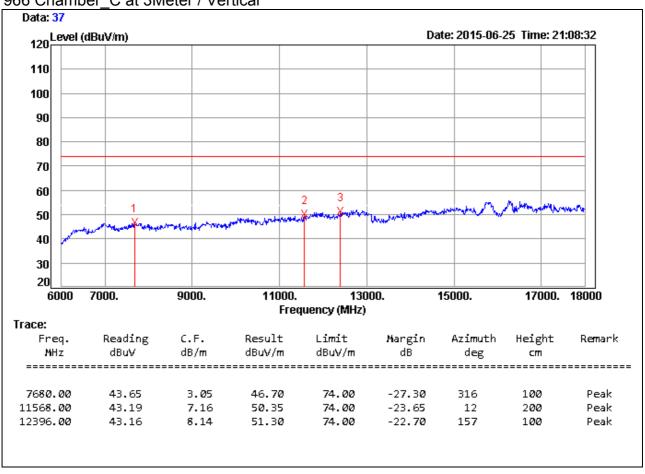
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

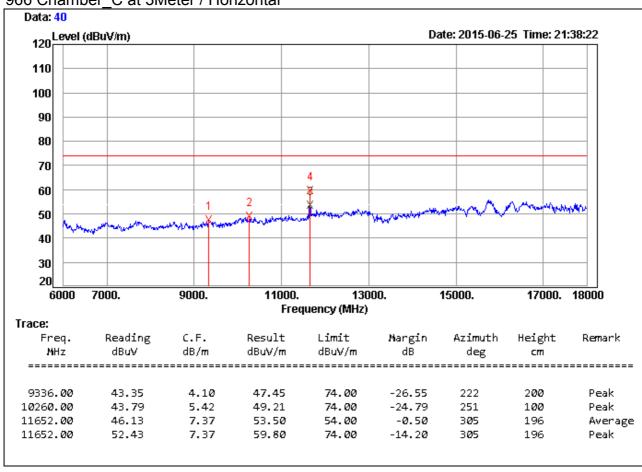
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

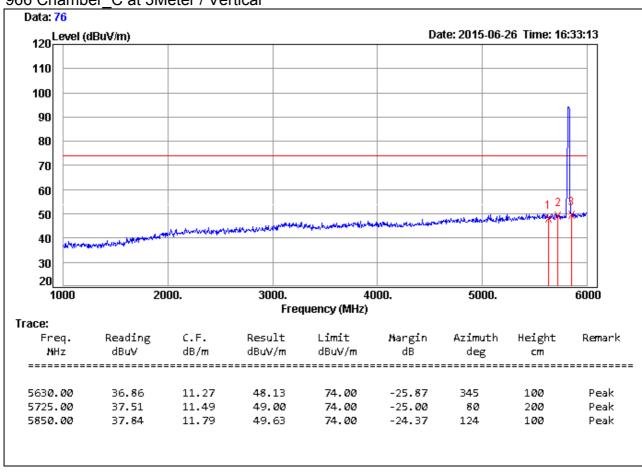
Margin = Result – Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

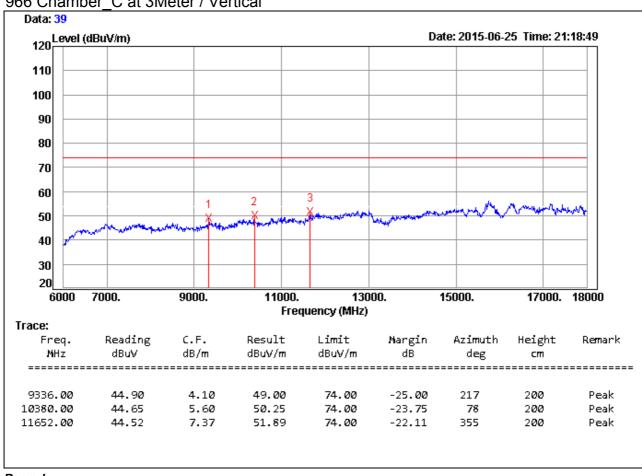
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

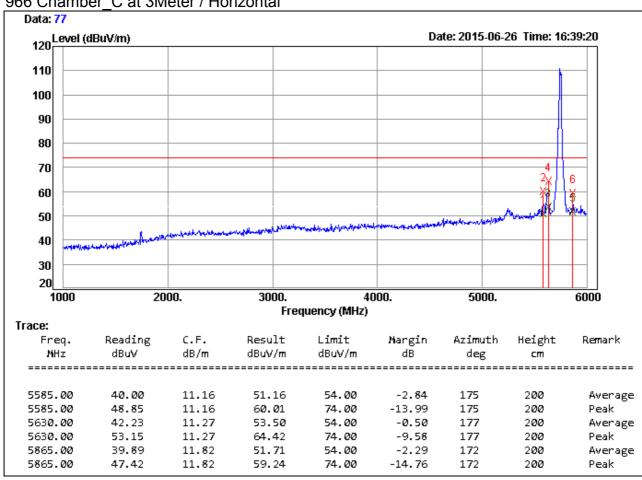
Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11a TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

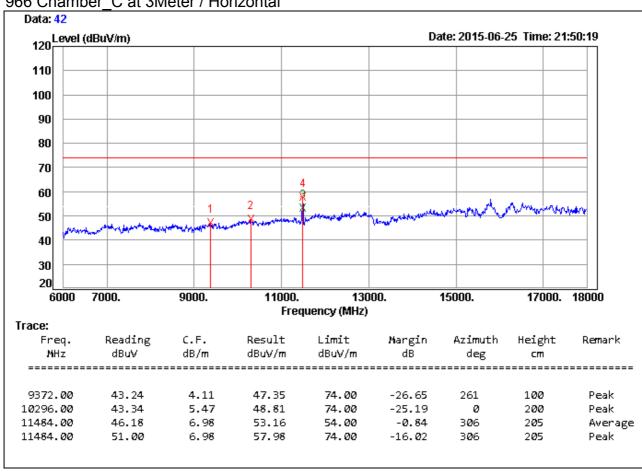
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

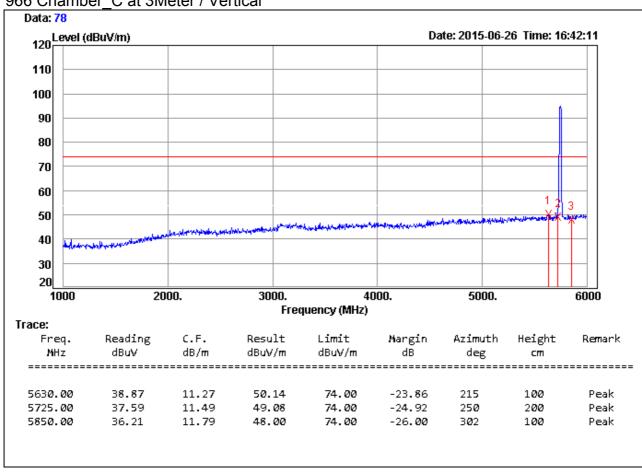
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

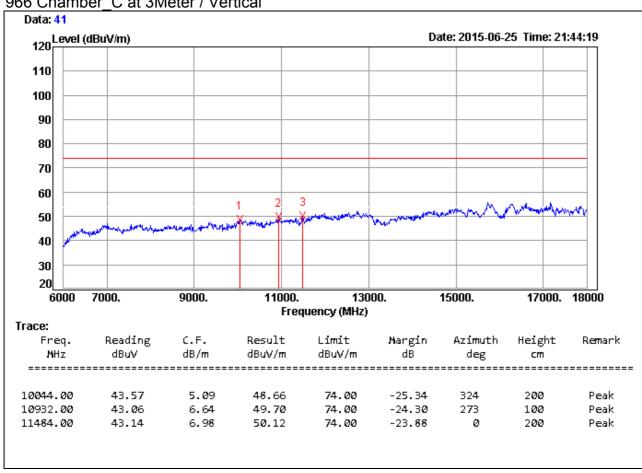
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

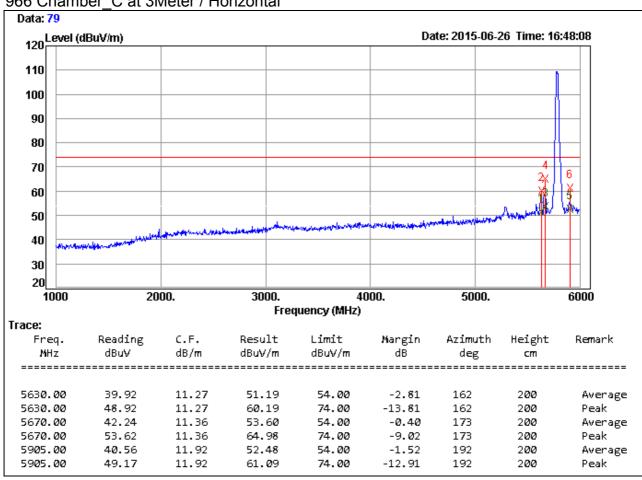
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

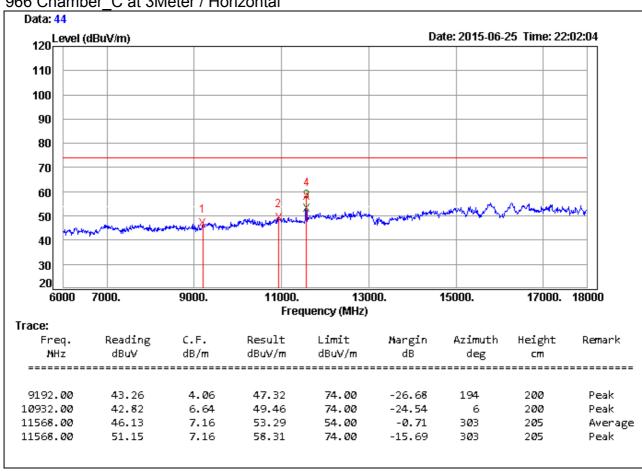

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal


Remark:

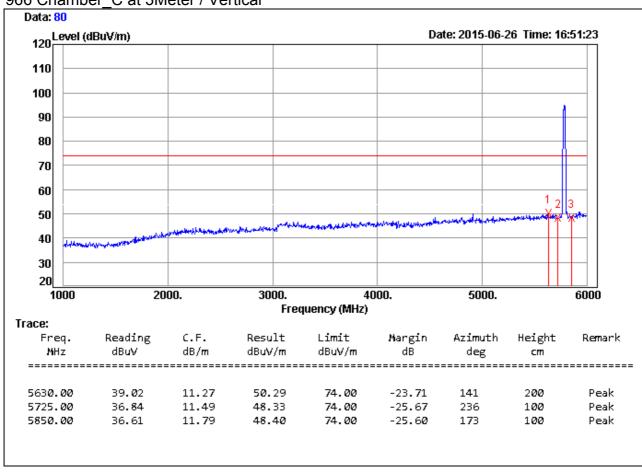
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

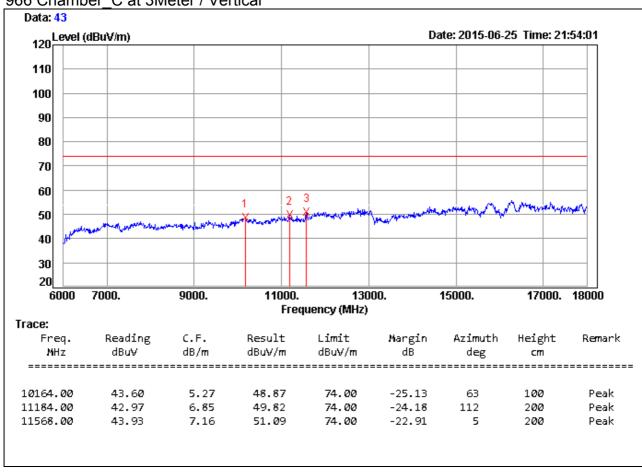
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

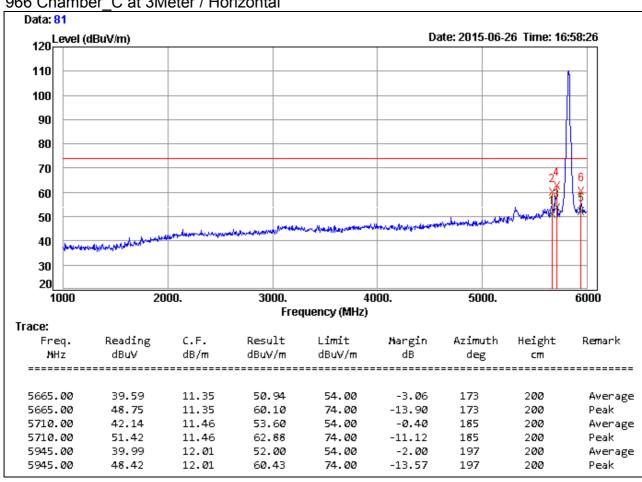

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH Middle	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical


Remark:

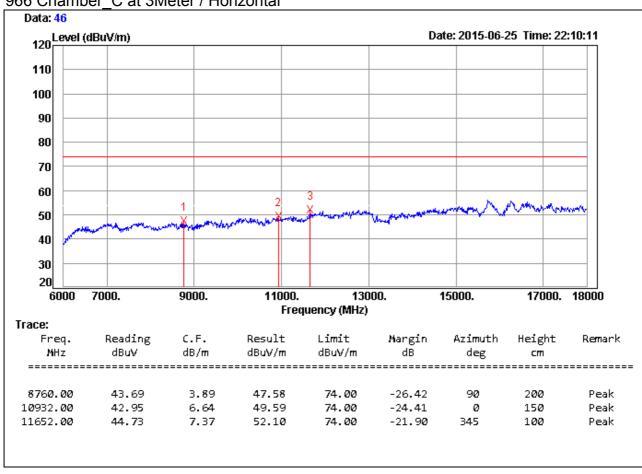
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor
 Margin = Result Limit
 Remark Peak = Result(PK) Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

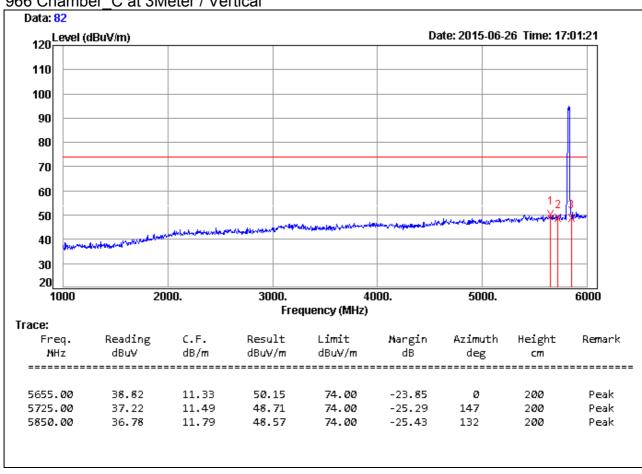
Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/25
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

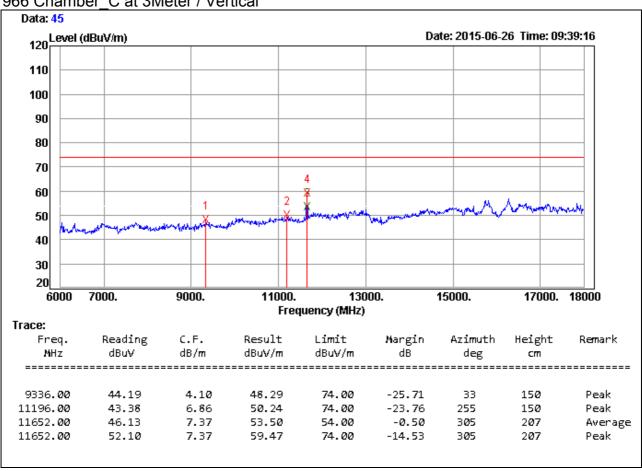
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

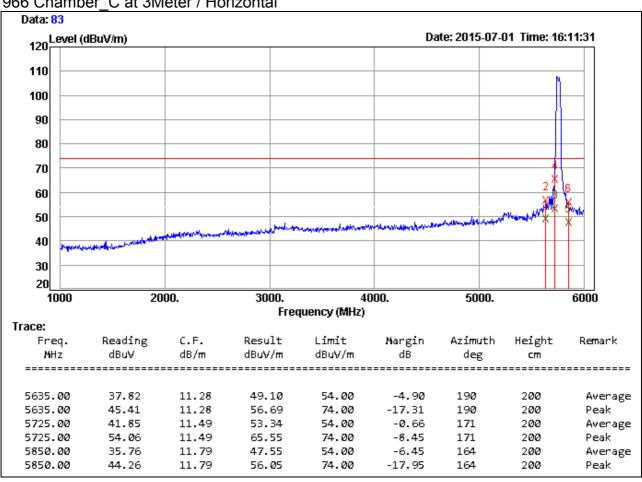
 $Remark\ Peak = Result(PK) - Limit(PK)$

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT20 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

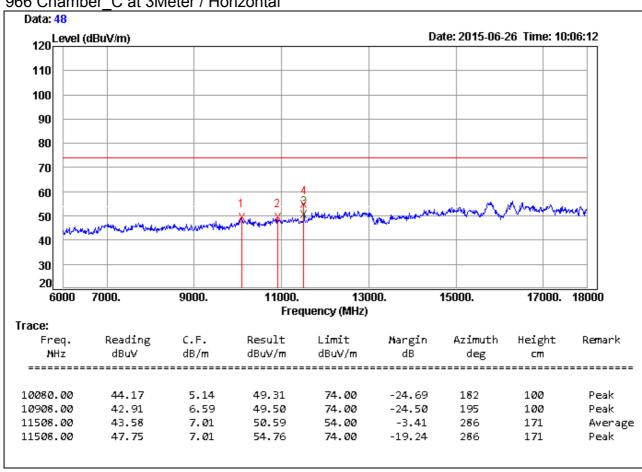
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/07/01
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

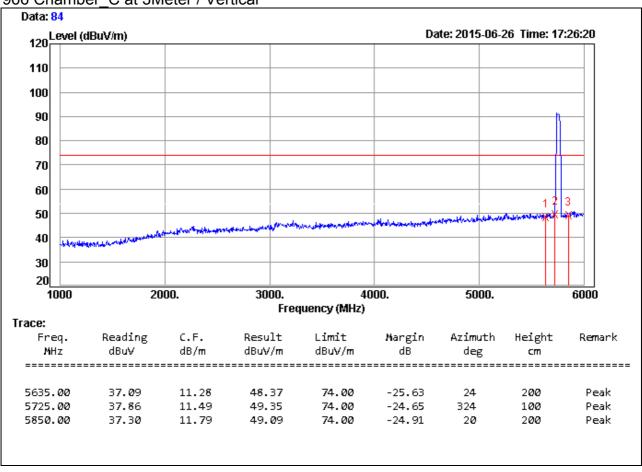
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

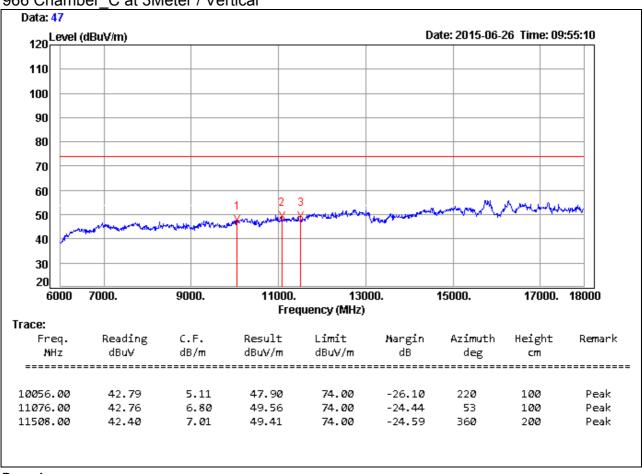
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

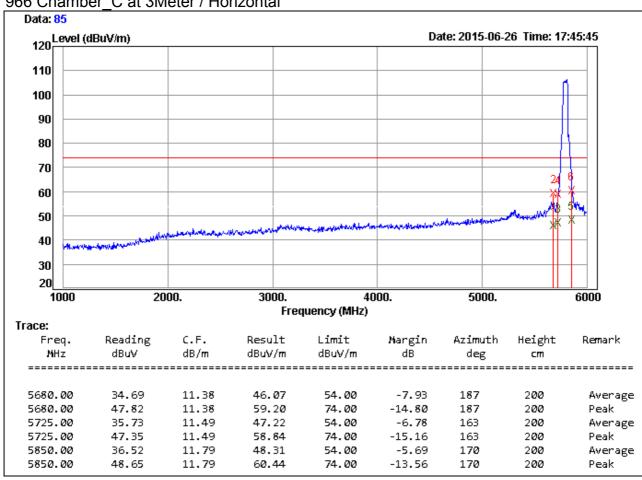
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

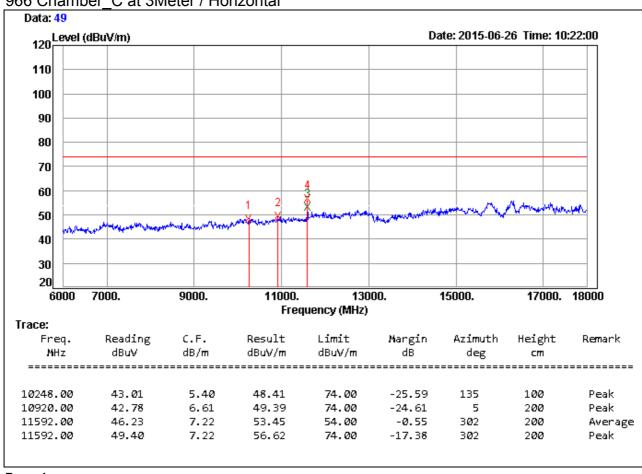
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

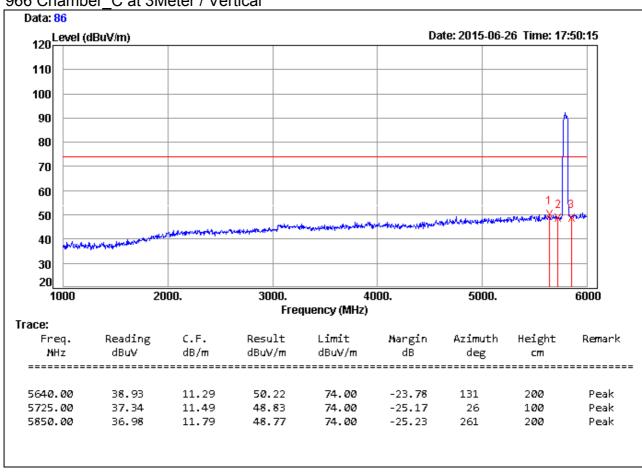
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

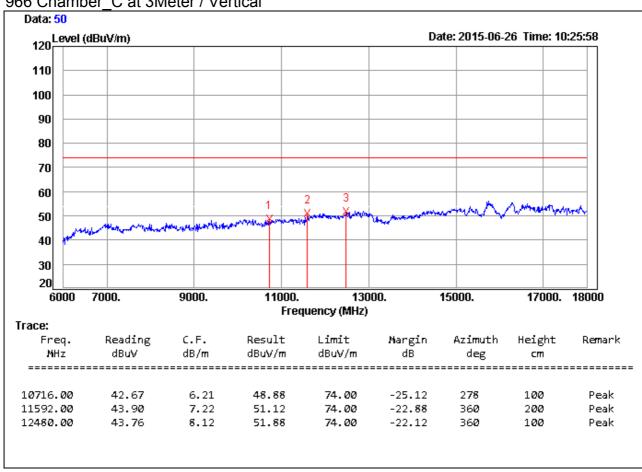
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

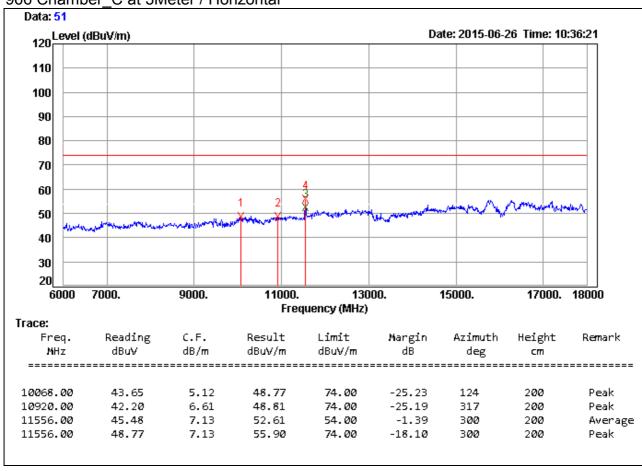
Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT40 TX / CH High	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

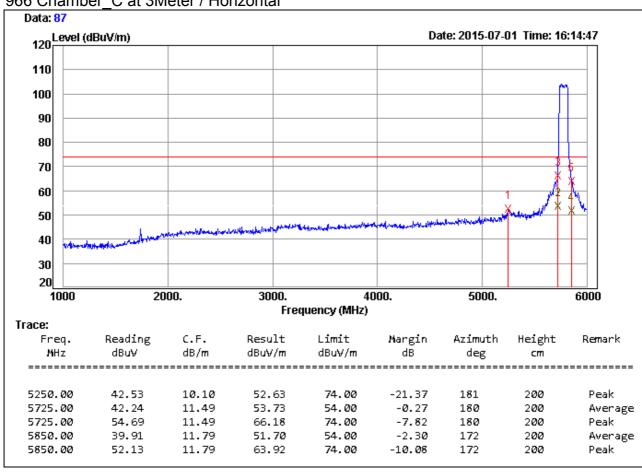
Remark AVG = Result(AV) - Limit(AV)

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

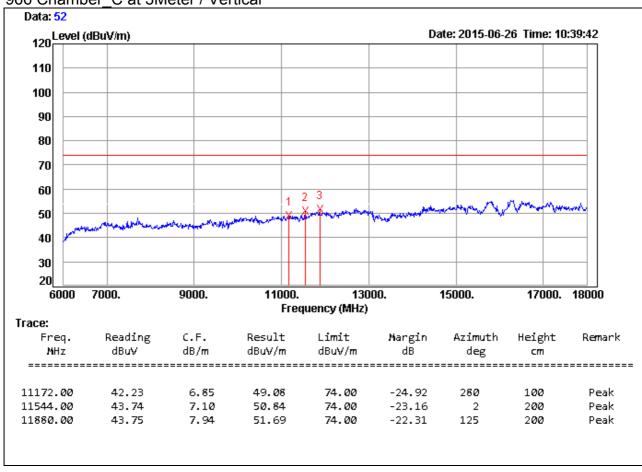
Remark Peak = Result(PK) - Limit(PK)

 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/07/01
Test Mode	UNII Band 3/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Horizontal

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit

Remark Peak = Result(PK) - Limit(PK)

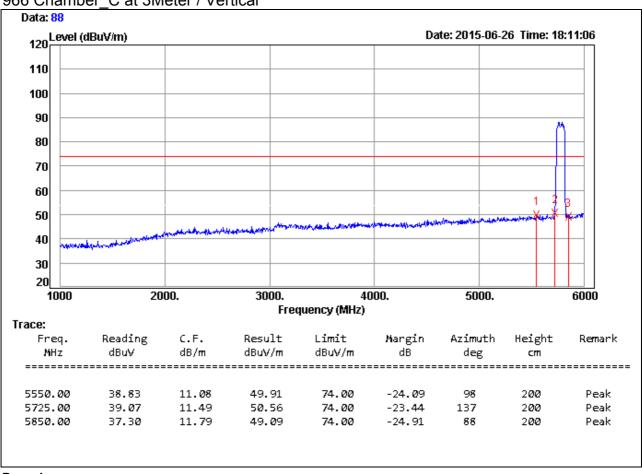
 $Remark\ AVG = Result(AV) - Limit(AV)$

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

966 Chamber C at 3Meter / Vertical

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor


Margin = Result - Limit

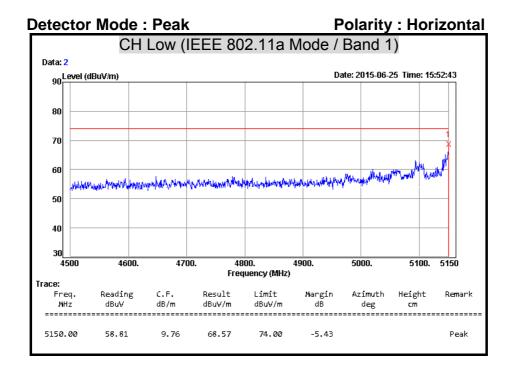
Remark Peak = Result(PK) - Limit(PK)

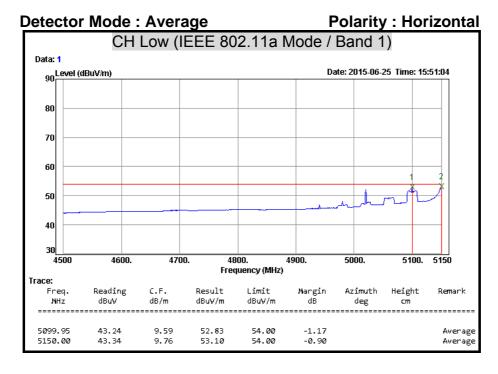
Remark AVG = Result(AV) - Limit(AV)

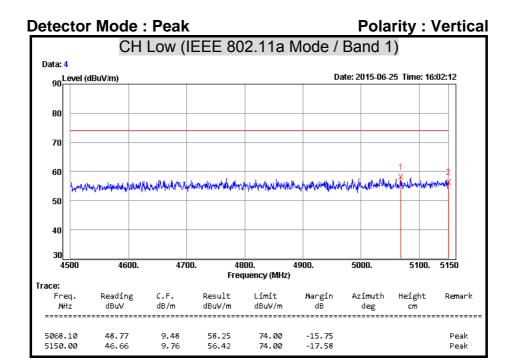
Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Jey Li
Test Model	WF2375	Test Date	2015/06/26
Test Mode	UNII Band 3/ IEEE 802.11ac VHT80 TX / CH Low	Temp. & Humidity	25°C, 50%

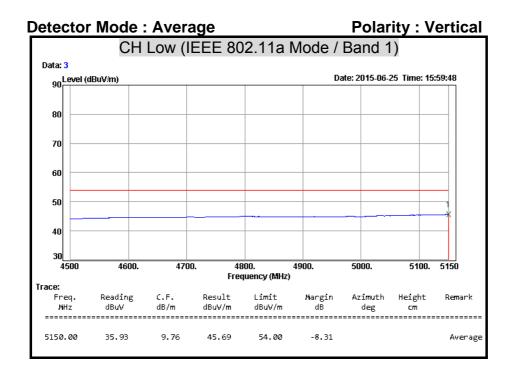
966 Chamber C at 3Meter / Vertical

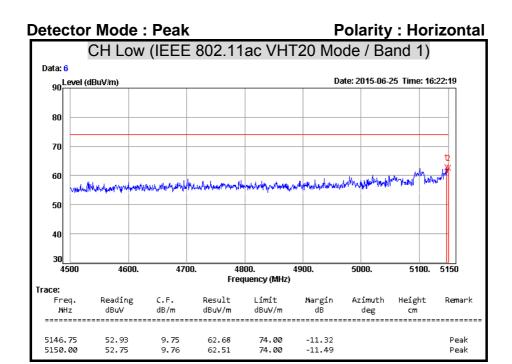
Remark:

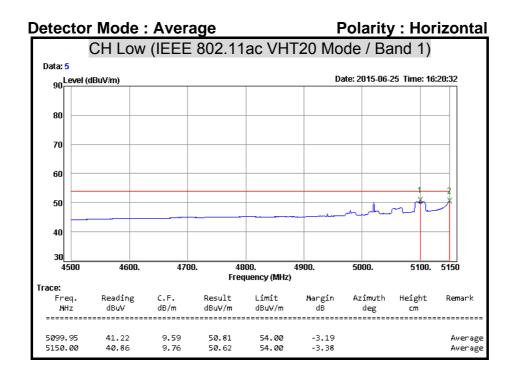

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor

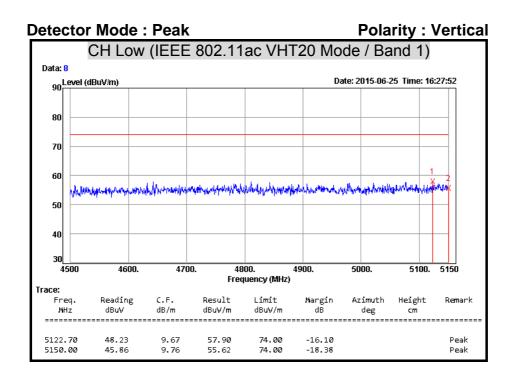

Margin = Result - Limit

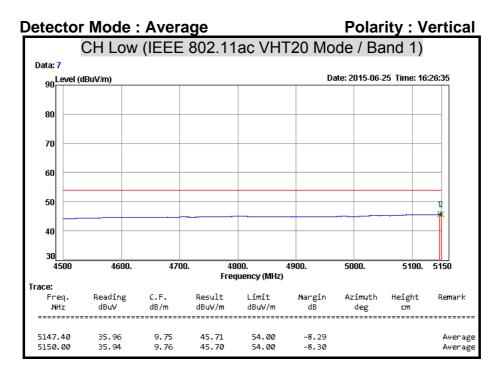

Remark Peak = Result(PK) - Limit(PK)

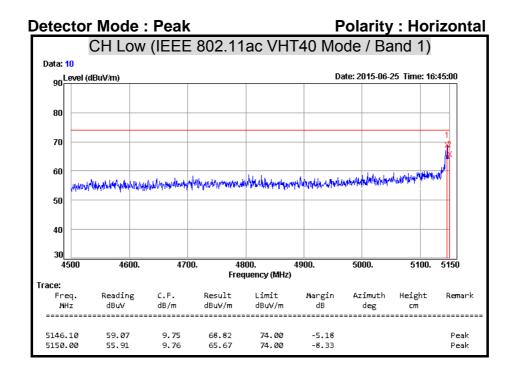

Remark AVG = Result(AV) - Limit(AV)

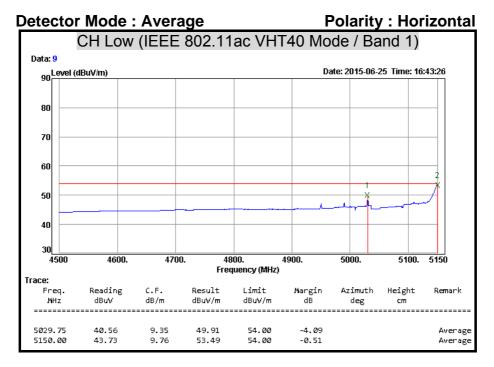

Restricted Band Edges

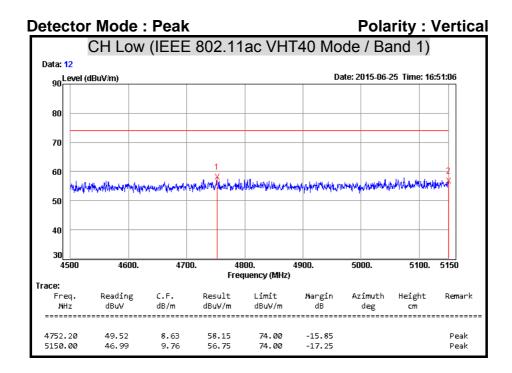


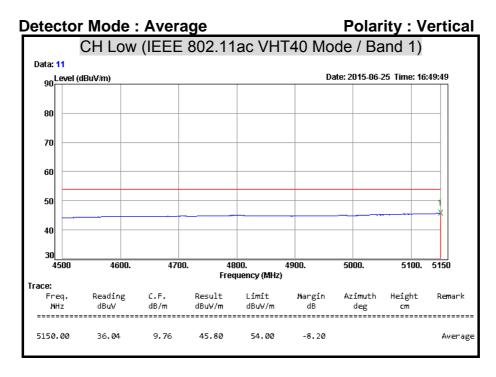


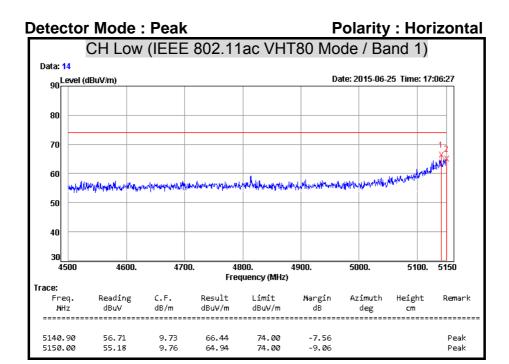


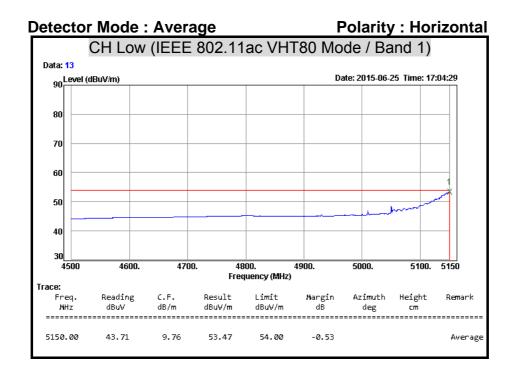


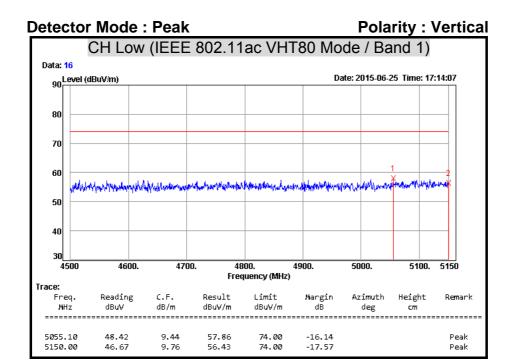


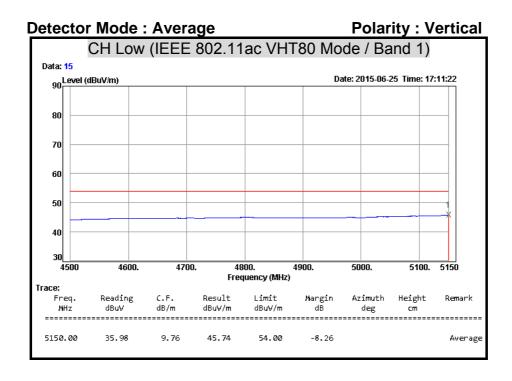










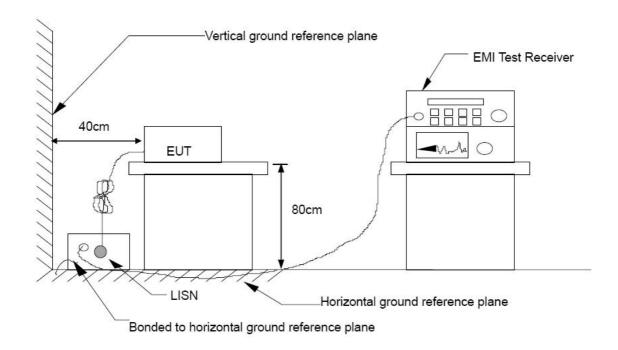


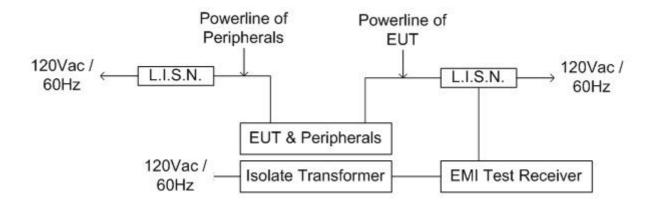
7.5 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)		
(MHz)	Quasi-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5.00	56	46	
5.00 - 30.0	60	50	


TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127465	08/06/2015
L.I.S.N	SCHWARZBECK	NSLK 8127	8127473	03/09/2016
EMI Receiver	ROHDE & SCHWARZ	ESCS 30	838550/003	11/02/2015
Pulse Limiter	ROHDE & SCHWARZ	ESH3-Z2	100111	06/30/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T150602D12-RP1-1

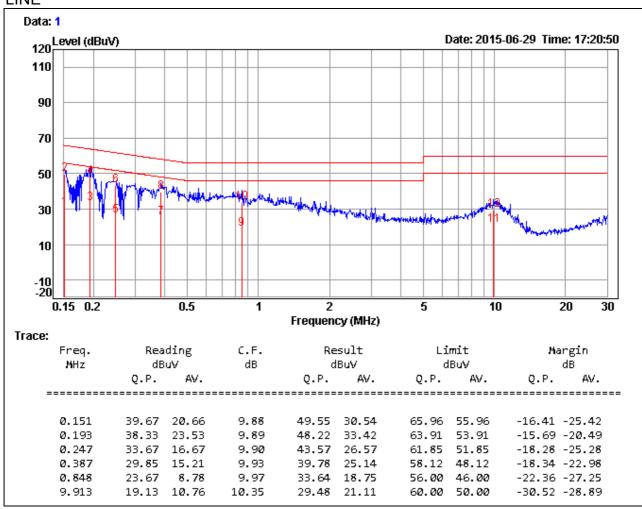
TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.10:2013.

The test procedure is performed in a 4m × 3m × 2.4m (L×W×H) shielded room.

The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

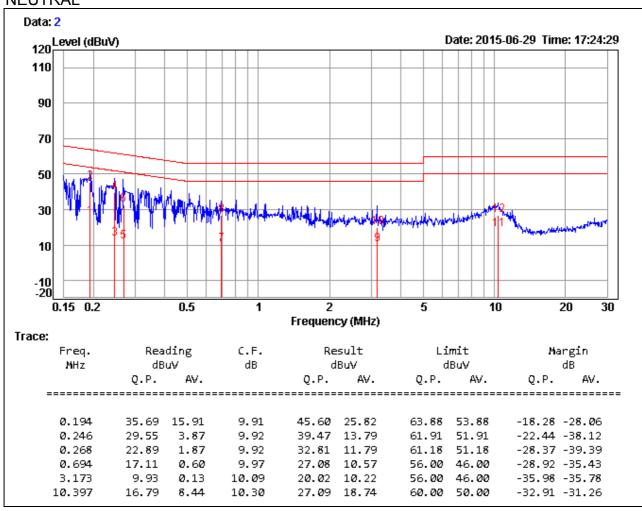

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Crystal Wu
Test Model	Test Model WF2375		2015/06/29
Test Mode	TX Mode	Temp. & Humidity	27.6°C, 47%

LINE



Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Result level = Reading Value + Correction factor
- 3. Margin value = Result level Limit value

Product Name	AC600 Wireless Dual Band High Power Outdoor AP Router	Test By	Crystal Wu
Test Model	Test Model WF2375		2015/06/29
Test Mode	TX Mode	Temp. & Humidity	27.6°C, 47%

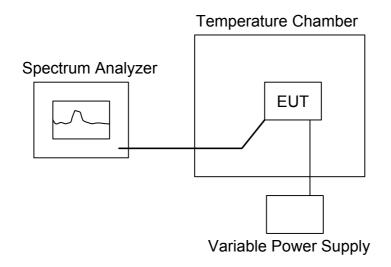
NEUTRAL

Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Result level = Reading Value + Correction factor
- 3. Margin value = Result level Limit value

7.6 FREQUENCY STABILITY

LIMITS


§ 15.407 (g) manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2016
Temp. & Humid. Chamber	TERCHY	MHC-120L	960424	09/09/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the environment into appropriate environment.
- 4. Set the spectrum analyzer as RBW=1kHz, VBW = RBW, Span = 200kHz, Sweep = auto.
- 5. Mark the peak frequency and measure the frequency tolerance using frequency counter function.
- 6. Repeat until all the results are investigated.

TEST RESULTS

IEEE 802.11a mode

U-NII	Channel	Channel Frequency (MHz)	Measured Frequency (MHz)	Delta Frequency (kHz)	20 ppm Limit (kHz)	Margin (kHz)
	Low	5180	5179.991600	-8.40	103.60	-95.20
Band 1	Middle	5200	5199.985200	-14.80	104.00	-89.20
	High	5240	5239.984400	-15.60	104.80	-89.20
	Low	5745	5744.983700	-16.30	114.90	-98.60
Band 3	Middle	5785	5784.981200	-18.80	115.70	-96.90
	High	5825	5824.980400	-19.60	116.50	-96.90

IEEE 802.11ac VHT20 Mode

U-NII	Channel	Channel Frequency (MHz)	Measured Frequency (MHz)	Delta Frequency (kHz)	20 ppm Limit (kHz)	Margin (kHz)
	Low	5180	5179.987200	-12.80	103.60	-90.80
Band 1	Middle	5200	5199.984800	-15.20	104.00	-88.80
	High	5240	5239.983600	-16.40	104.80	-88.40
	Low	5745	5744.988400	-11.60	114.90	-103.30
Band 3	Middle	5785	5784.980600	-19.40	115.70	-96.30
	High	5825	5824.980200	-19.80	116.50	-96.70

IEEE 802.11ac VHT40 Mode

U-NII	Channel	Channel Frequency (MHz)	Measured Frequency (MHz)	Delta Frequency (kHz)	20 ppm Limit (kHz)	Margin (kHz)
Dand1	Low	5190	5189.981800	-18.20	103.80	-85.60
Band1	High	5230	5229.982200	-17.80	104.60	-86.80
Dand 2	Low	5755	5754.983600	-16.40	115.10	-98.70
Band 3	High	5795	5794.981800	-18.20	115.90	-97.70

IEEE 802.11ac VHT80 Mode

U-NII	Channel	Channel Frequency (MHz)	Measured Frequency (MHz)	Delta Frequency (kHz)	20 ppm Limit (kHz)	Margin (kHz)
Band1	Low	5210	5209.982200	-17.80	104.20	-86.40
Band 3	Low	5775	5774.982000	-18.00	115.50	-97.50