

LAB CODE:200577-0

## FCC 47 CFR PART 15 SUBPART C

### **TEST REPORT**

### For

### WIRELESS USB ADAPTER

### Model: 331GU / NC-331GUM1 / NE-331GUM1

Trade Name: N/A

Prepared for

NETCORE TECHNOLOGY INC.

## 14 BUILDING, JINHE INDUSTRIAL PARK, YUFENG MANAGE DISTRICT, ZHANGMUTOU TOWN, DONGGUAN CITY, GUANGDONG PROVINCE

Prepared by

COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC. NO. 5, JINAO INDUSTRIAL PARK, NO. 35 JUKENG ROAD, DASHUIKENG VILLAGE, GUANLAN TOWN, BAOAN DISTRICT, SHENZHEN, CHINA TEL: 86-755-28055000 FAX: 86-755-28055221

*Note:* This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.



## TABLE OF CONTENTS

| 1. | TE  | ST RESULT CERTIFICATION                        | 3 |
|----|-----|------------------------------------------------|---|
| 2. | EI  | JT DESCRIPTION                                 | 1 |
|    |     |                                                |   |
| 3. | TE  | ST METHODOLOGY                                 | 5 |
| 3  | .1  | EUT CONFIGURATION                              | 5 |
| 3  | .2  | EUT EXERCISE                                   | 5 |
| 3  | .3  | GENERAL TEST PROCEDURES                        |   |
| 3  | .4  | FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS |   |
| 3  | .5  | DESCRIPTION OF TEST MODES                      | 5 |
| 4. | IN  | STRUMENT CALIBRATION                           | 7 |
|    |     |                                                |   |
| 5. | FA  | CILITIES AND ACCREDITATIONS                    | 3 |
| 5  | .1  | FACILITIES                                     | 3 |
| 5  | .2  | EQUIPMENT                                      | 3 |
| 5  | .3  | LABORATORY ACCREDITATIONS AND LISTING          | 3 |
| 6. | SE  | TUP OF EQUIPMENT UNDER TEST                    | ) |
| 6  | 5.1 | SETUP CONFIGURATION OF EUT                     | ) |
| 6  | 5.2 | SUPPORT EQUIPMENT                              |   |
| 7. | FC  | CC PART 15.247 REQUIREMENTS                    | ) |
| 7  | .1  | 6DB BANDWIDTH                                  | ) |
|    | .2  | PEAK POWER                                     |   |
| 7  | .3  | BAND EDGES MEASUREMENT                         | 2 |
| 7  | .4  | PEAK POWER SPECTRAL DENSITY                    |   |
| 7  | .5  | sPURIOUS EMISSIONS                             | 7 |
| 7  | .6  | POWERLINE CONDUCTED EMISSIONS                  |   |
| AP | PEI | NDIX 1 PHOTOGRPHS OF TEST SETUP63              | 3 |



# **1. TEST RESULT CERTIFICATION**

FCC Part 15 Subpart C

| A | Applicant:            | · · · · · ·      | HE INDUSTRIAL PARK, YUFENG<br>CT, ZHANGMUTOU TOWN, DONGGUAN |  |  |
|---|-----------------------|------------------|-------------------------------------------------------------|--|--|
| E | Equipment Under Test: | WIRELESS USB AD  | DAPTER                                                      |  |  |
| I | rade Name:            | N/A              |                                                             |  |  |
| N | /Iodel:               | 331GU / NC-331GU | M1 / NE-331GUM1                                             |  |  |
| Ľ | Date of Test:         | July 21-28, 2006 |                                                             |  |  |
|   | APPLICABLE STANDARDS  |                  |                                                             |  |  |
|   | STANDA                | ARD              | TEST RESULT                                                 |  |  |

## We hereby certify that:

The above equipment was tested by Compliance Certification Services (Shenzhen) Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Harris Lai / General Manager COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC. Tested By: Henry Ding

No non-compliance noted

**Reviewed By:** 

ii

**Ēric Wong / Assistant manager COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC.** 



# 2. EUT DESCRIPTION

| . EUI DESCRIFTION     |                                                                                                                                              |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Product               | WIRELESS USB ADAPTER                                                                                                                         |  |  |  |  |
| Trade Name            | N/A                                                                                                                                          |  |  |  |  |
| Model Number          | 331GU / NC-331GUM1 / NE-331GUM1                                                                                                              |  |  |  |  |
| Model Difference      | EUT is identical except the model designation due to marketing purpose                                                                       |  |  |  |  |
| Power Supply          | Powered by the notebook                                                                                                                      |  |  |  |  |
| Frequency Range       | 802.11b mode: 2412 ~ 2462 MHz<br>802.11g mode: 2412 ~ 2462 MHz                                                                               |  |  |  |  |
| Transmit Power        | 802.11b mode: 13.29 dBm<br>802.11g mode: 11.78 dBm                                                                                           |  |  |  |  |
| Modulation Technique  | 802.11b: DSSS (CCK; DQPSK; DBPSK)<br>802.11g: OFDM                                                                                           |  |  |  |  |
| Transmit Data Rate    | 802.11b: 11Mbps(CCK) with fall back rates of 5.5, 2, and 1Mbps<br>802.11g : 54Mbps with fall back rates of 48/36/24/18/12/9/6<br>Mbps (OFDM) |  |  |  |  |
| Number of Channels    | 11 Channels                                                                                                                                  |  |  |  |  |
| Antenna Specification | Microstrip antenna<br>Gain: 0 dBi (Max)                                                                                                      |  |  |  |  |

*Note: This submittal(s) (test report) comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.* 



# 3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

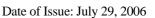
# **EUT CONFIGURATION**

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

## **EUT EXERCISE**

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.


# GENERAL TEST PROCEDURES

### **Conducted Emissions**

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4: 2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

### **Radiated Emissions**

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.





### FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz              |
|----------------------------|---------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              | 322 - 335.4         |                 |                  |

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

## **DESCRIPTION OF TEST MODES**

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 11Mbps highest data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6Mbps data rate (the worst case) are chosen for the final testing.



# 4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.



# 5. FACILITIES AND ACCREDITATIONS

# FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 5, Jinao industrial park, No.35 Jukeng Road, Dashuikeng Village, Guanlan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4: 2003 and CISPR Publication 22.

# EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

# LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200577-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission.



# 6. SETUP OF EQUIPMENT UNDER TEST

## SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

# SUPPORT EQUIPMENT

| No | Equipment | Model   | Serial No. | FCC ID | Trade Name | Data Cable | Power Cord         |
|----|-----------|---------|------------|--------|------------|------------|--------------------|
| 1. | Notebook  | 992F2VG | N/A        | DoC    | IBM        | N/A        | Unshielded<br>1.8m |

### *Notes:*

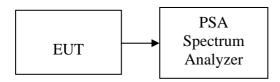
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.



# 7. FCC PART 15.247 REQUIREMENTS

# 6dB BANDWIDTH

# **LIMIT**


For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

## **MEASUREMENT EQUIPMENT USED**

| Name of Equipment     | Manufacturer | Model  | Serial Number | Calibration Due |
|-----------------------|--------------|--------|---------------|-----------------|
| PSA Spectrum Analyzer | Agilent      | E4446A | US44300399    | 02/08/2007      |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

### **Test Configuration**



### **TEST PROCEDURE**

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = RBW, Span = 20MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.



### **TEST RESULTS**

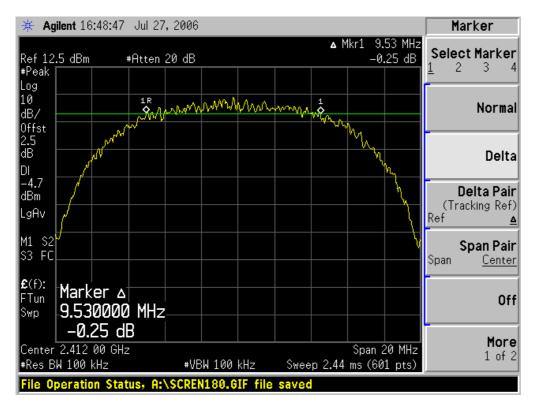
No non-compliance noted

### Test Data

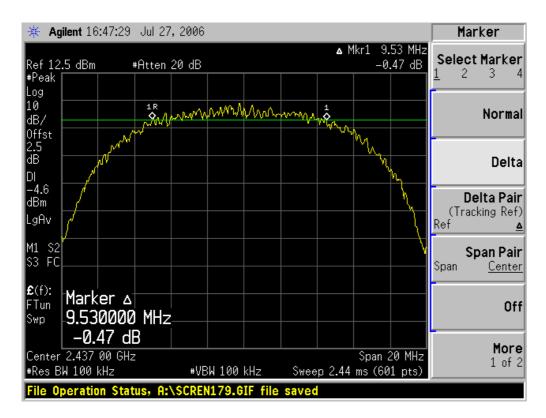
#### Test mode: IEEE 802.11b

| Channel | Frequency<br>(MHz) | Bandwidth<br>(kHz) | Limit<br>(kHz) | Margin<br>(kHz) |
|---------|--------------------|--------------------|----------------|-----------------|
| Low     | 2412               | 9530               |                | PASS            |
| Mid     | 2437               | 9530               | >500           | PASS            |
| High    | 2462               | 9530               |                | PASS            |

### Test mode: IEEE 802.11g

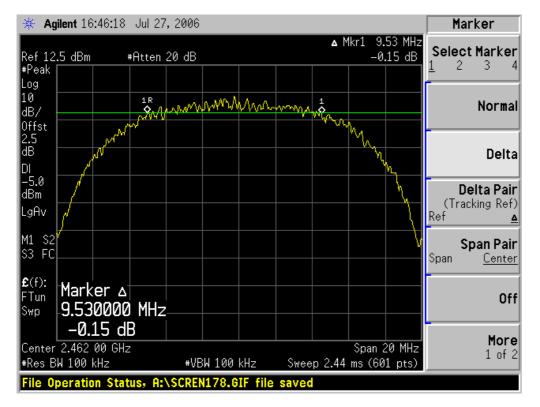

| Channel | Frequency<br>(MHz) | Bandwidth<br>(kHz) | Limit<br>(kHz) | Margin<br>(kHz) |  |
|---------|--------------------|--------------------|----------------|-----------------|--|
| Low     | 2412               | 16530              |                | PASS            |  |
| Mid     | 2437               | 16530              | >500           | PASS            |  |
| High    | 2462               | 16530              |                | PASS            |  |




#### Test Plot

#### 802.11b mode

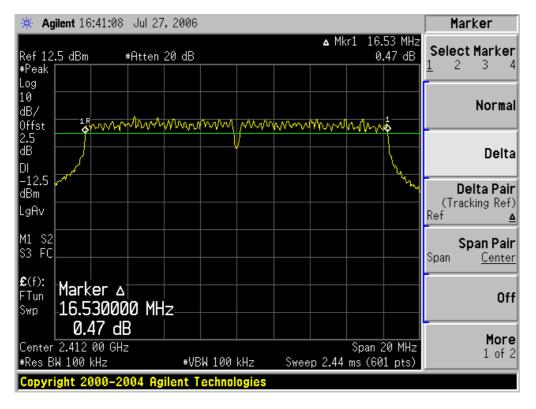
### 6dB Bandwidth (CH Low)



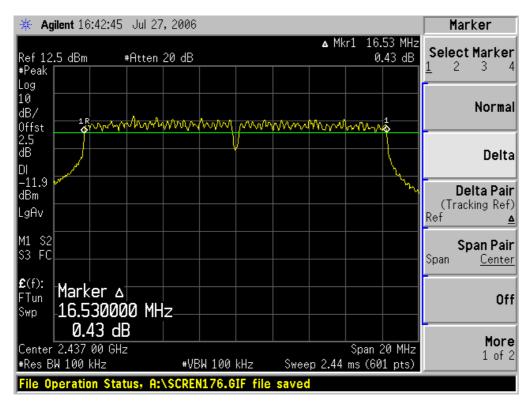

### 6dB Bandwidth (CH Mid)



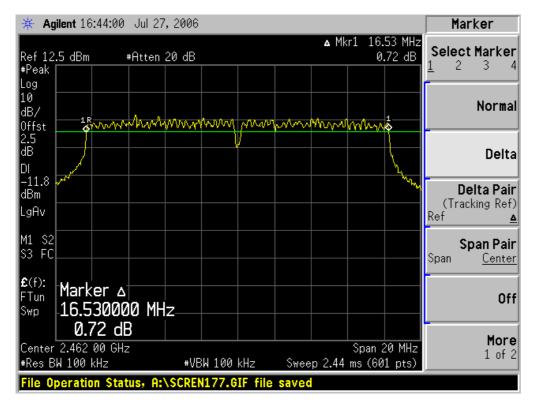



### 6dB Bandwidth (CH High)






#### 802.11g mode


#### 6dB Bandwidth (CH Low)



#### 6dB Bandwidth (CH Mid)



### 6dB Bandwidth (CH High)

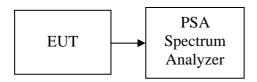




# PEAK POWER

# **LIMIT**

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

# **MEASUREMENT EQUIPMENT USED**

| Name of Equipment     | Manufacturer | Model  | Serial Number | Calibration Due |
|-----------------------|--------------|--------|---------------|-----------------|
| PSA Spectrum Analyzer | Agilent      | E4446A | US44300399    | 02/08/2007      |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

### **Test Configuration**



# **TEST PROCEDURE**

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.



# TEST RESULTS

No non-compliance noted

### <u>Test Data</u>

Test mode: IEEE 802.11b

| Chand | Frequency<br>(MHz) | Otput Power<br>(dBm) | Factor<br>(dB) | Otput Power<br>(dBm) | Otput Power<br>(W) | Limit<br>(W) | Result |
|-------|--------------------|----------------------|----------------|----------------------|--------------------|--------------|--------|
| Low   | 2412               | 9.61                 | 2.50           | 1211                 | 0.01626            |              | PASS   |
| Mid   | 2437               | 1024                 | 250            | 1274                 | 0.01879            | 1            | PASS   |
| Hgh   | 2462               | 1079                 | 250            | 1329                 | 0.02133            |              | PASS   |

### Test mode: IEEE 802.11g

| Channel | Frequency<br>(MHz) | Otput Power<br>(dBm) | Factor<br>(dB) | Otput Power<br>(dBm) | Otput Power<br>(W) | Limit<br>(VV) | Result |
|---------|--------------------|----------------------|----------------|----------------------|--------------------|---------------|--------|
| Low     | 2412               | 898                  | 250            | 11.48                | 0.01406            |               | PASS   |
| Mid     | 2437               | 9.28                 | 250            | 11.78                | 0.01507            | 1             | PASS   |
| Hgh     | 2462               | 889                  | 250            | 11.39                | 0.01377            |               | PASS   |



### Test Plot

802.11b mode

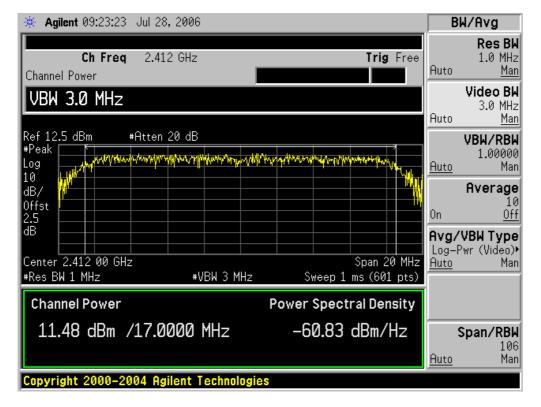
### Peak power (CH Low)


| 🔆 Agilent 09:35:46 Jul 28, 20                  | 06                   |                                     | B                | W/Avg                                  |
|------------------------------------------------|----------------------|-------------------------------------|------------------|----------------------------------------|
| Ch Freq 2.412 GH<br>Channel Power              | lz                   | Trig Free                           | Auto             | Res BW<br>1.0 MHz<br><u>Man</u>        |
| VBW 3.0 MHz                                    |                      |                                     | Auto             | Video BW<br>3.0 MHz<br><u>Man</u>      |
| Ref 22.5 dBm #Atten 30 d<br>#Peak<br>Log<br>10 |                      | Man Marken Marken Marken            | <u>Auto</u>      | <b>VBW/RBW</b><br>1.00000<br>Man       |
| 05/<br>0ffst<br>2.5                            |                      |                                     | On               | Average<br>10<br><u>Off</u>            |
| dB<br>Center 2.412 00 GHz<br>#Res BW 1 MHz     | #VBW 3 MHz           | Span 15 MHz<br>Sweep 1 ms (601 pts) | -                | ' <b>VBW Type</b><br>Pwr (RMS)►<br>Man |
| Channel Power                                  |                      |                                     |                  |                                        |
| 12.11 dBm /11.000                              | )MHz –               | 58.30 dBm/Hz                        | :<br><u>Auto</u> | Span/RBW<br>106<br>Man                 |
| File Operation Status, A:\SCI                  | REN187.GIF file save | ad                                  |                  |                                        |

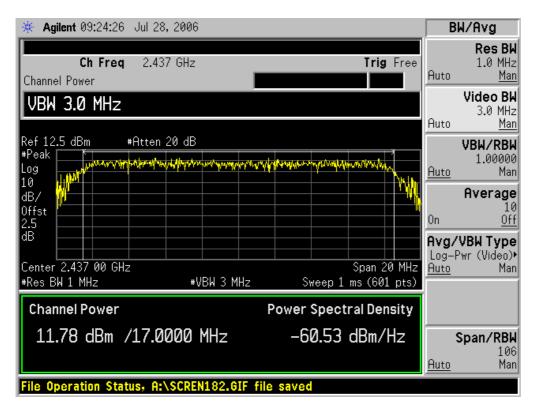
### Peak power (CH Mid)

| 🔆 Agilent 09:33:25 Jul 28, 200                 | 6                  |                      |                            | BI           | W/Avg                                  |
|------------------------------------------------|--------------------|----------------------|----------------------------|--------------|----------------------------------------|
| Ch Freq 2.437 GH<br>Channel Power              | 2                  |                      | Trig Free                  | Auto         | <b>Res BW</b><br>1.0 MHz<br><u>Man</u> |
| RBW 1.0 MHz                                    |                    |                      |                            | Auto         | Video BW<br>3.0 MHz<br><u>Man</u>      |
| Ref 22.5 dBm #Atten 30 d<br>#Peak<br>Log<br>10 | 3<br>Marina Marina | eren and behaviority |                            | <u>Auto</u>  | <b>VBW/RBW</b><br>1.00000<br>Man       |
| dB/<br>Offst<br>2.5                            |                    |                      |                            | 0n           | Average<br>10<br><u>Off</u>            |
| dB<br>Center 2.437 00 GHz<br>#Res BW 1 MHz     | #VBW 3 MHz         |                      | Span 15 MHz<br>s (601 pts) |              | <b>VBW Type</b><br>?wr (Video)∙<br>Man |
| Channel Power                                  |                    | ower Spectra         |                            |              |                                        |
| 12.74 dBm /11.0000                             | MHz                | -57.67 d             | Bm/Hz                      | <b>4</b> uto | Span/RBW<br>106<br>Man                 |
| File Operation Status, A:\SCR                  | EN186.GIF file s   | saved                |                            |              |                                        |



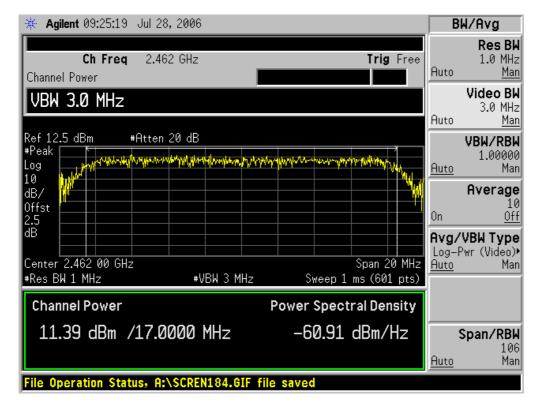

### Peak power (CH High)






#### 802.11g mode

#### Peak power (CH Low)




### Peak power (CH Mid)





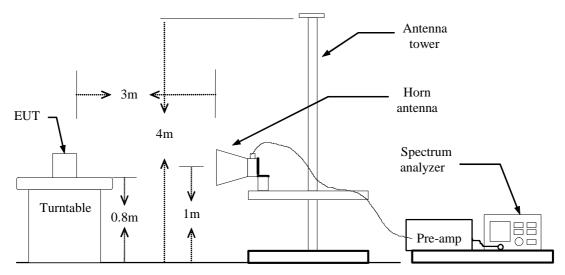
### Peak power (CH High)





# **BAND EDGES MEASUREMENT**

# LIMIT


According to \$15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in15.209(a).

# MEASUREMENT EQUIPMENT USED

| Name of Equipment     | Manufacturer | Model  | Serial Number | <b>Calibration Due</b> |
|-----------------------|--------------|--------|---------------|------------------------|
| PSA Spectrum Analyzer | Agilent      | E4446A | US44300399    | 02/08/2007             |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

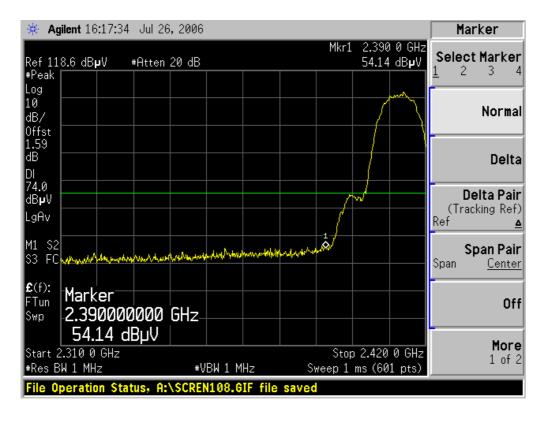
### **Test Configuration**



## TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
  - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

# TEST RESULTS


Refer to attach spectrum analyzer data chart.



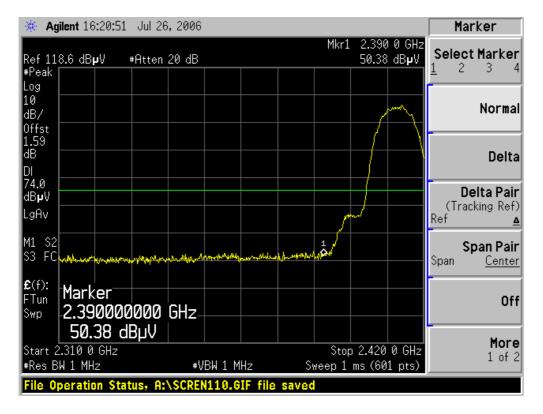
#### Band Edges (802.11b / CH Low)

#### **Detector mode: Peak**

#### **Polarity: Vertical**

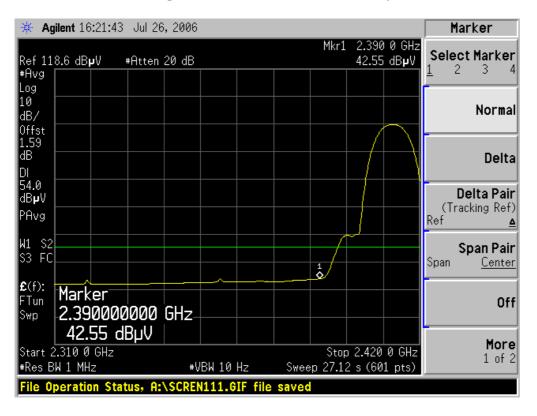


#### **Detector mode: Average**


### **Polarity: Vertical**

| 🔆 Agilent 16:18:21 Jul 26              | , 2006     |               |                            | Marker                                 |
|----------------------------------------|------------|---------------|----------------------------|----------------------------------------|
| Ref 118.6 dB <b>µ</b> V #Atten<br>#Avg | 20 dB      |               | Mkr1 2.390<br>45.69        |                                        |
| Log                                    |            |               |                            |                                        |
| 10<br>dB/                              |            |               |                            | Normal                                 |
| Offst<br>1.59<br>dB                    |            |               |                            | - Delta                                |
| DI                                     |            |               |                            | Deita                                  |
| 54.0<br>dBµV                           |            |               |                            | 👘 🖉 Delta Pair                         |
| PAvg                                   |            |               |                            | (Tracking Ref)<br>Ref <u>▲</u>         |
| W1 S2<br>S3 FC                         |            |               | 1                          | <b>Span Pair</b><br>Span <u>Center</u> |
| £(f): Marker                           | ^          |               |                            |                                        |
| FTun <b>2.39000000</b>                 | GH7        |               |                            | Off                                    |
| 45.69 dBµV                             |            |               |                            |                                        |
| Start 2.310 0 GHz<br>#Res BW 1 MHz     | #VBW 10    | Hz Sweep      | Stop 2.420<br>27.12 s (601 |                                        |
| File Operation Status, A:              | SCREN109.6 | IF file saved |                            |                                        |



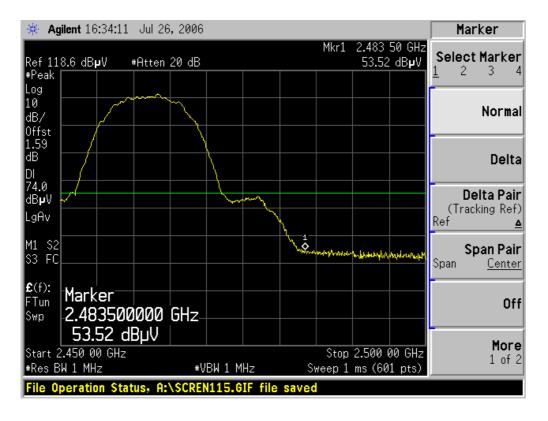

#### **Detector mode: Peak**

# Polarity: Horizontal



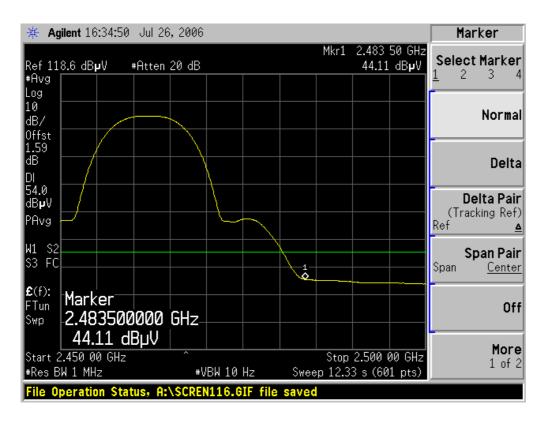
#### **Detector mode: Average**

### **Polarity: Horizontal**





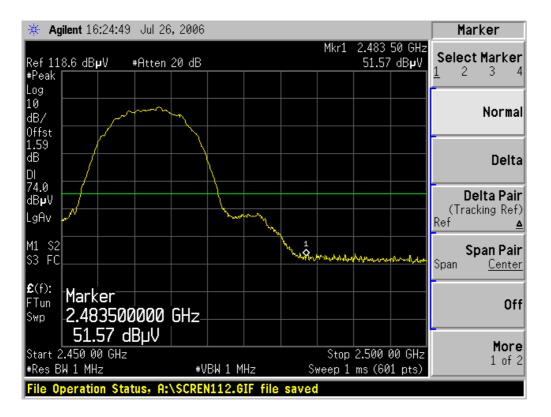

### Band Edges (802.11b / CH High)


#### **Detector mode: Peak**

#### **Polarity: Vertical**

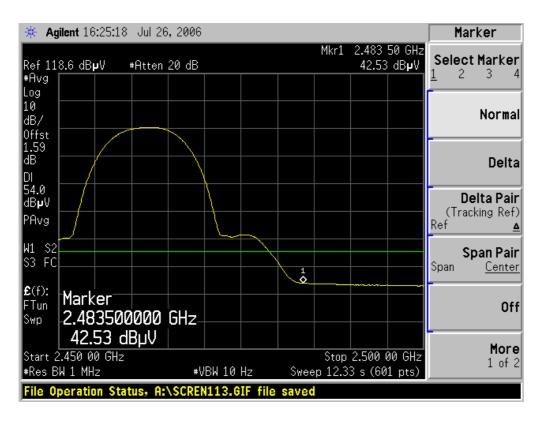


### **Detector mode: Average**


### **Polarity: Vertical**





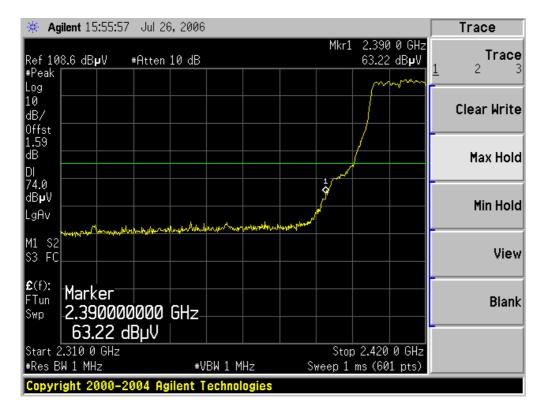

#### **Detector mode: Peak**

### **Polarity: Horizontal**



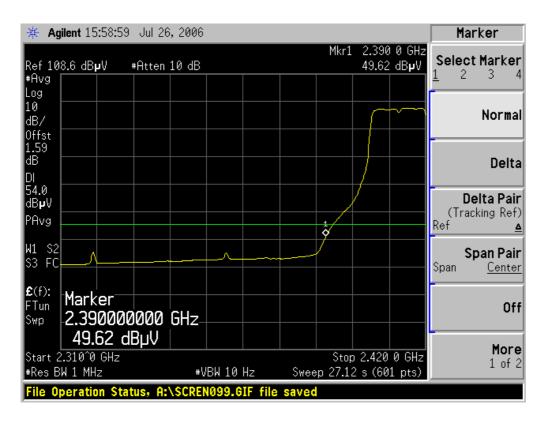
### **Detector mode: Average**

### **Polarity: Horizontal**



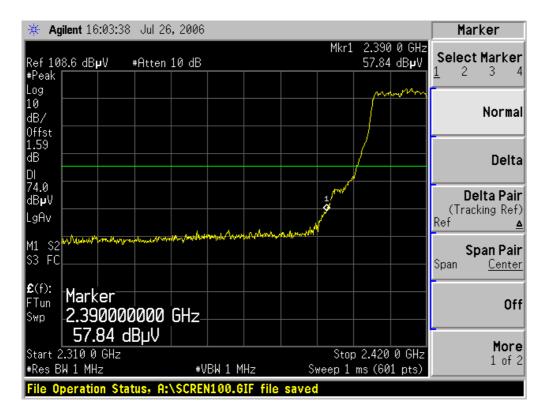



### Band Edges (802.11g / CH Low)


#### **Detector mode: Peak**

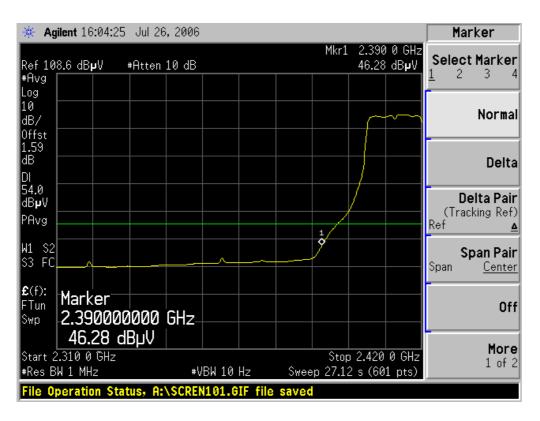
#### **Polarity: Vertical**




#### **Detector mode: Average**

### **Polarity: Vertical**



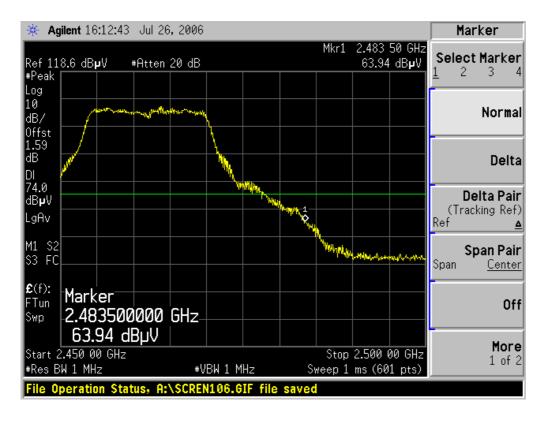

### **Detector mode: Peak**

### **Polarity: Horizontal**



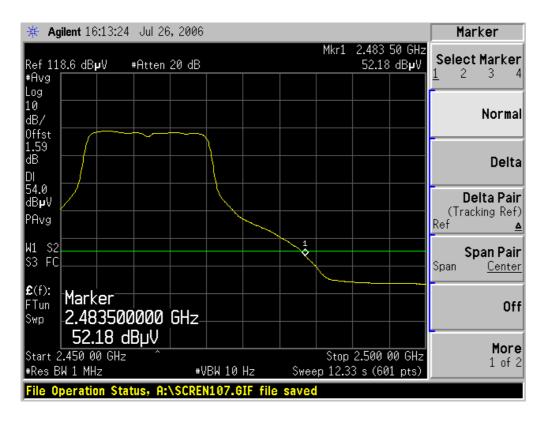
### **Detector mode: Average**

### **Polarity: Horizontal**





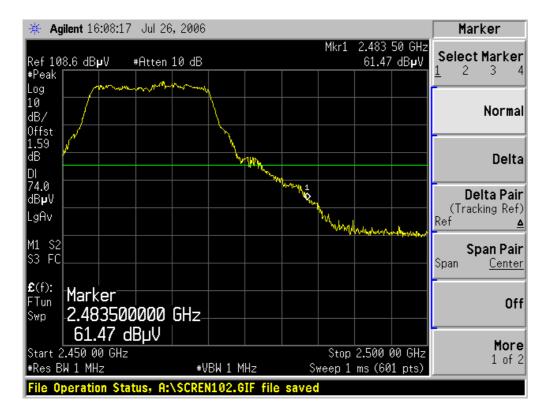

### Band Edges (802.11g / CH High)


#### **Detector mode: Peak**

#### **Polarity: Vertical**

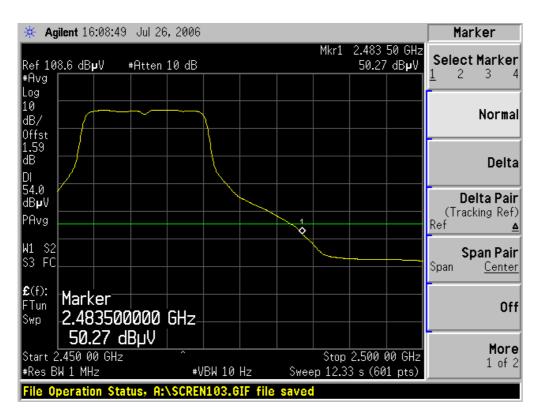


### **Detector mode: Average**


### **Polarity: Vertical**






#### **Detector mode: Peak**

### **Polarity: Horizontal**



### **Detector mode: Average**

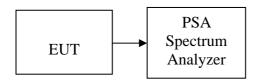
### **Polarity: Horizontal**





# PEAK POWER SPECTRAL DENSITY

# **LIMIT**


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

# **MEASUREMENT EQUIPMENT USED**

| Name of Equipment     | Manufacturer | Model  | Serial Number | Calibration Due |
|-----------------------|--------------|--------|---------------|-----------------|
| PSA Spectrum Analyzer | Agilent      | E4446A | US44300399    | 02/08/2007      |

*Remark:* Each piece of equipment is scheduled for calibration once a year.

### **Test Configuration**



### **TEST PROCEDURE**

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.



### TEST RESULTS

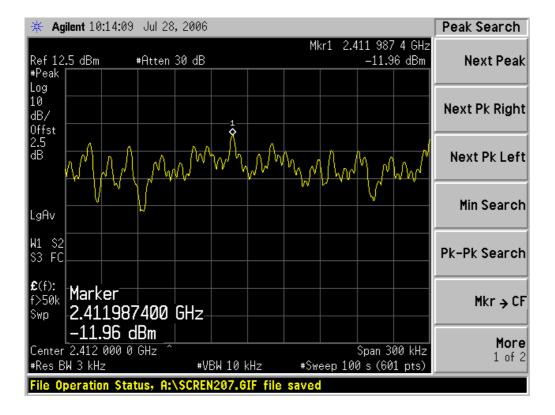
No non-compliance noted

### Test Data

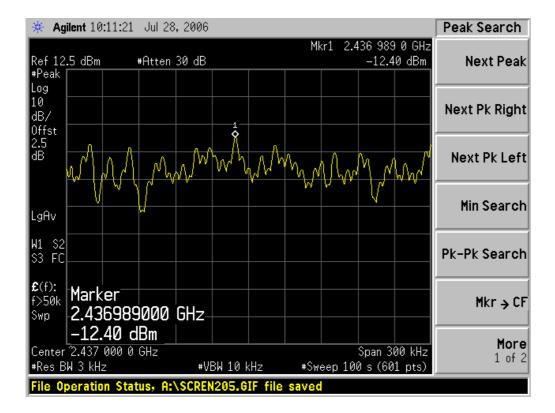
### Test mode: IEEE 802.11b

| Channel | Frequency | Reading<br>(dBm) | Factor<br>(dB) | PPSD<br>(dBm) | Limit<br>(dBm) | Result |
|---------|-----------|------------------|----------------|---------------|----------------|--------|
| Low     | 2412      | -14.46           | 2.50           | -11.96        |                | PASS   |
| Mid     | 2437      | -14.90           | 2.50           | -12.40        | 8.00           | PASS   |
| High    | 2462      | -15.23           | 2.50           | -12.73        |                | PASS   |

### Test mode: IEEE 802.11g

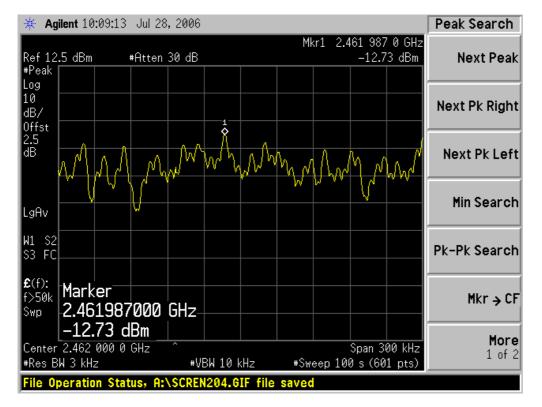

| Channel | Frequency | Reading<br>(dBm) | Factor<br>(dB) | PPSD<br>(dBm) | Limit<br>(dBm) | Result |
|---------|-----------|------------------|----------------|---------------|----------------|--------|
| Low     | 2412      | -29.47           | 2.50           | -26.97        |                | PASS   |
| Mid     | 2437      | -29.44           | 2.50           | -26.94        | 8.00           | PASS   |
| High    | 2462      | -30.41           | 2.50           | -27.91        |                | PASS   |




#### Test Plot

#### 802.11b mode

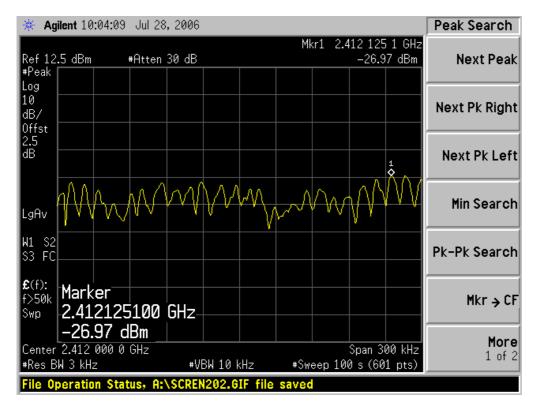
#### PPSD (CH Low)



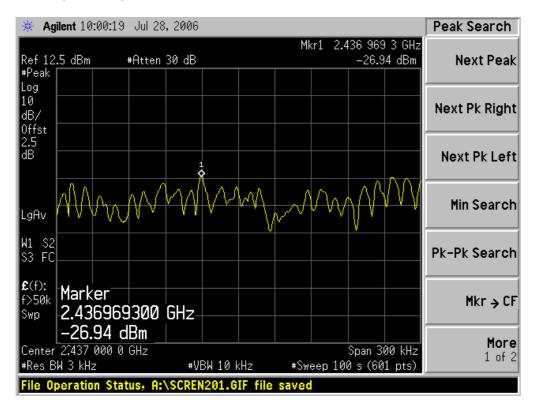

### PPSD (CH Mid)





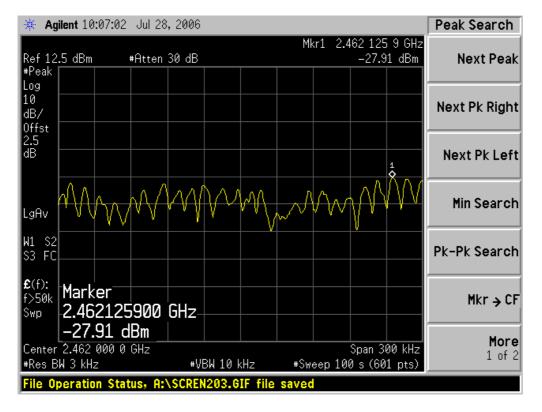

### PPSD (CH High)






#### 802.11g mode

#### PPSD (CH Low)




#### PPSD (CH Mid)





#### PPSD (CH High)

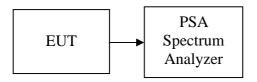




# SPURIOUS EMISSIONS

# 7.5.1 Conducted Measurement

# **LIMIT**


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

# MEASUREMENT EQUIPMENT USED

| Name of Equipment     | Manufacturer | Model  | Serial Number | Calibration Due |
|-----------------------|--------------|--------|---------------|-----------------|
| PSA Spectrum Analyzer | Agilent      | E4446A | US44300399    | 02/08/2007      |

Remark: Each piece of equipment is scheduled for calibration once a year.

## **Test Configuration**



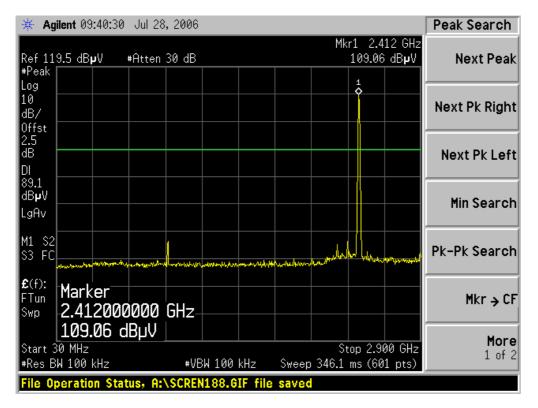
# TEST PROCEDURE

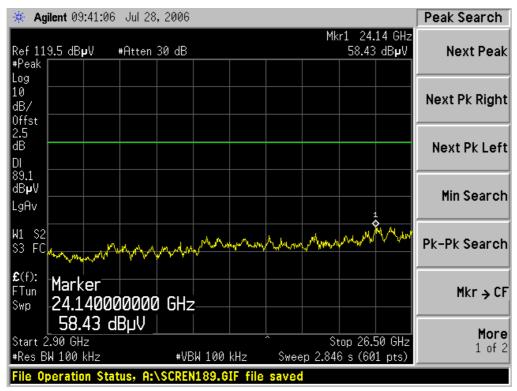
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

Measurements are made over the 30MHz to 26GHzrange with the transmitter set to the lowest, middle, and highest channels.

# TEST RESULTS

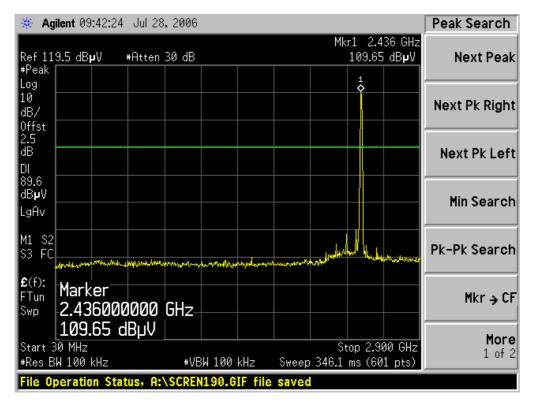

No non-compliance noted

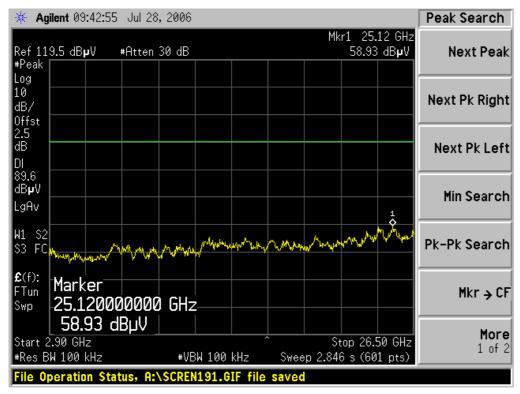



### **Test Plot**

## **IEEE 802.11b / CH Low**

### 30MHz ~ 2.9GHz

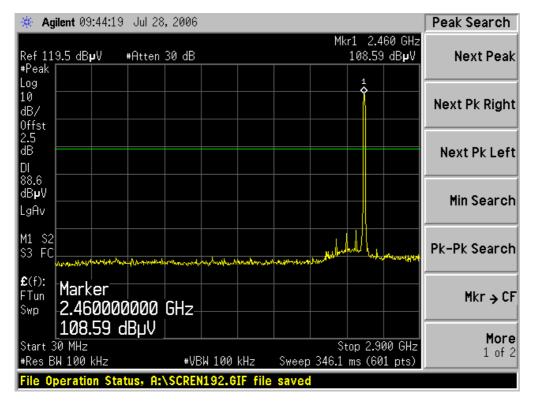


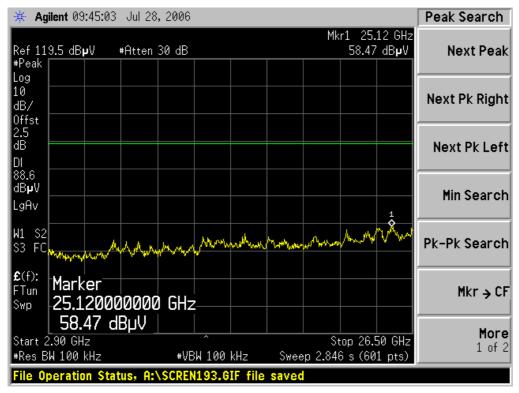






### IEEE 802.11b / CH Mid

### **30MHz ~ 2.9GHz**

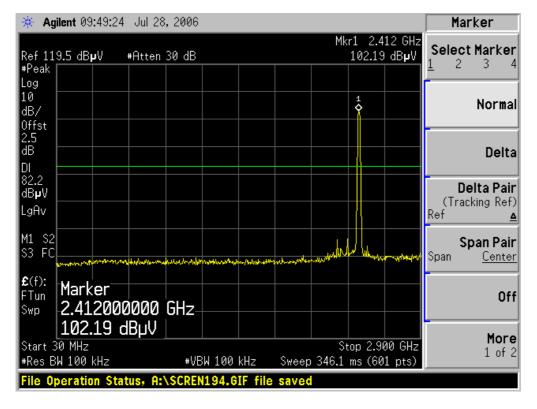





## IEEE 802.11b / CH High

### **30MHz ~ 2.9GHz**

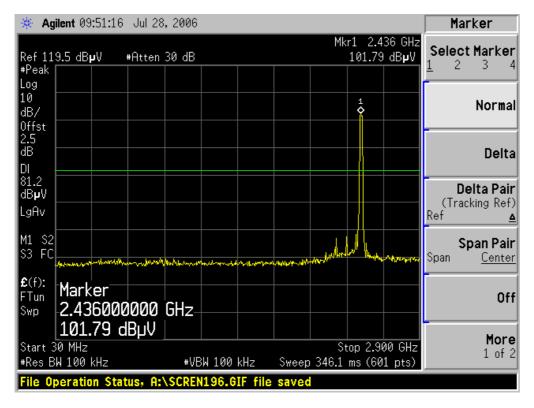


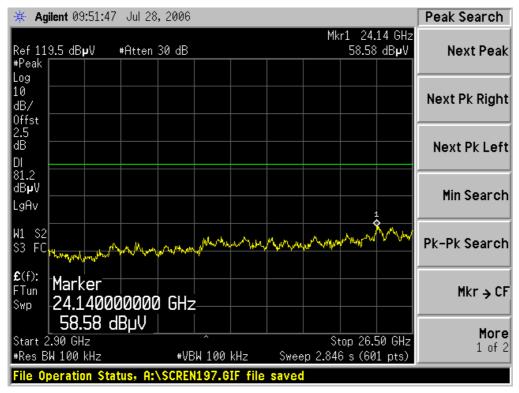





### **IEEE 802.11g / CH Low**

### **30MHz ~ 2.9GHz**

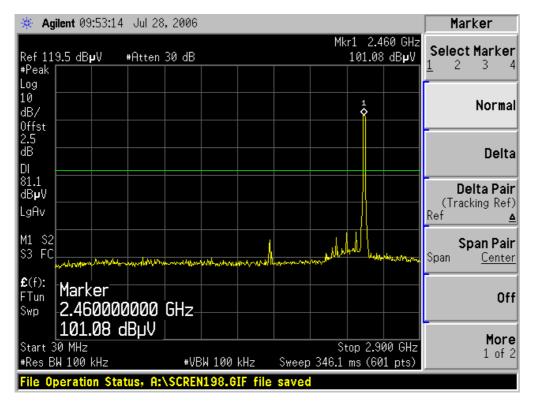


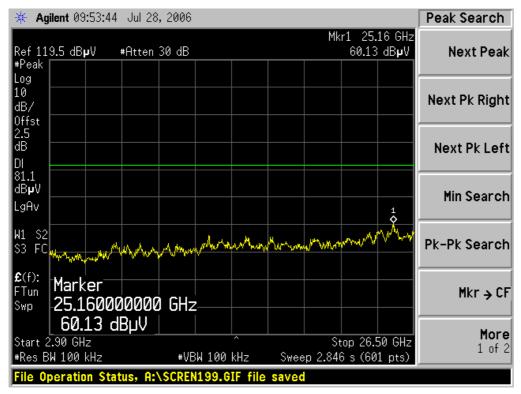


| 🔆 Agilent 09:49:52 Jul 28, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak Search           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Mkr1 24.18 GHz<br>Ref 119.5 dB <b>µ</b> V #Atten 30 dB 58.46 dB <b>µ</b> V<br>#Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Next Peak             |
| Log<br>10<br>dB/<br>0ffst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Next Pk Right         |
| 2.5 dB dB dD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Next Pk Left          |
| 82.2<br>dB <b>µ</b> V<br>LgAv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min Search            |
| W1 S2<br>S3 FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pk-Pk Search          |
| £(f):<br>FTun<br>Swp 24.18000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mkr → CF              |
| 58.46  dBµV  Stop  Stop  26.50  GHz  Stop  26.50  26.50  26.50  26.50 | <b>More</b><br>1 of 2 |
| File Operation Status, A:\SCREN195.GIF file saved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |



## IEEE 802.11g / CH Mid

### **30MHz ~ 2.9GHz**






## IEEE 802.11g / CH High

### **30MHz ~ 2.9GHz**







# 7.6.2 Radiated Emissions

# LIMIT

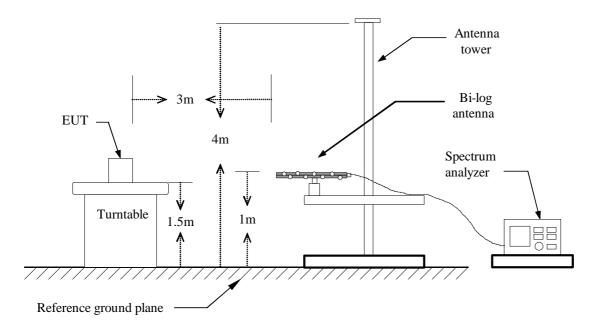
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field Strength (mV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 30-88           | 100*                  | 3                        |
| 88-216          | 150*                  | 3                        |
| 216-960         | 200*                  | 3                        |
| Above 960       | 500                   | 3                        |

**Note:** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

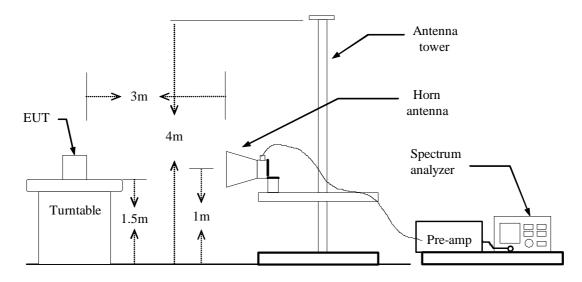
2. In the above emission table, the tighter limit applies at the band edges.

| Frequency (Hz) | Field Strength<br>(µV/m at 3-meter) | Field Strength<br>(dBµV/m at 3-meter) |
|----------------|-------------------------------------|---------------------------------------|
| 30-88          | 100                                 | 40                                    |
| 88-216         | 150                                 | 43.5                                  |
| 216-960        | 200                                 | 46                                    |
| Above 960      | 500                                 | 54                                    |


|                       | 966 RF CHAMBER 2 |                     |                          |                 |  |  |  |  |  |
|-----------------------|------------------|---------------------|--------------------------|-----------------|--|--|--|--|--|
| Name of Equipment     | Manufacturer     | Model Serial Number |                          | Calibration Due |  |  |  |  |  |
| PSA Spectrum Analyzer | Agilent          | E4446A              | US44300399               | 02/08/2007      |  |  |  |  |  |
| EMI Test Receiver     | R&S              | ESCI                | 1166.5950 03             | 01/13/2007      |  |  |  |  |  |
| Pre-Amplifier         | MITEQ            | N/A                 | AFS42-00102650-42-10P-42 | 02/14/2007      |  |  |  |  |  |
| Bilog Antenna         | SCHWAZBECK       | CBL6143             | 5082                     | 06/09/2007      |  |  |  |  |  |
| Turn Table            | EMCO             | 2081-1.21           | N/A                      | N.C.R           |  |  |  |  |  |
| Antenna Tower         | СТ               | N/A                 | N/A                      | N.C.R           |  |  |  |  |  |
| Controller            | СТ               | N/A                 | N/A                      | N.C.R           |  |  |  |  |  |
| RF Comm. Test set     | HP               | 8920B               | US36142090               | N.C.R           |  |  |  |  |  |
| Site NSA              | C&C              | N/A                 | N/A                      | 06/09/2007      |  |  |  |  |  |
| Horn Antenna          | TRC              | N/A                 | N/A                      | 03/04/2007      |  |  |  |  |  |

# **MEASUREMENT EQUIPMENT USED**

**Remark:** Each piece of equipment is scheduled for calibration once a year.


### **Test Configuration**

### Below 1 GHz





Above 1 GHz



# **TEST PROCEDURE**

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.



# **TEST RESULTS**

## Below 1 GHz

**Temperature:** 20°C

Humidity: 70 % RH

| Test Date: | July 24, 2006 |
|------------|---------------|
| Tested by: | Henry         |
| Polarity:  | Ver. / Hor.   |

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading<br>(dBuV) | Factor<br>(dB) | Actual FS<br>(dBuV/m) | Limit 3m<br>(dBuV/m) | Safe Margin<br>(dB) |
|----------------|-----------------|-----------------------------|-------------------|----------------|-----------------------|----------------------|---------------------|
| 168.600        | V               | Peak                        | 45.05             | -6.84          | 38.21                 | 43.50                | -5.29               |
| 222.150        | V               | Peak                        | 58.10             | -14.62         | 43.48                 | 46.00                | -2.52               |
| 259.950        | V               | Peak                        | 50.17             | -10.50         | 39.67                 | 46.00                | -6.33               |
| 498.333        | V               | Peak                        | 39.18             | 0.56           | 39.74                 | 46.00                | -6.26               |
| 519.333        | V               | Peak                        | 42.59             | 0.95           | 43.54                 | 46.00                | -2.46               |
| 598.666        | V               | Peak                        | 38.41             | 1.24           | 39.65                 | 46.00                | -6.35               |
| 120.000        | Н               | Peak                        | 42.47             | -7.05          | 35.42                 | 43.50                | -8.08               |
| 240.150        | Н               | Peak                        | 49.22             | -11.01         | 38.21                 | 46.00                | -7.79               |
| 259.950        | Н               | Peak                        | 45.35             | -7.82          | 37.53                 | 46.00                | -8.47               |
| 443.500        | Н               | Peak                        | 47.27             | -5.91          | 41.36                 | 46.00                | -4.64               |
| 465.666        | Н               | Peak                        | 40.36             | -0.82          | 39.54                 | 46.00                | -6.46               |
| 720.000        | Н               | Peak                        | 41.58             | -4.26          | 37.32                 | 46.00                | -8.68               |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



Operation Mode: TX / IEEE 802.11b / CH Mid

**Temperature:** 20°C

Humidity: 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading<br>(dBuV) | Factor<br>(dB) | Actual FS<br>(dBuV/m) | Limit 3m<br>(dBuV/m) | Safe Margin<br>(dB) |
|----------------|-----------------|-----------------------------|-------------------|----------------|-----------------------|----------------------|---------------------|
| 129.900        | V               | Peak                        | 41.24             | -8.02          | 33.22                 | 43.50                | -10.28              |
| 194.700        | V               | Peak                        | 50.91             | -11.42         | 39.49                 | 43.50                | -4.01               |
| 269.850        | V               | Peak                        | 51.93             | -13.00         | 38.93                 | 46.00                | -7.07               |
| 499.500        | V               | Peak                        | 40.92             | 0.19           | 41.11                 | 46.00                | -4.89               |
| 519.333        | V               | Peak                        | 41.36             | 0.95           | 42.31                 | 46.00                | -3.69               |
| 664.000        | V               | Peak                        | 40.99             | 1.47           | 42.46                 | 46.00                | -3.54               |
| 51.150         | Н               | Peak                        | 43.03             | -6.79          | 36.24                 | 40.00                | -3.76               |
| 120.000        | Н               | Peak                        | 42.21             | -7.05          | 35.16                 | 43.50                | -8.34               |
| 259.950        | Н               | Peak                        | 44.68             | -7.82          | 36.86                 | 46.00                | -9.14               |
| 465.666        | Н               | Peak                        | 39.75             | -0.82          | 38.93                 | 46.00                | -7.07               |
| 667.500        | Н               | Quasi-peak                  | 51.87             | -7.83          | 44.04                 | 46.00                | -1.96               |
| 798.166        | Н               | Peak                        | 40.40             | -4.19          | 36.21                 | 46.00                | -9.79               |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



Operation Mode: TX / IEEE 802.11b / CH High

**Temperature:** 20°C

Humidity: 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading<br>(dBuV) | Factor<br>(dB) | Actual FS<br>(dBuV/m) | Limit 3m<br>(dBuV/m) | Safe Margin<br>(dB) |
|----------------|-----------------|-----------------------------|-------------------|----------------|-----------------------|----------------------|---------------------|
| 129.900        | V               | Peak                        | 41.63             | -8.02          | 33.61                 | 43.50                | -9.89               |
| 246.900        | V               | Peak                        | 48.97             | -7.55          | 41.42                 | 46.00                | -4.58               |
| 269.850        | V               | Peak                        | 50.89             | -13.00         | 37.89                 | 46.00                | -8.11               |
| 519.333        | V               | Peak                        | 41.49             | 0.95           | 42.44                 | 46.00                | -3.56               |
| 598.666        | V               | Peak                        | 39.84             | 1.24           | 41.08                 | 46.00                | -4.92               |
| 622.000        | V               | Peak                        | 41.20             | -0.11          | 41.09                 | 46.00                | -4.91               |
| 133.500        | Н               | Peak                        | 47.90             | -6.94          | 40.96                 | 43.50                | -2.54               |
| 240.150        | Н               | Peak                        | 48.64             | -11.01         | 37.63                 | 46.00                | -8.37               |
| 259.950        | Н               | Peak                        | 46.63             | -7.82          | 38.81                 | 46.00                | -7.19               |
| 479.666        | Н               | Peak                        | 38.38             | -2.15          | 36.23                 | 46.00                | -9.77               |
| 665.166        | Н               | Peak                        | 43.05             | -7.91          | 35.14                 | 46.00                | -10.86              |
| 720.000        | Н               | Peak                        | 40.14             | -4.26          | 35.88                 | 46.00                | -10.12              |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



Operation Mode: TX / IEEE 802.11g / CH Low

**Temperature:** 20°C

Humidity: 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading<br>(dBuV) | Factor<br>(dB) | Actual FS<br>(dBuV/m) | Limit 3m<br>(dBuV/m) | Safe Margin<br>(dB) |
|----------------|-----------------|-----------------------------|-------------------|----------------|-----------------------|----------------------|---------------------|
| 227.550        | V               | Peak                        | 48.03             | -13.01         | 35.02                 | 46.00                | -10.98              |
| 259.950        | V               | Peak                        | 48.62             | -10.50         | 38.12                 | 46.00                | -7.88               |
| 269.850        | V               | Peak                        | 51.82             | -13.00         | 38.82                 | 46.00                | -7.18               |
| 292.350        | V               | Peak                        | 47.47             | -11.75         | 35.72                 | 46.00                | -10.28              |
| 519.333        | V               | Peak                        | 42.38             | 0.95           | 43.33                 | 46.00                | -2.67               |
| 567.166        | V               | Peak                        | 42.71             | 1.26           | 43.97                 | 46.00                | -2.03               |
| 225.750        | Н               | Peak                        | 50.21             | -14.59         | 35.62                 | 46.00                | -10.38              |
| 240.150        | Н               | Peak                        | 47.67             | -11.01         | 36.66                 | 46.00                | -9.34               |
| 259.950        | Н               | Peak                        | 44.85             | -7.82          | 37.03                 | 46.00                | -8.97               |
| 280.200        | Н               | Peak                        | 39.43             | -7.07          | 32.36                 | 46.00                | -13.64              |
| 666.333        | Н               | Peak                        | 42.83             | -7.87          | 34.96                 | 46.00                | -11.04              |
| 798.166        | Н               | Peak                        | 41.53             | -4.19          | 37.34                 | 46.00                | -8.66               |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



Operation Mode: TX / IEEE 802.11g / CH Mid

**Temperature:** 20°C

Humidity: 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading<br>(dBuV) | Factor<br>(dB) | Actual FS<br>(dBuV/m) | Limit 3m<br>(dBuV/m) | Safe Margin<br>(dB) |
|----------------|-----------------|-----------------------------|-------------------|----------------|-----------------------|----------------------|---------------------|
| 129.900        | V               | Peak                        | 41.56             | -8.02          | 33.54                 | 43.50                | -9.96               |
| 250.950        | V               | Peak                        | 43.10             | -6.68          | 36.42                 | 46.00                | -9.58               |
| 269.850        | V               | Peak                        | 51.60             | -13.00         | 38.60                 | 46.00                | -7.40               |
| 292.350        | V               | Peak                        | 47.70             | -11.75         | 35.95                 | 46.00                | -10.05              |
| 498.333        | V               | Peak                        | 41.30             | 0.56           | 41.86                 | 46.00                | -4.14               |
| 529.833        | V               | Peak                        | 38.25             | 1.39           | 39.64                 | 46.00                | -6.36               |
| 120.000        | Н               | Peak                        | 42.29             | -7.05          | 35.24                 | 43.50                | -8.26               |
| 240.150        | Н               | Peak                        | 48.21             | -11.01         | 37.20                 | 46.00                | -8.80               |
| 259.950        | Н               | Peak                        | 45.40             | -7.82          | 37.58                 | 46.00                | -8.42               |
| 480.833        | Н               | Peak                        | 38.23             | -2.16          | 36.07                 | 46.00                | -9.93               |
| 499.500        | Н               | Peak                        | 42.16             | 0.70           | 42.86                 | 46.00                | -3.14               |
| 720.000        | Н               | Peak                        | 40.80             | -4.26          | 36.54                 | 46.00                | -9.46               |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



Operation Mode: TX / IEEE 802.11g / CH High

**Temperature:** 20°C

Humidity: 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading<br>(dBuV) | Factor<br>(dB) | Actual FS<br>(dBuV/m) | Limit 3m<br>(dBuV/m) | Safe Margin<br>(dB) |
|----------------|-----------------|-----------------------------|-------------------|----------------|-----------------------|----------------------|---------------------|
| 194.700        | V               | Peak                        | 50.20             | -11.42         | 38.78                 | 43.50                | -4.72               |
| 259.950        | V               | Peak                        | 48.23             | -10.50         | 37.73                 | 46.00                | -8.27               |
| 269.850        | V               | Peak                        | 50.89             | -13.00         | 37.89                 | 46.00                | -8.11               |
| 498.333        | V               | Peak                        | 41.12             | 0.56           | 41.68                 | 46.00                | -4.32               |
| 529.833        | V               | Peak                        | 37.77             | 1.39           | 39.16                 | 46.00                | -6.84               |
| 601.000        | V               | Peak                        | 39.26             | 1.06           | 40.32                 | 46.00                | -5.68               |
| 134.850        | Н               | Peak                        | 42.64             | -6.49          | 36.15                 | 43.50                | -7.35               |
| 240.150        | Н               | Peak                        | 48.24             | -11.01         | 37.23                 | 46.00                | -8.77               |
| 259.950        | Н               | Peak                        | 45.86             | -7.82          | 38.04                 | 46.00                | -7.96               |
| 431.833        | Н               | Peak                        | 45.75             | -7.14          | 38.61                 | 46.00                | -7.39               |
| 465.666        | Н               | Peak                        | 39.54             | -0.82          | 38.72                 | 46.00                | -7.28               |
| 720.000        | Н               | Peak                        | 40.19             | -4.26          | 35.93                 | 46.00                | -10.07              |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



### Above 1 GHz

Operation Mode:TX / IEEE 802.11b / CH LowTemperature:23°CHumidity:56 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.   | Ant. Pol | Peak              | AV                | Ant. / CL  | Actu             | al Fs          | Peak              | AV                | Margin |        |
|---------|----------|-------------------|-------------------|------------|------------------|----------------|-------------------|-------------------|--------|--------|
| (MHz)   | H/V      | Reading<br>(dBuV) | Reading<br>(dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit<br>(dBuV/m) | (10)   | Remark |
| 1063.33 | V        | 52.40             |                   | -2.20      | 50.20            |                | 74.00             | 54.00             | -3.80  | Peak   |
| 1600.00 | V        | 52.26             |                   | -0.88      | 51.38            |                | 74.00             | 54.00             | -2.62  | Peak   |
| 4750.00 | V        | 47.03             |                   | 5.92       | 52.95            |                | 74.00             | 54.00             | -1.05  | Peak   |
| N/A     |          |                   |                   |            |                  |                |                   |                   |        |        |
|         |          |                   |                   |            |                  |                |                   |                   |        |        |
|         |          |                   |                   |            |                  |                |                   |                   |        |        |
|         |          |                   |                   |            |                  |                |                   |                   |        |        |
| 1596.66 | Н        | 48.33             |                   | -0.91      | 47.42            |                | 74.00             | 54.00             | -6.58  | Peak   |
| 1743.33 | Н        | 48.74             |                   | -0.75      | 47.99            |                | 74.00             | 54.00             | -6.01  | Peak   |
| 4775.00 | Н        | 47.35             |                   | 5.91       | 53.26            |                | 74.00             | 54.00             | -0.74  | Peak   |
| N/A     |          |                   |                   |            |                  |                |                   |                   |        |        |
|         |          |                   |                   |            |                  |                |                   |                   |        |        |
|         |          |                   |                   |            |                  |                |                   |                   |        |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
  - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.



Operation Mode: TX / IEEE 802.11b / CH Mid

**Temperature:** 20°C

**Humidity:** 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Errog          | Ant. Pol | Peak              | AV                | Ant. / CL  | Actu             | al Fs          | Peak              | AV                | Margin          |        |
|----------------|----------|-------------------|-------------------|------------|------------------|----------------|-------------------|-------------------|-----------------|--------|
| Freq.<br>(MHz) | H/V      | Reading<br>(dBuV) | Reading<br>(dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit<br>(dBuV/m) | $(d\mathbf{R})$ | Remark |
| 1153.33        | V        | 51.83             |                   | -2.14      | 49.69            |                | 74.00             | 54.00             | -4.31           | Peak   |
| 1596.66        | V        | 52.48             |                   | -0.91      | 51.57            |                | 74.00             | 54.00             | -2.43           | Peak   |
| 4700.00        | V        | 47.80             |                   | 5.93       | 53.73            |                | 74.00             | 54.00             | -0.27           | Peak   |
| N/A            |          |                   |                   |            |                  |                |                   |                   |                 |        |
|                |          |                   |                   |            |                  |                |                   |                   |                 |        |
|                |          |                   |                   |            |                  |                |                   |                   |                 |        |
|                |          |                   |                   |            |                  |                |                   |                   |                 |        |
| 1600.00        | Н        | 49.27             |                   | -0.88      | 48.39            |                | 74.00             | 54.00             | -5.61           | Peak   |
| 1810.00        | Н        | 48.39             |                   | -0.65      | 47.74            |                | 74.00             | 54.00             | -6.26           | Peak   |
| 4691.66        | Н        | 47.73             |                   | 5.93       | 53.66            |                | 74.00             | 54.00             | -0.34           | Peak   |
| N/A            |          |                   |                   |            |                  |                |                   |                   |                 |        |
|                |          |                   |                   |            |                  |                |                   |                   |                 |        |
|                |          |                   |                   |            |                  |                |                   |                   |                 |        |

### Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.



Operation Mode: TX / IEEE 802.11b / CH High

**Temperature:** 20°C

**Humidity:** 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.   | Ant. Pol | Peak              | AV                | Ant. / CL  | Actu             | al Fs          | Peak              | AV                | Margin                   |        |
|---------|----------|-------------------|-------------------|------------|------------------|----------------|-------------------|-------------------|--------------------------|--------|
| (MHz)   | H/V      | Reading<br>(dBuV) | Reading<br>(dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit<br>(dBuV/m) | $(\mathbf{d}\mathbf{R})$ | Remark |
| 1826.66 | V        | 51.52             |                   | -0.57      | 50.95            |                | 74.00             | 54.00             | -3.05                    | Peak   |
| 1860.00 | V        | 52.97             |                   | -0.40      | 52.57            |                | 74.00             | 54.00             | -1.43                    | Peak   |
| 4708.33 | V        | 47.38             |                   | 5.92       | 53.30            |                | 74.00             | 54.00             | -0.70                    | Peak   |
| N/A     |          |                   |                   |            |                  |                |                   |                   |                          |        |
|         |          |                   |                   |            |                  |                |                   |                   |                          |        |
|         |          |                   |                   |            |                  |                |                   |                   |                          |        |
|         |          |                   |                   |            |                  |                |                   |                   |                          |        |
| 1603.33 | Н        | 49.35             |                   | -0.88      | 48.47            |                | 74.00             | 54.00             | -5.53                    | Peak   |
| 1813.33 | Н        | 47.78             |                   | -0.63      | 47.15            |                | 74.00             | 54.00             | -6.85                    | Peak   |
| 4758.33 | Н        | 47.59             |                   | 5.92       | 53.51            |                | 74.00             | 54.00             | -0.49                    | Peak   |
| N/A     |          |                   |                   |            |                  |                |                   |                   |                          |        |
|         |          |                   |                   |            |                  |                |                   |                   |                          |        |
|         |          |                   |                   |            |                  |                |                   |                   |                          |        |

### Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.



July 24, 2006

Ver. / Hor.

|                       | Dool      | AV       | Ant / CI  | Actual Fs | Doolz     | 437      |     |
|-----------------------|-----------|----------|-----------|-----------|-----------|----------|-----|
| Humidity:             | 70 %      | RH       |           |           | Polarity: | Ver. /   | ' H |
| <b>Temperature:</b>   | 20°C      |          |           |           | Tested by | Henr     | у   |
| <b>Operation Mode</b> | e: TX / ] | IEEE 802 | .11g / CH | Low       | Test Date | : July 2 | 24, |

| Ener           | Amt Dal         | Peak              | AV                | Ant. / CL  | Actu             | al Fs          | Peak              | AV                | Manain |        |
|----------------|-----------------|-------------------|-------------------|------------|------------------|----------------|-------------------|-------------------|--------|--------|
| Freq.<br>(MHz) | Ant. Pol<br>H/V | Reading<br>(dBuV) | Reading<br>(dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit<br>(dBuV/m) |        | Remark |
| 1153.33        | V               | 52.52             |                   | -2.14      | 50.38            |                | 74.00             | 54.00             | -3.62  | Peak   |
| 1600.00        | V               | 51.77             |                   | -0.88      | 50.89            |                | 74.00             | 54.00             | -3.11  | Peak   |
| 4675.00        | V               | 47.02             |                   | 5.93       | 52.95            |                | 74.00             | 54.00             | -1.05  | Peak   |
| N/A            |                 |                   |                   |            |                  |                |                   |                   |        |        |
|                |                 |                   |                   |            |                  |                |                   |                   |        |        |
|                |                 |                   |                   |            |                  |                |                   |                   |        |        |
|                |                 |                   |                   |            |                  |                |                   |                   |        |        |
| 1196.66        | Н               | 51.16             |                   | -2.10      | 49.06            |                | 74.00             | 54.00             | -4.94  | Peak   |
| 1600.00        | Н               | 48.89             |                   | -0.88      | 48.01            |                | 74.00             | 54.00             | -5.99  | Peak   |
| 4808.33        | Н               | 47.43             |                   | 5.99       | 53.42            |                | 74.00             | 54.00             | -0.58  | Peak   |
| N/A            |                 |                   |                   |            |                  |                |                   |                   |        |        |
|                |                 |                   |                   |            |                  |                |                   |                   |        |        |
|                |                 |                   |                   |            |                  |                |                   |                   |        |        |
|                | 1               |                   |                   |            |                  |                |                   |                   |        |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
  - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.



Operation Mode: TX / IEEE 802.11g / CH Mid

**Temperature:** 20°C

**Humidity:** 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Ant Dol | Peak                  | AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ant. / CL                                                                                                                          | Actu                                                                                                                                                                                    | al Fs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AV                                                                                                                                                                                                                                                                                                                              | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H/V     | Reading<br>(dBuV)     | Reading<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CF<br>(dB)                                                                                                                         | Peak<br>(dBuV/m)                                                                                                                                                                        | AV<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V       | 54.03                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.20                                                                                                                              | 51.83                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.00                                                                                                                                                                                                                                                                                                                           | -2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V       | 51.23                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.88                                                                                                                              | 50.35                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.00                                                                                                                                                                                                                                                                                                                           | -3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V       | 48.29                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.93                                                                                                                               | 54.22                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.00                                                                                                                                                                                                                                                                                                                           | -19.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Avg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Н       | 49.62                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.88                                                                                                                              | 48.74                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.00                                                                                                                                                                                                                                                                                                                           | -5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Н       | 50.47                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.78                                                                                                                              | 49.69                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.00                                                                                                                                                                                                                                                                                                                           | -4.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Н       | 46.98                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.92                                                                                                                               | 52.90                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.00                                                                                                                                                                                                                                                                                                                           | -1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | V<br>V<br>V<br>H<br>H | Amt. Poil  Reading (dBuV)    H/V  54.03    V  51.23    V  48.29    Image: Control of the state of | Ant. Poi<br>H/V  Reading<br>(dBuV)  Reading<br>(dBuV)    V  54.03     V  51.23     V  48.29     V  48.29     H  49.62     H  50.47 | Amt. Poi<br>H/V  Reading<br>(dBuV)  Reading<br>(dBuV)  CF<br>(dB)    V  54.03   -2.20    V  51.23   -0.88    V  48.29   5.93    V  48.29   5.93    H  49.62   -0.88    H  50.47   -0.78 | Ant. Pol  Reading<br>(dBuV)  Reading<br>(dBuV)  CF<br>(dB)  Peak<br>(dBuV/m)    V  54.03   -2.20  51.83    V  51.23   -0.88  50.35    V  48.29   5.93  54.22    Image: CF (dBuV)  Image: CF (dBuV/m)  Image: CF (dBuV/m)  Image: CF (dBuV/m)    V  54.03   -2.20  51.83    V  48.29   -0.88  50.35    V  48.29  Image: CF (dBuV/m)  Image: CF (dBuV/m)    Image: CF (dBuV)  Image: CF (dBuV)  5.93  54.22    Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)    Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)    Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)    Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)  Image: CF (dBuV)    Image: CF (dBuV)  Image: CF (dBuV) <t< td=""><td>Amt. Poi<br/>H/V  Reading<br/>(dBuV)  Reading<br/>(dBuV)  CF<br/>(dB)  Peak<br/>(dBuV/m)  AV<br/>(dBuV/m)    V  54.03   -2.20  51.83     V  51.23   -0.88  50.35     V  48.29   5.93  54.22     V  48.29   5.93  54.22     Image: Mathematic Stress S</td><td>Ant. Pol  Reading<br/>(dBuV)  Reading<br/>(dBuV)  CF<br/>(dB)  Peak<br/>(dBuV/m)  AV<br/>(dBuV/m)  Limit<br/>(dBuV/m)    V  54.03   -2.20  51.83   74.00    V  51.23   -0.88  50.35   74.00    V  48.29   5.93  54.22   74.00    V  48.29   5.93  54.22   74.00    H  49.62   -0.88  48.74   74.00    H  50.47   -0.78  49.69   74.00</td><td>Ant. Pol  Reading<br/>(dBuV)  Reading<br/>(dBuV)  CF<br/>(dB)  Peak<br/>(dBuV/m)  AV<br/>(dBuV/m)  Limit<br/>(dBuV/m)  Limit<br/>(dBuV/m)    V  54.03   -2.20  51.83   74.00  54.00    V  51.23   -0.88  50.35   74.00  54.00    V  48.29   5.93  54.22   74.00  54.00    V  48.29   5.93  54.22   74.00  54.00    V  48.29   5.93  54.22   74.00  54.00    H  49.62   5.93  54.22   74.00  54.00    H  49.62   5.93  54.22   74.00  54.00    H  49.62   -0.88  48.74   74.00  54.00    H  50.47   -0.78  49.69   74.00  54.00</td><td>Ant. Pol  Reading<br/>(dBuV)  Reading<br/>(dBuV)  CF<br/>(dB)  Peak<br/>(dBuV/m)  AV<br/>(dBuV/m)  Limit<br/>(dBuV/m)  Limit<br/>(dBuV/m)  Margin<br/>(dB)    V  54.03   -2.20  51.83   74.00  54.00  -2.17    V  51.23   -0.88  50.35   74.00  54.00  -3.65    V  48.29   5.93  54.22   74.00  54.00  -19.78    Image: Comparison of the state of th</td></t<> | Amt. Poi<br>H/V  Reading<br>(dBuV)  Reading<br>(dBuV)  CF<br>(dB)  Peak<br>(dBuV/m)  AV<br>(dBuV/m)    V  54.03   -2.20  51.83     V  51.23   -0.88  50.35     V  48.29   5.93  54.22     V  48.29   5.93  54.22     Image: Mathematic Stress S | Ant. Pol  Reading<br>(dBuV)  Reading<br>(dBuV)  CF<br>(dB)  Peak<br>(dBuV/m)  AV<br>(dBuV/m)  Limit<br>(dBuV/m)    V  54.03   -2.20  51.83   74.00    V  51.23   -0.88  50.35   74.00    V  48.29   5.93  54.22   74.00    V  48.29   5.93  54.22   74.00    H  49.62   -0.88  48.74   74.00    H  50.47   -0.78  49.69   74.00 | Ant. Pol  Reading<br>(dBuV)  Reading<br>(dBuV)  CF<br>(dB)  Peak<br>(dBuV/m)  AV<br>(dBuV/m)  Limit<br>(dBuV/m)  Limit<br>(dBuV/m)    V  54.03   -2.20  51.83   74.00  54.00    V  51.23   -0.88  50.35   74.00  54.00    V  48.29   5.93  54.22   74.00  54.00    V  48.29   5.93  54.22   74.00  54.00    V  48.29   5.93  54.22   74.00  54.00    H  49.62   5.93  54.22   74.00  54.00    H  49.62   5.93  54.22   74.00  54.00    H  49.62   -0.88  48.74   74.00  54.00    H  50.47   -0.78  49.69   74.00  54.00 | Ant. Pol  Reading<br>(dBuV)  Reading<br>(dBuV)  CF<br>(dB)  Peak<br>(dBuV/m)  AV<br>(dBuV/m)  Limit<br>(dBuV/m)  Limit<br>(dBuV/m)  Margin<br>(dB)    V  54.03   -2.20  51.83   74.00  54.00  -2.17    V  51.23   -0.88  50.35   74.00  54.00  -3.65    V  48.29   5.93  54.22   74.00  54.00  -19.78    Image: Comparison of the state of th |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
  - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.



Operation Mode: TX / IEEE 802.11g / CH High

**Temperature:** 20°C

Humidity: 70 % RH

Test Date:July 24, 2006Tested by:HenryPolarity:Ver. / Hor.

| Freq.   | Ant. Pol | Peak              | AV                | Ant. / CL  | Actu             | al Fs          | Peak              | AV                | Margin         |        |
|---------|----------|-------------------|-------------------|------------|------------------|----------------|-------------------|-------------------|----------------|--------|
| (MHz)   | H/V      | Reading<br>(dBuV) | Reading<br>(dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
| 1066.66 | V        | 53.62             |                   | -2.20      | 51.42            |                | 74.00             | 54.00             | -2.58          | Peak   |
| 1603.33 | V        | 51.26             |                   | -0.88      | 50.38            |                | 74.00             | 54.00             | -3.62          | Peak   |
| 4750.00 | V        | 46.76             |                   | 5.92       | 52.68            |                | 74.00             | 54.00             | -1.32          | Peak   |
| N/A     |          |                   |                   |            |                  |                |                   |                   |                |        |
|         |          |                   |                   |            |                  |                |                   |                   |                |        |
|         |          |                   |                   |            |                  |                |                   |                   |                |        |
|         |          |                   |                   |            |                  |                |                   |                   |                |        |
| 1600.00 | Н        | 48.20             |                   | -0.88      | 47.32            |                | 74.00             | 54.00             | -6.68          | Peak   |
| 1810.00 | Н        | 48.17             |                   | -0.65      | 47.52            |                | 74.00             | 54.00             | -6.48          | Peak   |
| 4766.66 | Н        | 47.65             |                   | 5.91       | 53.56            |                | 74.00             | 54.00             | -0.44          | Peak   |
| N/A     |          |                   |                   |            |                  |                |                   |                   |                |        |
|         |          |                   |                   |            |                  |                |                   |                   |                |        |
|         |          |                   |                   |            |                  |                |                   |                   |                |        |

### Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.



# **POWERLINE CONDUCTED EMISSIONS**

# LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power Line, the radio frequency voltage that is conducted back onto the AC power Line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases Linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

| Frequency Range (MHz)   | Limits (dBµV) |          |  |  |  |
|-------------------------|---------------|----------|--|--|--|
| Frequency Kange (WIIIZ) | Quasi-peak    | Average  |  |  |  |
| 0.15 to 0.50            | 66 to 56      | 56 to 46 |  |  |  |
| 0.50 to 5               | 56            | 46       |  |  |  |
| 5 to 30                 | 60            | 50       |  |  |  |

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power Line (LINE and NEUTRAL) and ground at the power terminals.

# MEASUREMENT EQUIPMENT USED

| Conducted Emission Test Site G |               |              |                  |                    |  |  |  |  |  |
|--------------------------------|---------------|--------------|------------------|--------------------|--|--|--|--|--|
| Name of Equipment              | Manufacturer  | Model        | Serial<br>Number | Calibration<br>Due |  |  |  |  |  |
| ESCI EMI TEST<br>RECEIV.ESCI   | ROHDE&SCHWARZ | 1166.5950 03 | 100088           | 02/08/2007         |  |  |  |  |  |
| LISN                           | EMCO          | 3825/2       | 1371             | 02/08/2007         |  |  |  |  |  |
| LISN                           | EMCO          | 3825/2       | 8901-1459        | 02/08/2007         |  |  |  |  |  |

**Remark:** Each piece of equipment is scheduled for calibration once a year.



## **Test Configuration**



See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

## **TEST PROCEDURE**

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

## **TEST RESULTS**

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.



## Test Data

| Test Mode: TX+RX  | Location: Site G                |
|-------------------|---------------------------------|
| Model Name: 331GU | <b>Test Date:</b> July 26, 2006 |
| Tested by: Henry  | Test Results: Passed            |

(The chart below shows the highest readings taken from the final data)

| FREQ  | PEAK  | Q.P. | AVG  | Q.P.  | AVG   | Q.P.   | AVG    | NOTE |
|-------|-------|------|------|-------|-------|--------|--------|------|
| MHz   | RAW   | RAW  | RAW  | Limit | Limit | Margin | Margin |      |
|       | dBuV  | dBuV | dBuV | dBuV  | dBuV  | dB     | dB     |      |
| 0.205 | 50.57 |      |      | 64.41 | 54.41 |        | -3.84  | L1   |
| 0.298 | 47.69 |      |      | 61.76 | 51.76 |        | -4.07  | L1   |
| 0.917 | 41.92 |      |      | 56.00 | 46.00 |        | -4.08  | L1   |
| 1.525 | 42.38 |      |      | 56.00 | 46.00 |        | -3.62  | L1   |
| 2.104 | 41.15 |      |      | 56.00 | 46.00 |        | -4.85  | L1   |
| 3.819 | 40.07 |      |      | 56.00 | 46.00 |        | -5.93  | L1   |
|       | 1     |      |      |       |       | 1      |        |      |
| 0.201 | 50.44 |      |      | 64.52 | 54.52 |        | -4.08  | L2   |
| 0.305 | 46.89 |      |      | 61.55 | 51.55 |        | -4.66  | L2   |
| 0.902 | 40.15 |      |      | 56.00 | 46.00 |        | -5.85  | L2   |
| 1.406 | 41.03 |      |      | 56.00 | 46.00 |        | -4.97  | L2   |
| 2.128 | 40.61 |      |      | 56.00 | 46.00 |        | -5.39  | L2   |
| 3.851 | 40.03 |      |      | 56.00 | 46.00 |        | -5.97  | L2   |

Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- *3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.*
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.
- 5. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

### Note:

*Freq.* = *Emission frequency in KHz* 

- Factor (dB) = cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER (The TRANSIENT LIMITER included 10 dB ATTENUATION)
- Amptd dBuV = Uncorrected Analyzer/Receiver reading + cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER,



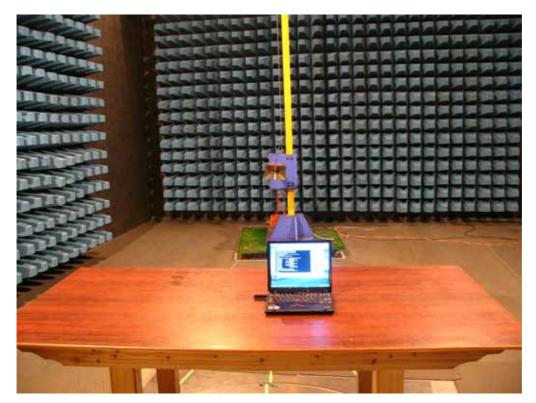
if it > 0.5 dB Limit dBuV = Limit stated in standard Margin dB = Reading in reference to limit Calculation Formula

Margin(dB) = Amptd(dBuV) - Limit(dBuV)

## **Common Mode Conducted Emission**

Not applicable




# **APPENDIX 1** PHOTOGRPHS OF TEST SETUP

# LINE CONDUCTED EMISSION TEST





# **RADIATED EMISSION TEST**

