

# **FCC ID: T5706007**

## **Technical Description :**

The brief circuit description is listed as follows :

The main unit (reader):

- L2, L4 and L6 act as Loop Antennas.
- TC1 ~ TC3, C67 ~ C69 and associated circuit act as Antenna Matching Circuit.
- U4 and associated circuit act as 13.56 MHz RFID Reader.
- Q11 ~ Q13, Q15 ~ Q17 and associated circuit act as RF Control Circuit.
- U6 acts as Sound Controller & MCU.
- U5 acts as RAM.
- U6 acts as ROM.
- U3 acts as Audio Amplifier.
- Q2 ~ Q10 and associated circuit act as LED Driver.
- J1 acts as Audio Line in Jack.
- SW1, SW2, Mode, Down and Up act as Key Panel.
- U1 acts as Voltage Regulator.
- L701 ~ L704 and C701 act as Noise Filter.

For Tags:

- L19 ~ L20 act as Loop Antennas.
- U12 ~18 act as RFID Transponder.

## **Antenna Used :**

Loop antennas has been used.

# W55MID50

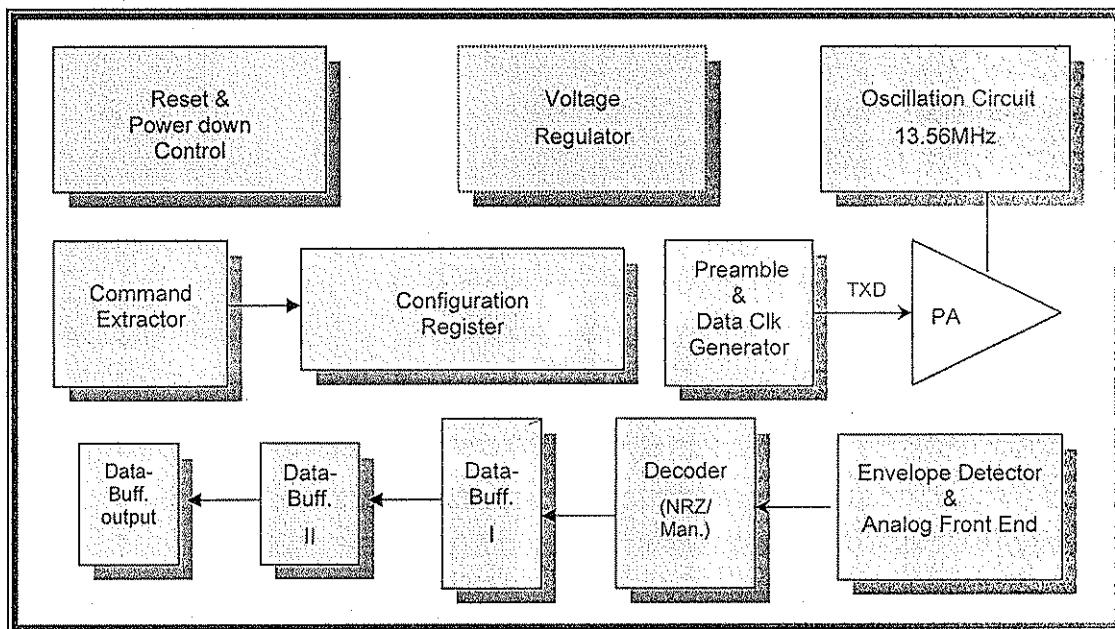


## 1. GENERAL DESCRIPTION

Winbond *MFID<sup>WB</sup>* (Magnetic Field Identification) series is used in all areas of automatic data capture allowing contactless identification of objects using magnetic field. From ticketing to industrial automation and access control, the applications of MFID are burgeoning. In recent years automatic identification procedures have become very popular in many service industries, purchasing and distribution logistics, industry, manufacturing companies and material flow systems.

W55MID50 is one of series in Winbond *MFID<sup>WB</sup>* family that supports multi-functional Reader solution and especially focus on toy, security, and consumer related applications. The applications with Winbond *MFID<sup>WB</sup>* Tag series such as W55MID10 that provides read-only mask ROM-ID version transponder for mass production solution in toy industrial, meanwhile W55MID15 provides the other solution for manufacture option, which is 243 bonding-ID selection transponder. Besides the single tag transponder application, W55MID35 offers multi-transponder recognition function for intelligent and smart toy applications.

W55MID50 provides a wide variety of applications for toy, security, and consumer market meanwhile the W55MID50 is the most cost effective solution on current *MFID<sup>WB</sup>* related application market


## 2. FEATURES

- Magnetic field resonance frequency: 13.56 MHz
- Data clock: 22 ~ 66KHz
- Inductive coupled power supplies for transponder's no battery operation
- On-chip rectifier, voltage limiter, clock extraction, power management,  $\mu$ C interface
- Provides NRZ and Manchester coding data format
- Adjustable 4-level of Reader transmission power selection
- Provides serial and parallel mode  $\mu$ C interface
- $\mu$ C data output rate  $\geq$  1Mbps
- Low power, low voltage operation
- Supports power-down mode  $\leq$  1 $\mu$ A
- Operating distance: 0 ~ 10cm
- Operating voltage: 2.4V ~ 5.5V
- Operating temperature: 0 ~ 70 °C
- Package: Dice form, PDIP-20, SOP-20
- Reference design PC board Size: 2.0 x 2.0cm<sup>2</sup> (without PCB antenna)
- Winbond patented "Automatic Reader Transmission Power Adjustment" for Reader optimum transmission power adjust
- Minimize external components

**W55MID50**



#### 4. BLOCK DIAGRAM





## **5. FUNCTIONAL DESCRIPTION**

### **5.1 Transmission Power Amplifier (PA)**

It provides 4 different selectable transmission power for Reader chip to support *MFID<sup>WB</sup>* Tag's radiation power supply. The external inductor coupling circuit is designed for 13.56MHz magnetic field resonance. The coupled center frequency will depend on equivalent value of external PCB inductor and capacitor.

### **5.2 Envelope Detector & Analog Front End**

The major function of this unit provides *MFID<sup>WB</sup>* Tag's data can be extracted.

### **5.3 Voltage Regulator**

The voltage regulator generates the system needs of device power supply.

### **5.4 Configuration Register**

System configuration register controls the all functional settings of W55MID50 such as Tag data format, Tag detection cycle, output data format, and PA transmission power selection.

### **5.5 Reset and Power-down Control**

The function of system power-down control mode is normally used for power consumption saving.

### **5.6 Crystal Oscillation**

The 13.56MHz system clock generator generates the need of device system clock.

### **5.7 Decoder NRZ/Manchester**

This unit is in charge of Tag data format decoder, which can provide Tag-ID data format decoding of NRZ or Manchester.

### **5.8 Data Buffer and Output**

This unit buffers the Tag-ID data, which is under de-frame processing.



## Introduction

*MFID<sup>WB</sup>* (Magnetic Field Identification) is used in all areas of automatic data capture allowing contactless identification of objects using magnetic field. From ticketing to industrial automation and access control, the applications of MFID are burgeoning. In recent years automatic identification procedures have become very popular in many service industries, purchasing and distribution logistics, industry, manufacturing companies and material flow systems.

W55MID15 is one of Winbond *MFID<sup>WB</sup>* (Magnetic Field Identification) series in *WinRF<sup>WB</sup>*

family that focus on toy and consumer related applications meanwhile W55MID15 provides manufacture bonding-ID transponder. Regarding the *MFID<sup>WB</sup>* Reader series, the W55MID50 supports multi-functional *MFID<sup>WB</sup>* Reader solution. Besides the single transponder application, W55MID35 offers multi-transponder recognition function for intelligent and smart toy applications.

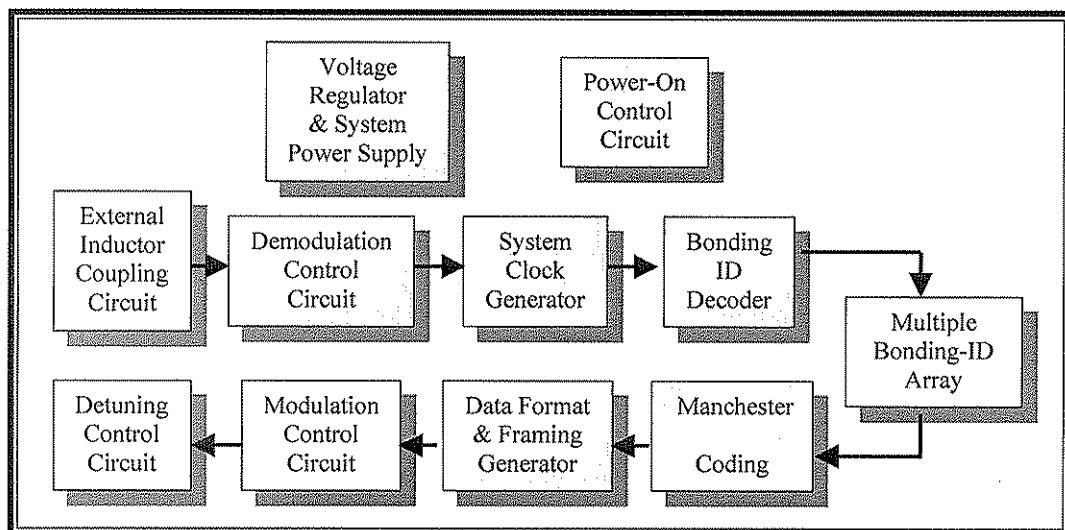
W55MID15 provides total 243 different bonding-IDs in manufacture and 10bit ID length in each ID. That can extremely save customer's design investment in consumer MFID related products.

### 1.1 W55MIDxx Series Selection Guide

W55MID Series Selection Guide

|                    | W55MID15     | W55MID35   | W55MID50        | W55MID20        | W55MID55        |
|--------------------|--------------|------------|-----------------|-----------------|-----------------|
| Category           | Single-tag   | Multi-tag  | Reader          | R/W-tag         | R/W-Reader      |
| Frequency          |              | 13.56MHz   |                 | 13.56MHz        |                 |
| ID type            | Bonding-ID   |            | X               | Programmable-ID | X               |
| # of available IDs | 243 IDs      |            | X               | Infinite        | X               |
| ID length          | 10-bit       |            | X               | 64-bit          | X               |
| Anti-collision     | X            | 5 ~ 8 Tags | X               | 5 ~ 8 Tags      | X               |
| TX power           | X            |            | 4-level option  | X               | 4-level option  |
| uC interface       | X            |            | Serial/Parallel | X               | Serial/Parallel |
| Package            | Dice form    |            | Dice/SOP-20     | Dice form       | Dice/SOP-20     |
| E/S                | Now          |            |                 | Apr. 2003       |                 |
| Production         | Jan./E, 2003 |            |                 | May, 2003       |                 |




## Features

### 2.1 W55MID15 Features List

- Magnetic field resonance frequency: 13.56MHz
- Data clock: 32KHz
- Read-only bonding-ID transponder
- Inductive coupled power supply for no battery operation
- On-chip rectifier, voltage limiter, clock extraction
- 10bit bonding-ID length
- Provides Manchester coding data format
- RS0, RS1, RS2, RS3, and RS4 the 3-state bonding finger for the total 243 bonding-ID option in manufacture
- Low power, low voltage operation
- Operating distance: 0 ~ 5cm
- Operating temperature: 0 ~ 70 °C
- Package: Dice form
- Reference design PC board Size: 1.0x1.0cm<sup>2</sup> (with PCB antenna)
- Winbond patented "3-state Bonding Finger" for multiple bonding-ID option
- Minimize external component: capacitor and PCB antenna only

## Architecture Overview

### 3.1 W55MID15 System Block Diagram



### 3.2 W55MID15 System Functional Description

### External Inductor Coupling Circuit

The external inductor coupling circuit is designed for 13.56MHz magnetic field resonance. The coupled center frequency will depend on equivalent inductor of external PCB inductor and a paralleled capacitor.

## **Voltage Regulator & System Power Supply**

The voltage regulator generates the need of device power supply.

## Power-On Control Circuit

System power-on control circuit initiates the device to get into initial state.

### Demodulation Control Circuit

The demodulation control circuit demodulates the signal of command, which is magnetic field coupling from W55MID50 *MFID<sup>WB</sup>* Reader system.



## System Clock Generator

The system clock generator generates the need of device system clock.

## Bonding-ID Decoder

The memory array decoder circuit decodes the mapping location of memory array, which indicates by external RS0, RS1, RS2, RS3, and RS4 the 3-state Bonding Finger (Winbond patented).

## Multiple Bonding-ID Arrays

The multiple Bonding-IDs array provides total up to 243 different bonding-ID and 10bit in each ID.

## Data Format and Framing Generator

The data format and framing generator is in charge of the entire bonding-ID and command data into a Winbond defined *MFID<sup>WB</sup>* tag format.

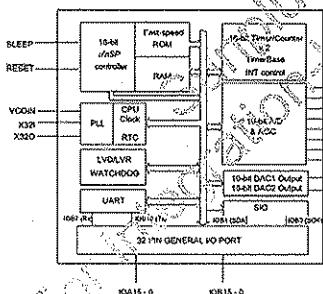
## Modulation Control Circuit

The modulation control circuit modulates the Winbond defined *MFID<sup>WB</sup>* transponder format into the magnetic field resonance.

## 3.3 W55MID15 Pad Functional Description

| Symbol | Pad No. | I/O    | Pad Functional Description                   |
|--------|---------|--------|----------------------------------------------|
| NC     | 1       | --     | Testing only, no connection                  |
| RS4    | 2       | I      | 3-state bonding finger                       |
| RS3    | 3       | I      | 3-state bonding finger                       |
| RS2    | 4       | I      | 3-state bonding finger                       |
| RS1    | 5       | I      | 3-state bonding finger                       |
| RS0    | 6       | I      | 3-state bonding finger                       |
| VSS    | 7       | Ground | Ground return path                           |
| COIL0  | 8       | I/O    | Coupling energy input and customer-ID output |
| COIL1  | 9       | I/O    | Coupling energy input and customer-ID output |
| NC     | 10      | --     | Testing only, no connection                  |
| VDD    | 11      | Power  | Power path                                   |

|                                         |    |
|-----------------------------------------|----|
| 9. PACKAGE/PAD LOCATIONS .....          | 21 |
| 9.1. PAD ASSIGNMENT AND LOCATIONS ..... | 21 |
| 9.2. PACKAGE INFORMATION .....          | 21 |
| 9.3. ORDERING INFORMATION .....         | 25 |
| 10. DISCLAIMER .....                    | 26 |
| 11. REVISION HISTORY .....              | 27 |


For Integration  
Sunplus Confidential  
Integration Linkage Technology Ltd.  
Use Only

## 16-BIT SOUND CONTROLLER WITH 24K X 16 ROM

### 1. GENERAL DESCRIPTION

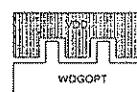
The SPCE040A, a 16-bit architecture product, carries the newest 16-bit microprocessor,  $\mu$ /nSP™ (pronounced as *micro-n-SP*), developed by SUNPLUS Technology. This high processing speed assures the  $\mu$ /nSP™ is capable of handling complex digital signal processes easily and rapidly. Therefore, the SPCE040A is applicable to the areas of digital sound process and voice recognition. The operating voltage of 2.4V through 3.6V and speed of 0.32MHz through 49.152MHz yield the SPCE040A to be easily used in varieties of applications. The memory capacity includes 24K-word fast-speed ROM plus a 2K-word working SRAM. Other features include 32 programmable multi-functional I/Os, two 16-bit timers/counters, 32768Hz Real Time Clock, Low Voltage Reset/Detection, eight channels 10-bit ADC (one channel built-in MIC amplifier with auto gain controller), 10-bit DAC output and many others.

### 2. BLOCK DIAGRAM



### 3. FEATURES

- 16-bit  $\mu$ /nSP™ microprocessor
- CPU clock: 0.32MHz - 49.152MHz
- Operating voltage: 3.0V - 3.6V @CPU clock = 49.152MHz  
Operating voltage: 2.4V - 3.6V @CPU clock <=40.96MHz
- IO PortA & B operating voltage: 2.4V - 5.5V
- 24K-word fast-speed ROM
- 2K-word working SRAM
- Software-based audio processing
- Crystal Resonator
- Standby mode (Clock Stop mode) for power savings,  
Max. 2.014  $\mu$ A @ VDD = 3.6V
- Two 16-bit timers/counters
- Two 10-bit DAC outputs
- 32 general I/Os (bit programmable)
- 14 INT sources with two priority levels
- Key wakeup function (IOA0 - 7)
- Approx. 158 sec speech @ 2.4Kbit/sec with SPCM\_S24D
- PLL feature for system clock
- 32768Hz Real Time Clock (RTC)
- Eight channels 10-bit AD converter
- ADC external top reference voltage
- 2.0V voltage regulator output, 5mA of driving capability
- Serial Interface I/O (SIO)
- Built-in microphone amplifier and AGC function
- UART receiver and transmitter (full duplex)
- Low voltage reset and low voltage detection
- Watchdog enable (bonding option)

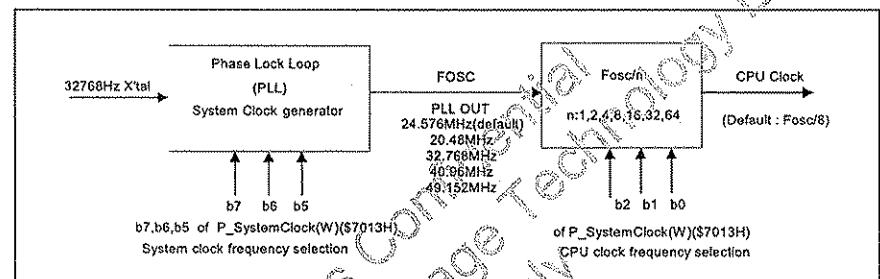

### 4. APPLICATION FIELD

- Voice recognition products
- Intelligent interactive talking toys
- Advanced educational toys
- Kids learning products
- Kids storybook
- General speech synthesizer
- Long duration audio products
- Recording / playback products

**5. SIGNAL DESCRIPTIONS**

| Mnemonic    | PIN No.                 | Type | Description                                                                                                  |
|-------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------|
| IOA[15:8]   | 46 - 39                 | I/O  | IOA[15:8]: bi-directional I/O ports                                                                          |
| IOA[7:0]    | 34 - 27                 | I/O  | IOA[7:0] can be software programmed to wakeup I/O pins<br>IOA[6:0] can be optioned as ADC Line-in input      |
| IOB [15:11] | 50 - 54                 | I/O  | IOB [15:11]: bi-directional I/O ports                                                                        |
| IOB 10      | 57                      | I/O  | IOB10 can also be selected as UART Transmitter (Tx).                                                         |
| IOB 9       | 58                      | I/O  | IOB9 can also be Multi-duty cycle output of TimerB (BPWMO).                                                  |
| IOB 8       | 59                      | I/O  | IOB8 can also be Multi-duty cycle output of TimerA (APWMO).                                                  |
| IOB 7       | 60                      | I/O  | IOB7 can also be selected as UART receiver (Rx).                                                             |
| IOB 6       | 61                      | I/O  | IOB6 is a bi-directional I/O ports.                                                                          |
| IOB 5       | 62                      | I/O  | IOB5 can also be selected as feedback signal with EXT2.                                                      |
| IOB 4       | 63                      | I/O  | IOB4 can also be selected as feedback signal with EXT1.                                                      |
| IOB 3       | 64                      | I/O  | IOB3 can also be selected as an external interrupt input pin (EXT2)(Negative-edge Triggered).                |
| IOB 2       | 65                      | I/O  | IOB2 can also be selected as an external interrupt input pin (EXT1)(Negative-edge Triggered).                |
| IOB 1       | 66                      | I/O  | IOB1 can also be selected as a serial interface data. (SDA)                                                  |
| IOB 0       | 67                      | I/O  | IOB0 can also be selected as a serial interface clock (SCK)                                                  |
| DAC1        | 12                      | O    | Audio DAC1 output                                                                                            |
| DAC2        | 13                      | O    | Audio DAC2 output                                                                                            |
| X32I        | 2                       | I    | Oscillator Crystal input                                                                                     |
| X32O        | 1                       | O    | Oscillator Crystal output                                                                                    |
| VCOIN       | 70                      | I    | RC filter connection for PLL                                                                                 |
| AGC         | 16                      | I    | AGC control pin                                                                                              |
| MICN        | 19                      | I    | Microphone differential input (negative)                                                                     |
| MICP        | 21                      | I    | Microphone differential input (positive)                                                                     |
| V2VREF      | 14                      | O    | 2.0V output voltage, 5.0mA of driving capability (can be used as external ADC Line_IN top reference voltage) |
| MICOUT      | 18                      | O    | Microphone 1 <sup>st</sup> amplifier output                                                                  |
| OPI         | 17                      | I    | Microphone 2 <sup>nd</sup> amplifier input                                                                   |
| VEXTREF     | 23                      | I    | ADC Line_IN top external reference voltage input pin                                                         |
| VMIC        | 25                      | O    | Microphone power supply                                                                                      |
| VADREF      | 22                      | O    | AD reference voltage (generated by internal AD converter).                                                   |
| VDD         | 5, 69                   |      | Positive supply for logic                                                                                    |
| VSS         | 8, 10, 26, 71           | I    | Ground reference for logic and I/O pins                                                                      |
| VDDIO       | 37, 38, 56              | I    | Positive supply for I/O pins                                                                                 |
| VSSIO       | 35, 36, 48              | I    | Ground reference for I/O pins                                                                                |
| AVDD        | 24                      | I    | Positive supply for analog circuit including ADC, DAC and 2.0V regulator                                     |
| AVSS        | 15                      | I    | Ground reference for analog circuit including ADC, DAC and 2.0V regulator                                    |
| RESET       | 68                      | I    | An active low reset to the chip                                                                              |
| SLEEP       | 49                      | O    | Sleep mode (active high)                                                                                     |
| TEST        | 3                       | I    | Connected to high for test mode, normally connected to GND (test mode disabled) or unconnected.              |
| N/C         | 7, 9, 11, 20,<br>47, 55 | I    | Not used.                                                                                                    |
| N/C         | 4                       | I    | Do NOT bonding and connect this pin, if user binding this pin, IC will not work                              |
| WDGOPT*     | 6                       | I    | Connected to high for watchdog disabled, unconnected for watchdog enabled.                                   |

Note\*: WDGOPT is the watchdog option pin, selected by bonding option. Remain WDGOPT float (unconnected to VDD) to enable the watchdog. In contrast, connecting WDGOPT to VDD will disable watchdog. The reason of placing WDGOPT adjacent to VDD is to facilitate connection between VDD and WDGOPT when disabling watchdog is necessary. The layout of WDGOPT option pin is drawn in the right.



**6. FUNCTIONAL DESCRIPTIONS**
**6.1. CPU**

The SPCE040A is equipped with a 16-bit  $\mu$ nSP™, the newest 16-bit microprocessor by SUNPLUS and pronounced as *micro-n-SP*. Eight registers are involved in  $\mu$ nSP™, R1 - R4 (General-purpose registers), PC (Program Counter), SP (Stack Pointer), Base Pointer (BP) and SR (Segment Register). The Interrupts include three FIQs (Fast Interrupt Request) and eight IRQs (Interrupt Request), plus one software-interrupt, BREAK.

Moreover, a high performance hardware multiplier with the capability of FIR filter is also built in to reduce the software multiplication loading.

**6.2. Memory**
**6.2.1. SRAM**

The amount of SRAM is 2K-word (including Stack), ranged from \$0000 through \$07FF with access speed of two CPU clock cycles.


**6.2.2. ROM**

The SPCE040A provides a 24K-word fast-speed ROM with access speed of two CPU clock cycles.

generated in every 0.5 seconds, time can be traced by the numbers of RTC occurrence. In addition, SPCE040A supports 32768Hz oscillator in strong mode and auto\_weak mode. In strong mode, 32768Hz OSC always runs at the highest power consumption. In auto\_weak mode, however, it runs in strong mode for the first 7.5 seconds and changes back to auto\_weak mode automatically to save powers.

**6.3. PLL, Clock, Power Mode**
**6.3.1. PLL (Phase Lock Loop)**

The purpose of PLL is to provide a base frequency (32768Hz) and to pump the frequency from 20.48MHz to 49.152MHz for system clock (Fosc). The default PLL frequency is 24.576MHz.

**6.3.1.1. System clock**

Basically, the system clock is provided by PLL and programmed by the Port\_SystemClock (W) to determine the frequency of clock for system. The default system clock Fosc = 24.576MHz and CPU clock is Fosc/8 if not specified. The initial CPU clock is Fosc/8 after system wakes up and to be adjusted to desired CPU clock by programming the Port\_SystemClock (W).

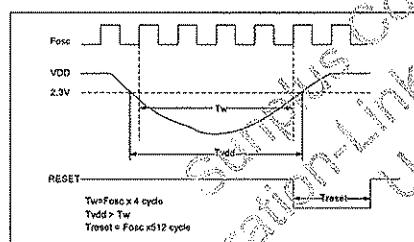
**6.3.1.2. 32768Hz RTC**

The Real Time Clock (RTC) is normally used in watch, clock or other time related products. A 2Hz-RTC (1/2 second) function is loaded in SPCE040A. The RTC counts the timing as well as to wake CPU up whenever RTC occurs. Since the RTC is

generated in every 0.5 seconds, time can be traced by the numbers of RTC occurrence. In addition, SPCE040A supports 32768Hz oscillator in strong mode and auto\_weak mode. In strong mode, 32768Hz OSC always runs at the highest power consumption. In auto\_weak mode, however, it runs in strong mode for the first 7.5 seconds and changes back to auto\_weak mode automatically to save powers.

**6.4. Power Savings Mode**

The SPCE040A also offers a power savings mode (standby mode) for low power application needs. To enter standby mode, the desired key wakeup port (IOA[7:0]) must be configured to input first. And read the Port\_IOA\_Latch(R) to latch the IOA state before entering the standby mode. Also remember to enable the corresponding interrupt source(s) for wakeup. After that, stop the CPU clock by writing the STOP CLOCK Register (b0-b2 of Port\_SystemClock (W)) to enter standby mode. In such mode, SRAM and I/Os remain in the previous states till CPU being awoken. The wakeup sources in SPCE040A include Port IOA7 - 0 and IRQ1 - IRQ6. After SPCE040A is awoken, the CPU will continue to execute the program. Programmer can also enable or disable the 32768Hz OSC when CPU is in standby mode.


### 6.5. Low Voltage Detection and Low Voltage Reset

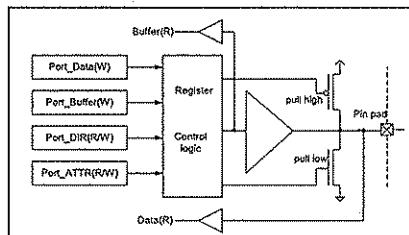
#### 6.5.1. Low voltage detection (LVD)

The Low Voltage Detection (LVD) reports the circumstance of present voltage. There are four LVD levels to be selected: 2.5V, 2.9V, and 3.3V. These levels can be programmed via `Port_LVD_Ctrl (W)`. As an example, suppose LVD is given to 2.9V. When the voltage drops below 2.9V, the b15 of `Port_LVD_Ctrl` is read as HIGH. In such state, program can be designed to react to this condition.

#### 6.5.2. Low voltage reset

In addition to the LVD, the SPCE040A has another important function, Low Voltage Reset (LVR). With the LVR function, a reset signal is generated to reset system when the operating voltage drops below 2.3V for 4 consecutive clock cycles. Without LVR, the CPU becomes unstable and malfunction when the operating voltage drops below 2.3V. The LVR will reset all functions to the initial operational (stable) states when the voltage drops below 2.3V. A LVR timing diagram is given as follows:




#### 6.6. Interrupt

The SPCE040A has 14 interrupt sources, grouped into two types, FIQ (Fast Interrupt Request) and IRQ (Interrupt request). The priority of FIQ is higher than IRQ. FIQ is the high-priority interrupt while IRQ is the low-priority one. An IRQ can be interrupted by a FIQ, but not by another IRQ. A FIQ cannot be interrupted by any other interrupt sources.

| Interrupt Source   | Interrupt Name   | Priority  |
|--------------------|------------------|-----------|
| Fosc/1024          | FIQ_PWM/IRQ0_PWM | High(FIQ) |
| Timer A            | FIQ_TMA/IRQ1_TMA | High(FIQ) |
| Timer B            | FIQ_TMB/IRQ2_TMB | High(FIQ) |
| EXT2               | IRQ3_EXT2        | Low       |
| EXT1               | IRQ3_EXT1        | Low       |
| Key change wakeup  | IRQ3_KEY         | Low       |
| 4096Hz             | IRQ4_4KHz        | Low       |
| 2048Hz             | IRQ4_2KHz        | Low       |
| 1024Hz             | IRQ4_1KHz        | Low       |
| 4Hz                | IRQ5_4Hz         | Low       |
| 2Hz                | IRQ5_2Hz         | Low       |
| Time-base 1        | IRQ6_TMB1        | Low       |
| Time-base 2        | IRQ6_TMB2        | Low       |
| UART(TRDY or RxDY) | UART IRQ         | Low       |

#### 6.7. I/O

Two I/O ports are built in SPCE040A, PortA and PortB. The PortA is an ordinary I/O with programmable wakeup capability. In addition to the regular I/O function, the PortB can also perform some special functions in certain pins. Suppose operating voltage is running at 3.6V (VDD) and VDDIO (power for I/O) operates from 3.6V (VDD) to 5.5V. In such condition, the I/O pad is capable of operating from 0V through VDDIO. The following diagram is an I/O schematic.



Although data can be written into the same register through `Port_Data` and `Port_Buffer`, they can be read from different places, `Buffer (R)` and `Data (R)`. The I/OA [7:0] is the key wakeup port. To activate key wakeup function, latch data on `PORT_IOA_Latch` and enable the key wakeup function. Wakeup is triggered when the PortA state is different from at the time latched. In addition to an ordinary I/O port, PortB carries some special functions. A summary of PortB special functions is listed as follows:

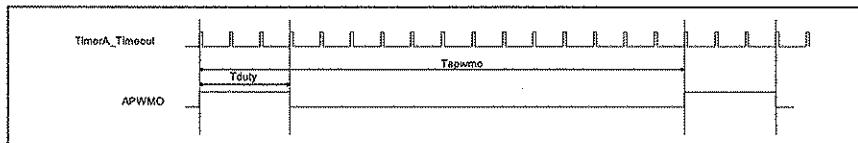
#### Special function in PortB

| PortB | Special Function | Function Description                                                                | Note                           |
|-------|------------------|-------------------------------------------------------------------------------------|--------------------------------|
| IOB0  | SCK              | Serial Interface clock                                                              | Refer to see SIO section       |
| IOB1  | SDA              | Serial Interface data                                                               | Refer to see SIO section       |
| IOB2  | EXT1             | External interrupt source 1(Negative-edge Triggered)                                | IOB2 set as input mode         |
|       | Feedback Output1 | Works with IOB4 by adding a RC circuit between them to get an OSC to EXT1 interrupt | IOB2 set as inverted output    |
| IOB3  | EXT2             | External interrupt source 2(Negative-edge Triggered)                                | IOB3 set as input mode         |
|       | Feedback Output2 | Works with IOB5 by adding a RC circuit between them to get an OSC to EXT2 interrupt | IOB3 set as inverted output    |
| IOB4  | Feedback Input1  |                                                                                     |                                |
| IOB5  | Feedback Input2  |                                                                                     |                                |
| IOB7  | Rx               | UART Receiver                                                                       | Refer to see UART section      |
| IOB8  | APWMO            | TimerA PWM output                                                                   | Refer to Timer/Counter section |
| IOB9  | BPWMO            | TimerB PWM output                                                                   | Refer to Timer/Counter section |
| IOB10 | Tx               | UART Transmitter                                                                    | Refer to UART section          |

Default state: Pull Low

PWM: Pulse Width Modulation

Refer to the above table, the configuration of IOB2, IOB3, IOB4 and IOB5 involves feedback function in which an OSC frequency can be obtained from EXT1 (EXT2) by simply adding a RC circuit between IOB2 (IOB3) and IOB4 (IOB5).


#### 6.8. Timer/Counter

The SPCE040A provides two 16-bit timers/counters, TimerA and TimerB. The TimerA is called a universal counter. TimerB is a general-purpose counter. The clock source of TimerA comes from the combination of clock source A and clock source B. In TimerB, the clock source is given from source C. When timer overflows, an INT signal is sent to CPU to generate a time-out signal.

| Clock of Source A | Clock of Source B | Clock of Source C |
|-------------------|-------------------|-------------------|
| Fosc/2            | 2048Hz            | Fosc/2            |
| Fosc/256          | 1024Hz            | Fosc/256          |
| 32768Hz           | 256Hz             | 32768Hz           |
| 8192Hz            | TMB1              | 8192Hz            |
| 4096Hz            | 4Hz               | 4096Hz            |
| 1                 | 2Hz               | 1                 |
| 0                 | 1                 | 0                 |
| EXT1              | EXT2              | EXT1              |

Initially, write a value of N into a timer and select a desired clock source, timer will start counting from N, N+1, N+2, ... through FFFF. An INT (TimerA/TimerB) signal is generated at the next clock after reaching "FFFF" and the INT signal is transmitted to INT controller for further processing. At the same time, N will be reloaded into timer and start all over again. The clock source A is a high frequency source and clock source B is a low frequency source. The combination of clock source A and B provides a variety of speeds to TimerA. A "1" represents pass signal and not gating. In contrast, "0" indicates deactivating timer. The EXT1 and EXT2 are the external clock sources. Moreover, counter can generate time-out signal for input clock source to a four bits (16 levels) PWM pulse width counter. A variety of clock duration can be generated and exported from IOB8 (APWMO) and IOB9 (BPWMO).

The following example is a 3/16-duration cycle. The APWMO waveform is made by selecting a pulse width through `Port_TimerA_Ctrl (W) [9:6]`. As a result, each 16 cycles will generate a pulse width defined in control port. These PWM signals can be applied for controlling the speed of motor or other devices.



Generally speaking, the clock source A and C are fast clock sources and source B comes from RTC system (32768Hz). Therefore, clock source B can be utilized as a precise counter for time counting, e.g., the 2Hz clock can be used for real time counting.

#### 6.8.1. Timebase

Timebase, generated by 32768Hz, is a combination of frequency selections. The outputs of timebase block are named to TMB1 and TMB2. TMB1 is frequency for TimerA (Clock source B). The TMB1 and TMB2 are the sources for interrupt (IRQ6). Furthermore, timebases generates additional 2Hz to 4096Hz interrupt sources (IRQ4 and IRQ5) for Real-Time-Clock (RTC).

| TMB2           | TMB1         |
|----------------|--------------|
| 128Hz          | 8Hz          |
| 256Hz          | 16Hz         |
| 512Hz          | 32Hz         |
| 1024Hz         | 64Hz         |
| Default: 128Hz | Default: 8Hz |

#### 6.9. Sleep, Wakeup and Watchdog

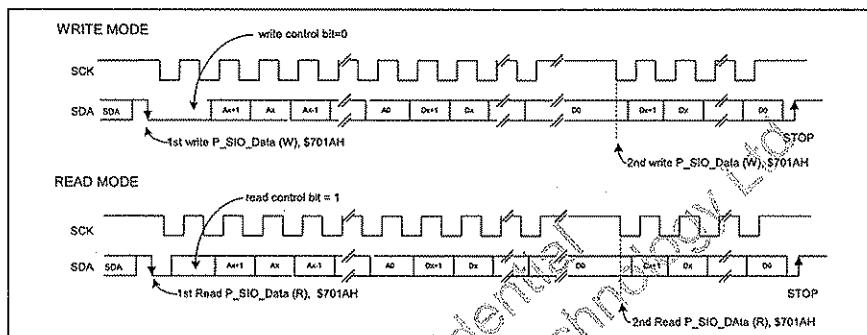
##### 6.9.1. Wakeup and sleep

1) **Sleep:** After power-on reset, IC starts running until a sleep command occurs. When a sleep command is accepted, IC will turn the system clock (PLL) off. After all, it enters sleep mode.

2) **Wakeup:** CPU waking up from sleep mode requires a wakeup signal to turn the system clock (PLL) on. The IRQ signal makes CPU to complete the wakeup process and initialization. The key wakeup and interrupt sources (IRQ1 ~ IRQ6) can be used for wakeup sources.

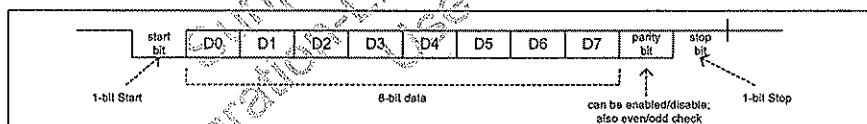
#### 6.9.2. Watchdog

The purpose of watchdog is to monitor if the system operates normally. Within a certain period, watchdog must be cleared. If watchdog is not cleared, CPU assumes the program has been running in an abnormal condition. As a result, the CPU will reset the system to the initial state and start running the program all over again. The watchdog function can be removed by bonding option. In SPCE040A, the clear period is 0.75 seconds. If watchdog is cleared within each 0.75 seconds, the system will not be reset. To clear watchdog, simply write "0bxxxx xxxx xxxx xx01" to Port\_Watchdog\_Clear(W). The content written to Port\_Watchdog\_Clear (W) for watchdog clearance must be exactly the same as the one illustrated above (0bxxxx xxxx xxxx xx01). Other values given to the Port\_Watchdog\_Clear (W) for watchdog clearance may end up with system reset. The watchdog function remains enabled during standby mode if the 32768Hz is turned on.


#### 6.10. ADC (Analog to Digital Converter) / DAC

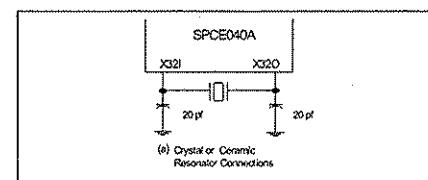
The SPCE040A has eight channels 10-bit ADC (Analog to Digital Converter). The function of an ADC is to convert analog signal to digital signal, e.g. a voltage level into a digital word. The eight channels of ADC can be seven channels of line-in from IOA [6:0] or one channel microphone (MIC) input through amplifier and AGC controller. The MIC amplifier circuit is capable of reducing common mode noise by transmitting signals through differential MIC inputs (MICN, MICP). Moreover, an external resistor can be applied to adjust microphone gain and time of AGC operating. The AD needs to select source of line-in before conversion. The ADC is able to choose the external or internal (=AVDD) top reference voltage. If constant voltage source is unavailable, SPCE040A offers a constant voltage 2.0V with 5.0mA driving ability with a capacitor connected.

The SPCE040A has two 10-bit D/A with 2.0mA or 3.0mA driving current for audio outputs, DAC1 and DAC2.


#### 6.11. Serial interface I/O (SIO)

Serial interface I/O offers a one-bit serial interface for communication. This serial interface is capable of transmitting or receiving data via two I/O pins, IOB0 (SCK) and IOB1 (SDA).




#### 6.12. UART

UART block provides a full-duplex standard Interface that facilitates the communication with other devices. With this interface, SPCE can transmit and receive simultaneously. The maximum baud-rate can be up to 115200bps. This function can be accomplished by using PortB and Interrupt (UART IRQ). The Rx and Tx of UART are shared with IOB7 and IOB10. When SPCE040A receives and/or transmits a frame of data, the b7 (RxRDY) and/or b6 (TxRDY) in Port\_UART\_Command2(R) will be set to "1" and the UART IRQ is activated at the same time.



#### 6.13. Audio Algorithm

The following speech types can be used in SPCE040A: PCM, LOG PCM, SACM\_A3200, SACM\_S240, SACM\_S480, SACM\_S530, SACM\_S720, SACM\_A1600, SACM\_A2000, and SACM\_A2000\_DVR (Digital Voice Recorder). For melody synthesis, the SPCE040A supports SACM\_MS01 (FM) and SACM\_MS02 (wave-table) synthesizers.



#### 6.14. Bonding Option Summary

The SPCE040A has the following bonding options:

- 1) Watchdog function



凌陽科技  
SUNPLUS

DATA  
RAM

# **SPRS256B**

---

## **256K-bit Serial RAM**

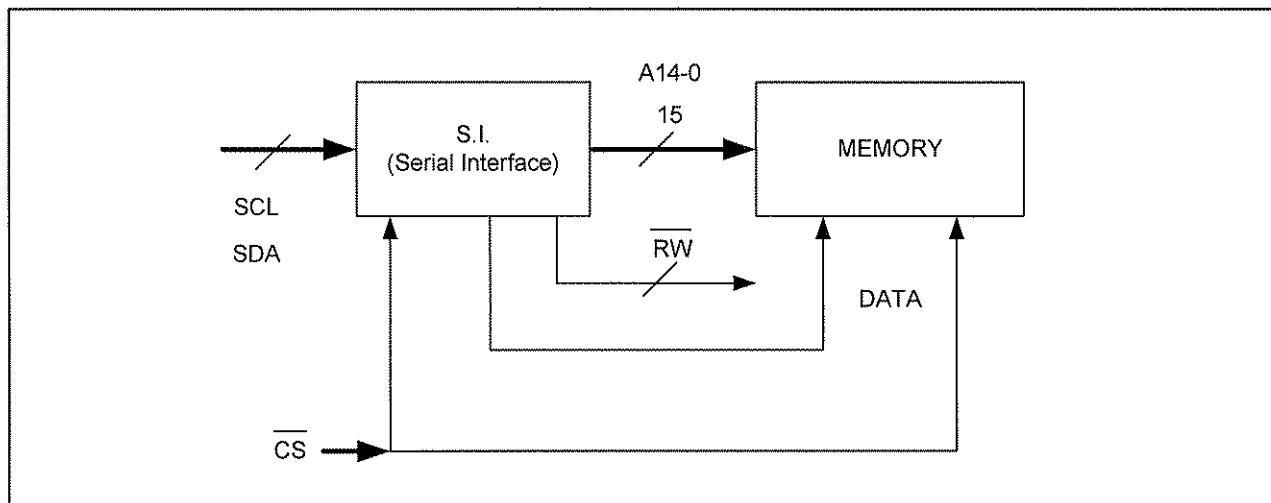
SEP. 20, 2001

Version 1.0

---

SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provided by SUNPLUS TECHNOLOGY CO. is believed to be accurate and reliable. However, SUNPLUS TECHNOLOGY CO. makes no warranty for any errors which may appear in this document. Contact SUNPLUS TECHNOLOGY CO. to obtain the latest version of device specifications before placing your order. No responsibility is assumed by SUNPLUS TECHNOLOGY CO. for any infringement of patent or other rights of third parties which may result from its use. In addition, SUNPLUS products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Sunplus.

## 256K-BIT SERIAL RAM


### 1. GENERAL DESCRIPTION

The SPRS256B is a low power 256K-bit serial static RAM. It is ideal for applications requiring long operating time or non-volatile storage with back-up batteries. The output port is a 3-state output that allows easy expansion of memory capacity.

### 2. FEATURES

- Fast Access time ---- 250ns @ VDD = 3.0V
- Low supply current ---- operation:  
250 $\mu$ A (Typ) @ VDD = 3.0V and  $F_{SCL}$  = 2.0MHz  
Standby: 5 $\mu$ A (Typ)
- Completely static ---- two-pin access
- Single power supply ---- 2.4V to 3.6V
- Non-volatile storage with back-up batteries

### 3. BLOCK DIAGRAM



#### 4. SIGNAL DESCRIPTIONS

| Mnemonic | PIN No. | Type | Description                |
|----------|---------|------|----------------------------|
| CS       | 1       | I    | Chip select, Low Active    |
| SCL      | 2       | I    | Serial clock input         |
| SDA      | 3       | I/O  | Serial Input / Output data |
| VSS      | 4       | I    | Ground                     |
| VDD      | 5       | I    | Power input                |
| LP       | 6       | I/O  | Must be floating           |

#### 5. ELECTRICAL SPECIFICATIONS

##### 5.1. Absolute Maximum Ratings

| Characteristics       | Symbol    | Ratings               |
|-----------------------|-----------|-----------------------|
| DC Supply Voltage     | $V_+$     | < 4.0V                |
| Input Voltage Range   | $V_{IN}$  | -0.5V to $V_+ + 0.5V$ |
| Operating Temperature | $T_A$     | 0°C to +60°C          |
| Storage Temperature   | $T_{STO}$ | -50°C to +150°C       |

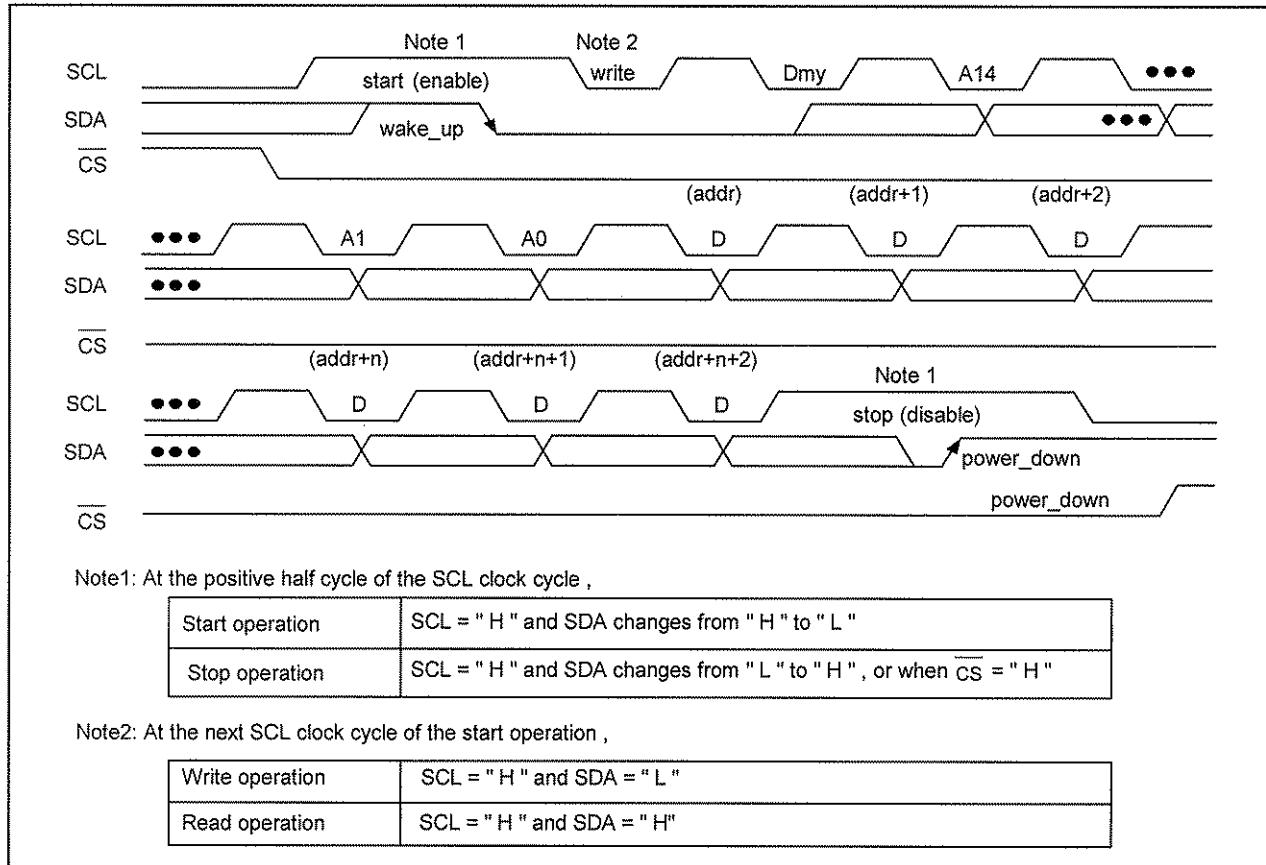
Note: Stresses beyond those given in the Absolute Maximum Ratings table may cause operational errors or damage to the device. For normal operational conditions see AC/DC Electrical Characteristics.

##### 5.2. DC Characteristics (VDD = 2.4V - 3.6V, $T_A$ = 0°C to 60°C)

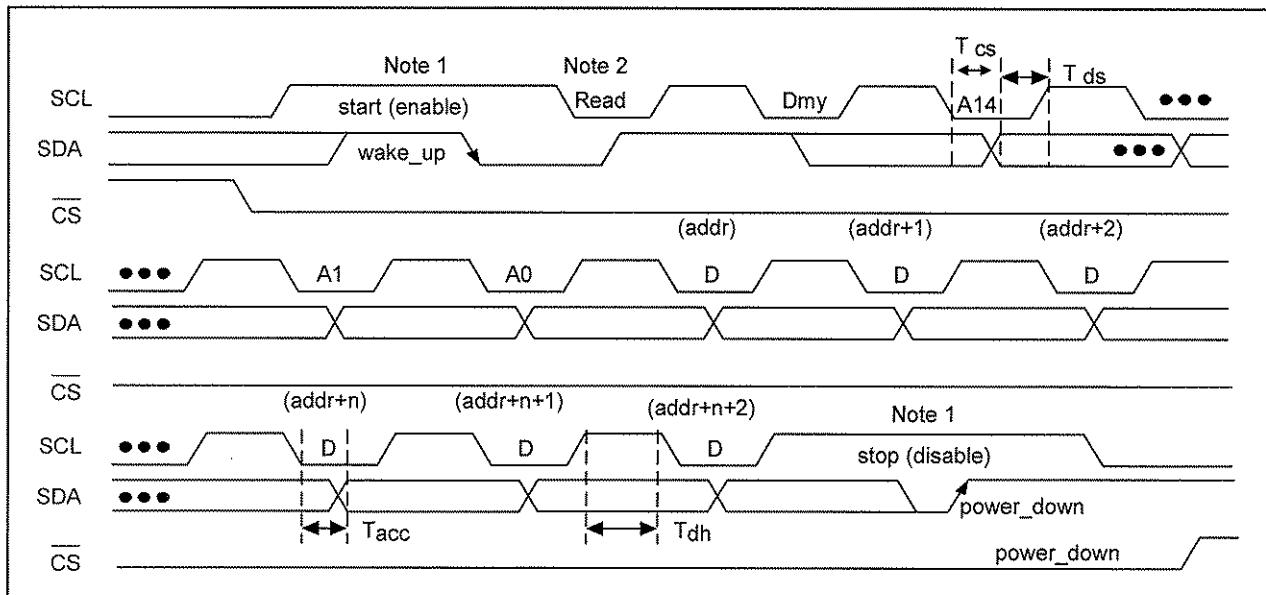
| Characteristics     | Symbol     | Limit |      |      | Unit    | Test Condition                      |
|---------------------|------------|-------|------|------|---------|-------------------------------------|
|                     |            | Min.  | Typ. | Max. |         |                                     |
| Input Low Current   | $I_{IL}$   | -1.0  | -    | 1.0  | $\mu A$ | $V_{IN} = 0$ to VDD                 |
| Output Low Current  | $I_{OL}$   | -1.0  | -    | 1.0  | $\mu A$ | Chip disable                        |
| Output High Voltage | $V_{OH}$   | 2.0   | -    | -    | V       | $I_{OH} = 100\mu A$                 |
| Output Low Voltage  | $V_{OL}$   | -     | -    | 0.4  | V       | $I_{OL} = 400\mu A$                 |
| Standby Current     | $I_{STBY}$ | -     | 5.0  | -    | $\mu A$ | Chip disable                        |
| Operating Current   | $I_{DD}$   | -     | 0.1  | 1.0  | mA      | $f_{SCL} = 2.0\text{MHz}$ , no load |

##### 5.3. AC Characteristics (VDD = 2.4V - 3.6V, $T_A$ = 0°C to 60°C)

Test Condition  $V_{IH} = VDD$ ,  $V_{IL} = 0V$


Input Rise and Fall Times = 10ns

I/O Timing Reference Level = 1.5V


Output Load:  $C_{LOAD} = 50\text{pF}$

| Characteristics | Symbol    | Limit |      |       | Unit | Test Condition |
|-----------------|-----------|-------|------|-------|------|----------------|
|                 |           | Min.  | Typ. | Max.  |      |                |
| SCL setup time  | $T_{CS}$  | 100   | -    | -     | ns   |                |
| SDA setup time  | $T_{DS}$  | 100   | -    | -     | ns   |                |
| SDA hold time   | $T_{DH}$  | 10    | -    | -     | ns   |                |
| Access time     | $T_{ACC}$ | -     | -    | 700   | ns   | $VDD = 2.4V$   |
|                 |           |       |      | 250   | ns   | $VDD = 3.0V$   |
| SCL frequency   | $f_C$     | -     | -    | 500K  | Hz   | $VDD = 2.4V$   |
|                 |           | -     | -    | 2000K | Hz   | $VDD = 3.0V$   |

#### 5.4. Write Mode



#### 5.5. Read Mode





**SUNPLUS**

DATA SHEET

**SPR23L822A**

**8M-Bit Serial ROM**

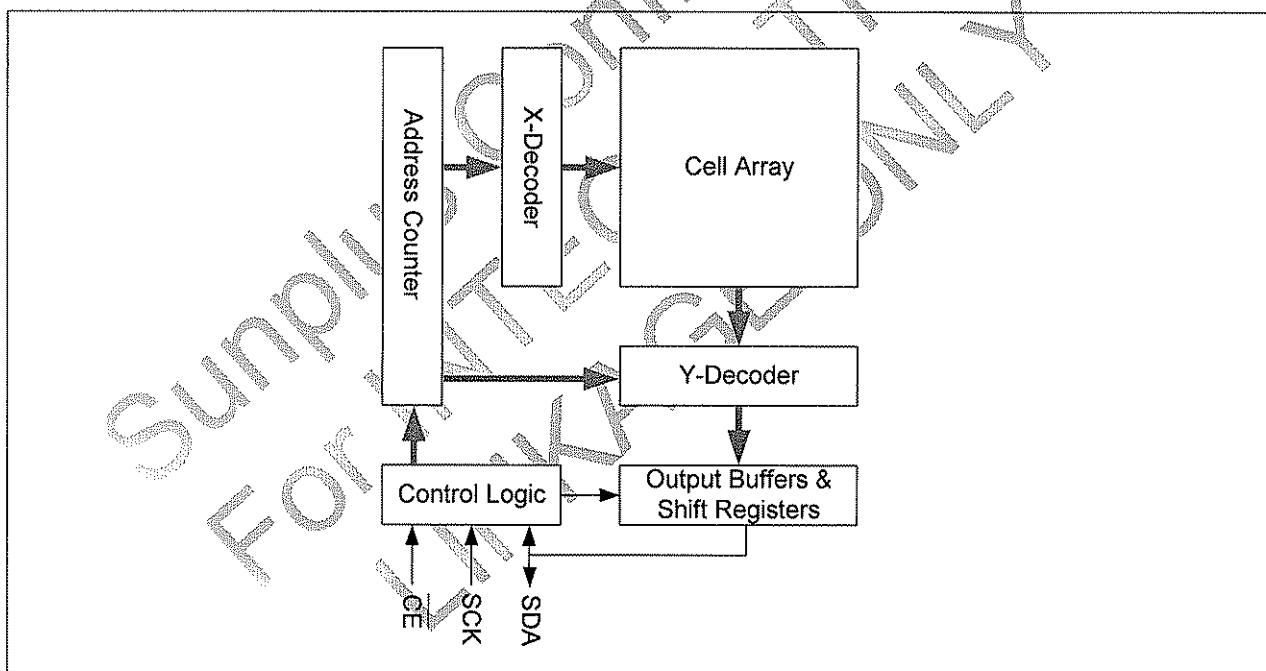
For Infineon  
Linkage Only  
Confidential

***Preliminary***

**MAR. 25, 2003**

SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provided by SUNPLUS TECHNOLOGY CO. is believed to be accurate and reliable. However, SUNPLUS TECHNOLOGY CO. makes no warranty for any errors which may appear in this document. Contact SUNPLUS TECHNOLOGY CO. to obtain the latest version of device specifications before placing your order. No responsibility is assumed by SUNPLUS TECHNOLOGY CO. for any infringement of patent or other rights of third parties which may result from its use. In addition, SUNPLUS products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Sunplus.

## 8M-BIT SERIAL ROM (8 BIT OUTPUT)


### 1. GENERAL DESCRIPTION

This device is a mask programmable Serial ROM fabricated by advance CMOS technology. It is organized as 1M x 8b. CE pin polarity can be set as high active or low active by mask option and is selected from confirm sheet. This device operates with low power supply voltage, 2.4V - 3.6V and can be accessed with only 2 pins (SDA & SCK), which assure extremely easy operation.

### 2. FEATURES

- Bit organization
  - 1M x 8
- Fast access time
  - 166ns(max.) @ 2.4V - 3.6V
- Current
  - Operating: 2.0mA
  - Standby: 2.0 $\mu$ A
- Supply voltage
  - 2.4V - 3.6V
  - All inputs and outputs TTL compatible

### 3. BLOCK DIAGRAM



**4. SIGNAL DESCRIPTIONS**

| Mnemonic | Type | Description                        |
|----------|------|------------------------------------|
| CE       | I    | Chip Enable *                      |
| SCK      | I    | Serial accessing clock             |
| SDA      | I/O  | Serial Address input / Data output |
| VSS      | I    | Ground                             |
| VDD      | I    | Power                              |
| NC       | I    | NC                                 |

Note: \* CE pin polarity can be set by mask option.

For Sunplus Confidential  
LINKAGE ONLY

## 5. ELECTRICAL SPECIFICATIONS

### 5.1. Absolute Maximum Ratings

| Characteristics                    | Symbol    | Ratings        |
|------------------------------------|-----------|----------------|
| Voltage on any Pin Relative to VSS | $V_{IN}$  | -0.3V to 4.3V  |
| Ambient Operating Temperature      | $T_{OPR}$ | 0°C to 70°C    |
| Storage Temperature                | $T_{STG}$ | -65°C to 125°C |

Note1: Minimum DC voltage on input or I/O pins is -0.5V.

During voltage transitions, inputs may undershoot VSS to -1.3V for periods of up to 20ns. Maximum DC voltage on input or I/O pins is VDD+0.5V.

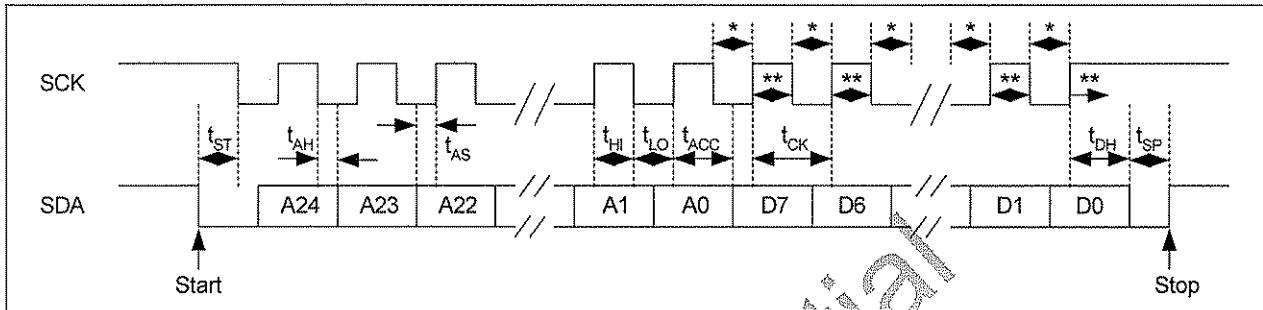
During voltage transitions, input may overshoot VDD to VDD+2.0V for periods of up to 20ns.

Note2: Stresses beyond those given in the Absolute Maximum Rating table may cause operational errors or damage to the device. For normal operational conditions see AC/DC Electrical Characteristics.

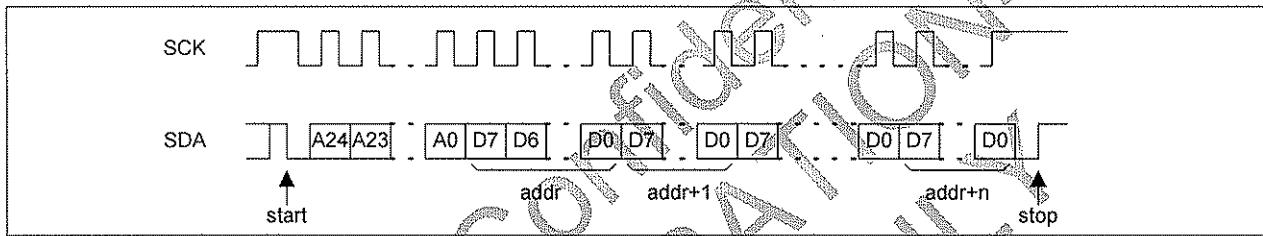
### 5.2. DC Characteristics (VDD = 2.4V - 3.6V, $T_A$ = 0°C - 70°C)

| Characteristics        | Symbol    | Min.  | Max.        | Conditions                                       |
|------------------------|-----------|-------|-------------|--------------------------------------------------|
| Output High Voltage    | $V_{OH}$  | 2.2V  | -           | $I_{OH} = 0.4mA$                                 |
| Output Low Voltage     | $V_{OL}$  | -     | 0.4V        | $I_{OL} = 1.6mA$                                 |
| Input High Voltage     | $V_{IH}$  | 2.2V  | VDD+0.3V    |                                                  |
| Input Low Voltage      | $V_{IL}$  | -0.3V | 0.2 x VDD   |                                                  |
| Input Leakage Current  | $I_{IL}$  | -     | 2.0 $\mu$ A | 0V, VDD*                                         |
| Output Leakage Current | $I_{OL}$  | -     | 2.0 $\mu$ A | 0V, VDD*                                         |
| Operating Current      | $I_{CC1}$ | -     | 2.0mA       | $t_{CK} = 166ns$ , all output open               |
| Standby Current        | $I_{STB}$ | -     | 2.0 $\mu$ A | CE **> VDD-0.2V or CE ***<0.2V<br>All inputs=GND |
| Input Capacitance      | $C_{IN}$  | -     | 10pF        | $T_A = 25^\circ C$ , f = 1.0MHz                  |
| Output Capacitance     | $C_{OUT}$ | -     | 10pF        | $T_A = 25^\circ C$ , f = 1.0MHz                  |

Note: \*Input leakage current of SDA exists when input voltage is not VSS or VDD. Maximum leakage current is 280 $\mu$ A(SDA=1.6V) and -110 $\mu$ A(SDA=2V) when VDD=3.6V.


\*\* CE polarity defined as low active, \*\*\* CE polarity defined as high active.

### 5.3. AC Characteristics (VDD=2.4V - 3.6V, $T_A$ = 0°C - 70°C)


| Characteristics          | Symbol     | Min. | Max. | Unit |
|--------------------------|------------|------|------|------|
| Period of SCK            | $t_{CK}$   | 166  | -    | ns   |
| Low period of SCK clock  | $t_{LO}$   | 70   | -    | ns   |
| High period of SCK clock | $t_{HI}$   | 70   | -    | ns   |
| Address setup time       | $t_{AS}$   | 15   | -    | ns   |
| Address hold time        | $t_{AH}$   | 15   | -    | ns   |
| READ access time         | $t_{ACC}$  | -    | 166  | ns   |
| Start setup time         | $t_{ST}$   | 70   | -    | ns   |
| Stop setup time          | $t_{SP}$   | 70   | -    | ns   |
| READ data hold time      | $t_{DH}$   | -    | 15   | ns   |
| Rise time of SCK         | $t_{RSCL}$ | -    | 10   | ns   |
| Fall time of SCK         | $t_{FSCL}$ | -    | 10   | ns   |
| Rise time of SDA         | $t_{RSDA}$ | -    | 10   | ns   |
| Fall time of SDA         | $t_{FSDA}$ | -    | 10   | ns   |

## 5.4. Timing Diagram

#### 5.4.1. Read command



#### 5.4.2. Successive read command



Note: \*Master terminal of Serial Interface (SIF) must keep Hi-Z to avoid bus contention.

\*\*Serial ROM (Slave terminal of SIF) will stop driving output to avoid bus contention.